
A Novel Algorithm for Mining Behavioral Patterns
from Wireless Sensor Networks

Md. Mamunur Rashid, Iqbal Gondal, Joarder Kamruzzaman

Faculty of Information Technology

Monash University

Melbourne, Australia

{md.rashid, iqbal.gondal, joarder.kamruzzaman}@monash.edu

Abstract—Due to recent advances in wireless sensor
networks (WSNs) and their ability to generate huge amount of
data in the form of streams, knowledge discovery techniques
have received a great deal of attention to extract useful
knowledge regarding the underlying network. Traditionally
sensor association rules measure occurrence frequency of
patterns. However, these rules often generate a huge number
of rules, most of which are non-informative or fail to reflect
the true correlation among data objects. In this paper, we
propose a new type of sensor behavioral pattern called
associated sensor patterns that captures association-like
co-occurrences and the strong temporal correlations implied
by such co-occurrences in the sensor data. We also propose a
novel tree structure called as associated sensor pattern tree
(ASPT) and a mining algorithm, associated sensor pattern
(ASP) which facilitates frequent pattern (FP) growth-based
technique to generate all associated sensor patterns from
WSN data with only one scan over the sensor database.
Extensive performance study shows that our algorithm is very
efficient in finding associated sensor patterns than the existing
significant algorithms.

Keywords-wireless sensor networks; data mining; behavioral
patterns; knowledge; stream data

I. INTRODUCTION

Wireless sensor networks (WSNs) is emerging as a
promising research area which used in area monitoring,
environment monitoring, industrial and machine health mon-
itoring, waste water monitoring and military surveillance [1,
2, 3]. A WSN consists of a large number of heterogeneous
or homogeneous sensor nodes that are formed to sense
the environment around them and send the detected events
to a well-equipped node refer to as the sink, in multihop
fashion. The detected events are transmitted to the sink
periodically or based upon satisfying a particular predicate
or as an answer to the query [4]. In this transmission mode
WSNs generates a huge of data in the form of stream. As a
result, the real time data stream, limited resources and the
distributed nature of sensor networks bring new challenges
for data mining techniques.

Data mining techniques have recently received a great
deal of attention to extract interesting knowledge from WSN
[5, 6]. These techniques have shown to be a promising tool
to improve WSN performance and quality of services (QoS)
[7]. Loo et al. [19] and Romer et al. [21] have focused
on extracting pattern regarding the phenomenon monitored
by the sensor nodes, in which the mining techniques are

applied to the sensed data received from the sensor nodes
and stored in a central database. Sensor-association rules
was proposed in [16, 17, 18] where patterns are extract
regarding the sensor nodes rather than the area monitored
by the WSN. An example of sensor association rules could
be (s1, s2 → s3, 85%, λ) which means that if sensor s1 and
s2 detect events within λ time interval, then there is 85%
of chance that s3 detects events within same time interval.
However, association rule mining with real datasets is not
so simple. This scheme is dependent on a constraint termed
minimum support threshold which is use to specify minimum
lower bound for the support of resulting association rules. If
the minimum support threshold is high, then we can get high
value ’knowledge’. On the other hand, when the minimum
support threshold is low, an extremely large number of
association rules will be generated, most of them are non-
informative. The valid correlation among data objects are
buried deep among a large pile of useless rules.

Here, we propose a new type of sensor behavioral
pattern called associated sensor patterns that can be used
for predicting the source of future events. By knowing the
source of future event, we can detect the faulty nodes easily
from the network. For example, we are expecting to get
an event from a particular node, and it does not occur. It
also may be used to identify the source of the next event
when the behavioral pattern reveals a chain of related events.
Associated sensor patterns also can identify a set of tempo-
rally correlated sensors. This knowledge can be helpful to
overcome the undesirable effects (e.g., missed reading) of
the unreliable wireless communications and also useful in
resource management process by deciding which nodes can
be switched to a sleep mode without affecting the coverage
of the network. However, even though mining associated
sensor patterns from WSN is extremely required in real-time
applications, no such algorithm has been proposed yet.

Motivated by the above discussion, in this paper, we
address the problem of finding associated sensor patterns
in a sensor database. For associated sensor patterns mining,
we devised a prefix-tree structure, called an associated sensor
pattern tree (ASPT), which captures patterns with one scan
of the sensor data streams in a highly compact manner. The
main concept behind ASPT construction is to first build a
prefix-tree based on the order of sensors’ appearance in the
database, then restructure the tree in a frequency-descending
order, and finally compress the tree by merging the same
support sensor nodes in a single node in each branch of the

2014 International Joint Conference on Neural Networks (IJCNN)
July 6-11, 2014, Beijing, China

978-1-4799-1484-5/14/$31.00 ©2014 IEEE 3713

tree. After that, we use a pattern growth approach called
as ASP to mine the associated sensor patterns from ASPT.
Performance study shows that the proposed approach is
efficient in finding associated sensor patterns.

