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Abstract—This study presents a fuzzy prediction system for 
the forecasting and estimation of driving fatigue, which utilizes a 
functional-link-based fuzzy neural network (FLFNN) to predict 
the drowsiness (DS) level in car driving task. The cognitive state 
in car driving task is one of key issue in cognitive neuroscience 
because fatigue driving usually causes enormous losses nowa-
days. The damage can be extremely decreased by the assistant of 
various artificial systems. Many Electroencephalography (EEG)-
based interfaces have been widely developed recently due to its 
convenient measurement and real-time response. However, the 
improvement of recognition accuracy is still confined to some 
specific problems (e.g., individual difference). In order to solve 
this issue, the proposed methodology in this paper utilizes a non-
linear fuzzy neural network structure to increase the adaptability 
in the real-world environment. Therefore, this study is further to 
analysis the brain activities in car driving, which is constructed 
in a simulated three-dimensional virtual-reality (VR) environ-
ment. Finally, through the development of brain cognitive model 
in car driving task, this system can predict the cognitive state 
effectively before drivers’ action and then provide correct feed-
back to users. This study also compared the result with the-state-
of-art systems, including Linear Regression (LR), Multi-Layer 
Perceptron Neural Network (MLPNN) and Support Vector Re-
gression (SVR). Results of this study demonstrate the effective-
ness of the proposed FLFNN model. 

Keywords—Electroencephalography (EEG), Driving fatigue, 
functional link neural networks (FLNNs), fuzzy neural networks 
(FNNs) 

I. INTRODUCTION 
Accompany with the development of techniques, many 

artificial auxiliary systems have been designed to improve 
human’s life[1]–[3]. Among these systems, brain monitoring 
system is an effective object type because it could evaluate 
cognitive states of human beings directly. There is a great deal 
of methodologies to measure brain activity [4] (e.g., 
Electroencephalography (EEG), Magnetoencephalography 
(MEG), Magnetic resonance imaging (MRI), etc.), and each of 
them has its own strength and weaknesses. As one of the most 
important methodologies, EEG has gradually attracted 
attention. A significant advantage of EEG over other extraction 

methodologies is that it provides abilities of convenient 
measurement and real-time response [5]. 

Although EEG has been widely utilized in brain monitor 
system, there are some basic problems which are not 
completely solved. Improvement of recognition rate is still a 
key issue. Because brain activities are dynamic and complex 
procedure, processing of EEG turns to be quite complicated 
nonlinear problem. Many authors have addressed this problem 
using different approaches [6]–[9], and the fuzzy neural 
network has been considered a flexible and rational manner 
because it combines the ability of bio-inspired learning and the 
mechanism of human thinking [10]–[14]. 

The proposed system in this paper is to introduce a 
functional-link-based neural fuzzy network (FLFNN) [15], 
[16], especially for [13], the authors have presented using Self-
organizing Neural Fuzzy Inference Network (SONFIN) to 
evaluate the state of drowsiness in driving tsk. In this approach, 
to explicitly describe learning algorithms we divided two 
sections consisted of structure learning and parameter learning. 
For the structure learning algorithm, fuzzy partition of input 
variables is exploited to build fuzzy rules. In addition, through 
the parameter learning, which is based on the back propagation 
algorithm, all free parameters will be updated by patterns 
iteratively. In addition, in order to increase the flexibility of 
output layer, we utilize the functional-link expansion to the 
consequent layer. Further in this study, the system 
performances of FLFNN are compared with the benchmark 
systems including Linear Regression (LR), Multi-Layer 
Perceptron Neural Network (MLPNN), and Support Vector 
Regression (SVR) [17]. 

II. EXPERIMENTAL SETUP 

A. Experimental environment and paradigm 
This study adopted an event-related lane-departure driving 

paradigm [18] using dynamic control platform [19] to evaluate 
brain dynamics associated with motion cues under different 
levels of task performance. The three-dimensional six-axis 
virtual reality (VR) scenario (Fig. 1(a)) provided nighttime 
driving environment which simulated participants 
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to 
drive on a four-lane divided highway at a constant speed of 100 
km/hr. The VR experimental program (Fig. 1(b)) randomly 
introduced lane-perturbation events to cause the virtual vehicle 
to drift from the center of the cruising lane, and before the 
simulation start, participants had been instructed to steer the 
vehicle back to the cruising lane as fast as possible after 
becoming aware of the deviation. If the subjects did not 
respond to the lane-perturbation event, falling asleep, for 
example, and then the vehicle could hit the left and right curb 
of the roadside within 2.5s and 1.5s, respectively. The vehicle 
would then continue to move along the curb until it returned to 
the original lane. The inter-trial interval was set to 5~10 s. The 
experiment was begun in the early afternoon (13:00-14:00) 
after lunch and lasted for about 90min when the circadian 
rhythm of sleepiness was at its peak [20]. Participants’ 
cognitive states and driving performance were monitored via a 
surveillance video camera and the vehicle trajectory throughout 
the experiment. 