In summary, the main contributions of this paper are
(1) We define a new type of behavioral pattern for WSNs.
We refer to the new proposed pattern by associated sensor
patterns, (2) We devise a novel, highly compact tree structure
called ASPT that is efficient for discovering associated
sensor patterns from sensor database with a single database
scan, (3) We develop a noble mining algorithm ASP based
on the above tree structure which can be devoted for finding
associated sensor patterns over sensor data stream, and (4)
We show the performance study of our proposed algorithm
through extensive experimental analyses.

This paper is organized as follows. Section 2, we de-
scribe related works and in Section 3, we discuss the
problem of mining associated sensor patterns in WSNs.
In Section 4, we develop our proposed ASPT structure
and algorithm. In Section 5, our experimental results are
presented and analyzed. Finally, Section 6 concludes the
paper.

II. RELATED WORKS

Association rules [8, 9] is the first data mining technique
that has been used in WSNs to generate patterns related
to the sensor nodes and their underlying domain. Loo et
al. [19] studied the problem of mining the associations
between sensor values that co-exist temporally from large-
scaled wireless sensor networks. They used a data model
to store the data and assumed that a sensor only takes
on a finite number of discrete states where a quantization
model was applied for the continuous values. The time
was divided into equal-sized intervals. A snapshot from the
sensor reading was taken whenever there was an update on
a sensor reading and stored it in a database in the form
of contexts. Then, they showed how the Lossy Counting
framework [20] can be utilized to formulate a online one-
pass algorithms for mining large sensor streams under the
two data representations (weighted transactions and interval
list). Romer [21] addressed the problem of mining spatial
temporal event patterns form sensor data which was another
attempt to link the association rule mining problem. In this
method the distributed nature of wireless sensor networks
was considered and an in-network data mining techniques
were proposed to discover frequent event patterns and their
spatio-temporal relationships within a sensor network, such
that compact patterns rather than raw data streams would
have to be transmitted from nodes to the sink.

Boukerche et al. [16, 17] introduced sensor-association
rules as an attempt to extract a pattern regarding the sensor
nodes, rather than the area monitored by the WSN. The main
difference between sensor association rules and the other
techniques was that the data used in the mining process
were behavioral data (i.e., meta-data describing the nodes’
activities). They also presented positional lexicographic tree
(PLT) to store the sensor’s event detection status. PLT tree
follows a pattern growth mining technique similar to FP-
growth approach [10]. The mining starts with the sensor
having maximum rank by generating the frequent patterns

from its PLT in a recursive way. However, construction
of such kind of tree (e.g., FP-tree and PLT-tree) requires
two database scans, which is not suitable for mining sensor
stream data. On the other hand, mining PLT needs an extra
mapping mechanism for the sensors to a vector. Tanbeer et
al. [18] has proposed a tree-based data structure called sensor
pattern tree (SP-tree) to generate the set of all association
rules from WSN data with one scan over the sensor database.
Both PLT and SP-tree stored only the frequent sensor with
a user given threshold. For this reason these tree are not
suitable for finding associated sensor patterns.

Recently, researchers have focused on devising methods
to mine user’s interest-based frequent patterns to produce
the desired result set in efficient manner by applying early
pruning technique to reduce the size of resultant item sets.
E. Miccinski et al. [11] proposed three alternative inter-
estingness measures, called any-confidence, all-confidence
and bond for mining associations for the first times. B.
Liu et.al [12] analyzed contingency table for pruning and
summarizing the discovered correlations. Later on, Y.K Lee
et.al [13] used all-confidence to find correlated pattern.
Algorithm proposed in [14] makes an effort to improve the
performance of [13] by introducing items’ support interval
concept. Z. Zhou et al. [15] used a new interesting mea-
sure corr-confidence for rationally evaluating the correlation
relationships.

TABLE I. A SENSOR DATABASE (SD)

TS Epoch

1 s1s2s3s4s7s8
2 s1s5s6
3 s2s5s6s7s8
4 s1s2s4s7
5 s1s2s4s5
6 s1s2s3s4s7

III. ASSOCIATED SENSOR PATTERNS MINING

PROBLEM IN WSNS

Let S = {s1, s2, ..., sp} be a set of sensor in a particular
wireless sensor network. We assume that the time is divided
into equal-sized slots t = {t1, ..., tq} such that tj+1 − tj =
λ, j ∈ [1, q− 1] where λ is the size of the each time slot. A
set P = {s1, s2, ..., sn} ⊆ S is called a pattern of a sensors.
A sensor database, SD, is defined to be a set of epochs where
each epoch is a tuple E(Ets, X) such that X is a pattern
of the event detecting sensors that report events within the
same time slot and Ets is the epoch’s time slot. Let size(E)
be the size of E i.e., the number of sensors in E. An epoch
E(Ets, X) supports a pattern Y if Y ⊆ X . Frequency of the
pattern Y in SD is defined to be the number of epochs in SD
that support it, i.e., Freq(Y, SD) = |{E(Ets, X)|Y ⊆ X}|.
Pattern Y is said to be a frequent pattern if Freq(Y, SD) ≥
min_sup, where min_sup is a user given minimum support
threshold in percentage of SD size in number of epochs.