B. Participants 
Ten right-handed healthy young adults took part in the 

behavioral experiment (mean age ± Standard Deviation; 24.2 ± 
3.7 years old). All participants were recruited through online 
advertisement. No subject had a history of neurological, 
psychiatric, addictive disorders according to self-report, and no 
anti-psychotic treatments or other relevant psychoactive drugs 
within past two weeks. Before each section of experiment, the 
subjects needed to answer a questionnaire regarding their sleep 
patterns to make sure they were not sleep deprived or took any 
medication that might influence their cognitive states. 
Additionally, the subjects did not have imbibed alcohol and 
caffeinated drinks, or participated in strenuous exercise a day 
before the experiments. To evaluate accurately their driving 
performance, the participants attended a pre-test session to 
determine that none was afflicted with simulator sickness. The 
Institutional Review Board of the Veterans General Hospital, 
Taipei, Taiwan, approved the study. All participants were 
asked to read and sign an informed consent form before 
participating in the EEG experiments. 

C. Independent EEG processes and category 
Independent component analysis (ICA) [21] is an effective 

EEG signal processing technique which could find a source 
mapping matrix from original data which was blended with 
unrelated artificial noise. This method demonstrated one 
suitable solution to the problem of EEG source, and could 
decompose distinct brain activation. For each recorded datum, 
a maximum of 30 independent components (ICs) and their 
corresponding mixing matrix were decomposed. The ICs, 
obtained from 10 subjects, were grouped into distinct clusters 
with high intra-cluster similarity [21] based on commonalities 
of scalp topographies (2-D visualization maps of the columns 
of the mixing matrix), equivalent dipole source locations [22], 
and event-related spectral perturbations [21]. Based on 
suggestions in the literature [18], [19], [23], bilateral occipital 
was selected as the ICs of interest for further analysis. The 
continuous IC time series was then segmented into a set of 
epochs of varying lengths from 2 s before each deviation event 
to the occurrence of the following deviation event. The epoch 
datum was separated from artifacts using ICA algorithm which 
was implemented in EEGLAB toolbox to preserve real 
activated components. The response time (RT) to each lane-
departure event (i.e., the time between the onset of the 
deviation and the onset of the response) was used as an 
objective behavioral measurement to characterize all EEG 
epochs as the level of drowsiness. 

D. Event-related time-frequency estimation 
To investigate brain dynamics following the lane-departure 

events and the subsequent motor responses, each epoch was 
separately transformed into the time-frequency representation 
using the event-related spectral perturbation routine [21]. For 
each component cluster and each driving session, the mean 
delta- ( : 1-3 Hz), theta- ( : 4-7 Hz), alpha- ( : 8-12 Hz), and 
beta- ( : 13-20 Hz) band powers high beta- ( : 21-40 Hz)were 
collected according to the RT of the epoch. 

III. PROPOSED METHOD 

A. FLFNN 
This section describes the model of FLFNN, which utilizes 

a nonlinear combination of input variables (FLNN). Each 
fuzzy rule corresponds to a sub-FLNN, comprising a function-
al link. The structure of FLFNN model is as illustrated in Fig. 
2. 

The operating principles of each layer are now described. 
In the following description, u (l) denotes the output of a node 
in the lth layer. 

No computation is done in layer-1. Each node in this layer, 
which corresponds to one input variable, only transmits input 
values to the next layer directly. 

ii xu =)1(                                     (1) 

Next, layer-2 is membership function layer. Each node in 
this layer performs Gaussian membership function that cor-
responds to one linguistic label of the input variable in layer-
1.The calculated membership value in layer-2 is 

(a) 

(b) 

Fig. 1.  (a) Three-dimensional-six-axis virtual reality (VR) scenario. 
(b) Schema for driving task in simulated scenario.  
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where mij and σij are the mean and variance of the Gaussian 
membership function, respectively, of the jth term of the ith 
input variable xi. 

Nodes in layer-3 receive single-dimensional membership 
degrees based on the associated rule from the nodes of a set in 
layer-2. 

Here, the product operator is adopted to perform the pre-
condition part of fuzzy rules. As a result, the output function 
of each rule node can be denoted by 

)( )2()3(
ijj uu Π=                                 (3) 

where the Пiuij
(2) of a rule node represents the firing 

strength of its corresponding rule. 

Nodes in layer-4 are called the consequent nodes. The in-
put to each node in layer-4 is the output from layer-3, and the 
other inputs are calculated from the FLNN that has not used 
the function tanh(·), as shown in Fig. 2. Such a node 

∑
=

=
M

k
kkjjj uu

1

)3()4( φω                            (4) 

where ωij is the corresponding link weight of the FLNN 
and φk is the functional expansion of input variables. The func-
tional expansion uses a trigonometric polynomial basis func-
tion, given by [x1 sin(π x1) cos(π x1) x2 sin(π x2) cos(π x2)] for 

two-dimensional input variables. Therefore, M is the number 
of basis functions, M = 3× N, where N is the number of input 
variables. Moreover, the output nodes of the FLNN depend on 
the number of fuzzy rules of the FLFNN model. The output 
node in layer-5 integrates all of the actions recommended by 
layers-3 and layer-4 and acts as a fuzzy defuzzifier with 
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where R is the number of fuzzy rules and y is the output of 
the model of FLFNN. 

B. Proposed EEG-based driving perdition system 
The architecture of proposed system is shown in Fig. 

3.The recorded EEG data sets are processed into two stages.  

First section performs bio-signal preprocessing, including 
artifacts removal, independent component analysis. Following 
the event tag of recorded data, the data sets were divided into 
several epochs. By utilizing time-frequency analysis, adaptive 
features are selected and then transmitted into next stage. 

Before entering data sets into the proposed prediction, we 
need to establish the format of our data sets. According to 
previous literatures, bilateral occipital was selected as the ICs 
of interest for further analysis. In addition, for the meaning of 
prediction, this study utilizes the data, which lengths from 2 s 

 
 

Fig. 2. Structure of functional-link-based fuzzy neural network (FLFNN), which comprises a five-layer neural network structure. 
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before each deviation event, as target of prediction. Rather 
than adopting the signal coming after deviation event, al-
though it would be more opportunities to have significant per-
formance; however, it does not exist any rational and physical 
meanings. 

Finally, the processed data sets are transmitted to the mod-
el of FLFNN. The input data sets have been transformed from 
pattern phase to feature phase. There are 944 patterns (total 
subjects) in that experiment and each pattern possesses 5 
attributes (delta, theta, alpha, beta and high beta) as feature 
vector. Then the FLFNN model evaluate each data based on 
the principles introduced last sub-section. Consequently, the 
FLFNN model predicts the cognitive state and is also trained 
simultaneously according to piece of incoming pattern. 

IV. EXPERIMENTAL RESULTS AND DISCUSSION 
In this section, we introduce FLFNN model to predict the 

level of drowsiness in car driving task. We evaluated this 
model by comparing with the state-of-the-art learning algo-
rithms. We considered the following three well-known 
benchmark models: Linear Regression (LR), Multi-Layer Per-
ceptron Neural Network (MLPNN), and Support Vector Re-
gression (SVR). 

The performance of this drowsiness-prediction procedure is 
revealed in this section. For each system in terms of executing 
10 rounds along with ten-fold cross-validation, in which 90% 
of the trials were randomly selected as the training set and the 

reminding 10% of the trials as testing set. The averages of 
MSE between the actual and estimated RTs is shown in Tables    
I. The MSE of training and testing data obtained by FLFNN, 
LR, MLPNN and SVR are 0.009 s, 0.215 s, 0.008 s, 0.006 s 
and 0.067 s, 0.25 s, 0.112 s, 0.098 s. Fig. 4 depicts the boxplot 
of the MSE of drowsiness prediction with 10-fold cross-
validation using FLFNN, LR, MLPNN and SVR. The 
proposed model of FLFNN produced the lowest MSE among 
all methodologies on the testing data in this experiment. 

V. CONCLUSION 
A Characteristic of EEG signal is susceptible to uncertain-

ties; therefore, its signal usually fluctuates extremely. This 
phenomenon comes from two major reasons, (1) the amplitude 
of EEG is relatively small comparing with the environments, 
and (2) brain activities are quite complicated originally. 
Therefore, it is an effective approach to increasing perfor-
mance by augmenting nonlinear ability in most systems. The 
proposed model FLFNN employs the structure of FLNN in 
order to enforce the network’s performance to achieve the 
generalization. Apparently by the experimental results, our 
proposed system demonstrates such effectiveness to process 
EEG signals and has remarkable performance in predicting car 
driving task. 
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TABLE I 
MEAN SQUARE ERROR (MSE) COMPARISONS FOR VARIOUS MODEL 

PREDICTION 

MSE FLFNN LR MLP SVR Average(s) 

Training 
0.009±
0.003 

0.215±
0.009 

0.008±
0.004 

0.006±
0.001 0.060 

Testing 
0.067±
0.005 

0.25±
0.021 

0.112±
0.005 

0.098±
0.001 0.132 

 

Fig. 4. Boxplot comparison of subject’s drowsiness level testing eval-
uation for FLFNN model with LR, MLPNN, MLPNN and SVR. The 
boxes have three lines to present the values for lower quartile, median 
(red line), and upper quartile for each model. Two addition lines at 
both ends of the whisker indicate the maximum and minimum value 
of each model. 

 
Fig. 3. EEG-based driving fatigue prediction system schematics. First 
section performs bio-signal preprocessing, including artifacts remov-
al, independent component analysis. Following the event tag of rec-
orded data, the data sets were divided into several epochs. Utilizing 
time-frequency analysis, adaptive features are selected into next sta-
tion. Finally, processed data sets are transmitted to the model of 
FLFNN. The input data sets have been transformed from pattern 
phase into feature phase. Consequently, the FLFNN model predicts 
the cognitive state and is also trained simultaneously according to 
each input pattern. 
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