The interestingness measure all-confidence denoted by α
of a pattern Y is defined as follows:

α =
Sup(Y)

Max_sensor_Sup(Y)
(1)

3714

SO-list

s1

s2

s3

s4

s7

(a) Initial empty
ASPTA

(b) ASPTA after inserting
TS = 1

{ }

(d) ASPT after restructuring

s8

s5

s6

SO-list

s1:1
s2:1
s3:1
s4:1
s7:1

{ }

s8:1
s5

s6

s1:1

s2:1

s3:1

s4:1

s7:1

s8:1

SO-list

s1:5
s2:5
s3:2
s4:4
s7:4

{ }

s8:2
s5:3
s6:2

s1:5

s2:4

s3:2

s4:2

s7:2

s8:1

s5:1

s6:1

s2:1

s7:1

s8:1

s5:1

s6:1

s4:2

s7:1s5:1

(c) ASPTA after inserting all epoch

SO

SO-list

s1:5
s2:5
s4:4
s7:4
s5:3

{ }

s3:2
s8:2
s6:2

s1:5

s2:4

s3:2

s4:4

s7:3

s8:1

s5:1

s6:1

s2:1

s7:1

s5:1

s8:1

s6:1

s5:1

SFD

(e) ASPT after compression

{ }

s1:5

s2:4

s3:2

s4:4

s7:3

s8:1

s5,s6:1

s2,s7,s5,s8,s6:1

s5:1

SFD

SO-list

s1:5
s2:5
s4:4
s7:4
s5:3
s3:2
s8:2
s6:2

Fig. 1. ASPT Construction

Definition 1 (Associated Pattern): A pattern is called
an associated pattern, if its all-confidence is greater than or
equal to the given minimum all-confidence threshold.

Given a sensor database SD, min_sup(δ) and
min_all_conf(α) constraints, find the complete set
of associated patterns in SD having the value no less than
δ and α.

IV. PROPOSED ASPT CONSTRUCTION AND

ALGORITHM

In this section, at first we describe the construction of
associated sensor pattern tree (ASPT). Then, we discuss
the mining process in discovering associated sensor patterns
from ASPT.

A. ASPT Construction

The ASPT construction has two phases: insertion phase
and restructuring-compression phase. The step-by-step con-
struction process of the ASPT based on the sensor database
of Table I shown in Fig. 1(a-e). For the figure simplicity, we
do not show the node traversal pointers in the tree.

For the insertion phase, ASPT arranges the sensors
according to sensors’ appearance order in the database and is
built by inserting every epoch in database one after another.
At this stage we call it ASPTA, which simply maintains a
sensor order-list (SO-list). The SO-list includes each distinct
sensor found in all epochs in database according to their

appearance and contains support value of each item in the
database. Initially the ASPT is empty and starts construction
with null root node shown in Fig. 1(a). Using SD in Table 1
as an example, the first epoch (i.e., TS =1) {s1s2s3s4s7s8}
is inserted into the tree < {} → s1 : 1 → s2 : 1 → s3 :
1 → s4 : 1 → s7 : 1 → s8 : 1 > as-it-is manner. Thus the
first branch of the tree is constructed with s1 as the initial
node (just after root node) and s8 as the last one as shown
in Fig. 1(b). The support count entries for sensors s1, s2,
s3, s4, s7 and s8 are also updated at the same time. Before
inserting the second epoch, sensors of TS=2 are sorted from
{s1s5s6} order to {s1s2s3s4s7s8s5s6} order to maintain the
SO-list and then insert TS=2 into the tree. In this way, after
adding all epochs (TS=6), a complete ASPTA shown in Fig.
1(c). Observe that each node in the ASPTA contains the
occurrence frequency of the epochs, which represents the
count of the pattern from the root to the node in the path. We
call the final SO-list of the constructed ASPTA as SO. Here,
the insertion phase ends and the restructuring-compression
phase starts.

The purpose of the restructuring-compression phase is
to achieve a highly compact ASPT which will utilize less
memory and facilitate fast mining process. In this phase, we
first sort the SO in frequency-descending order (Sfd) using

merge sort and reorganize the tree structure according to
Sfd order. For restructuring our ASPT, we use BSM (branch

sorting method) proposed in [22]. BSM uses the merge sort
to sort every path of the prefix tree. This approach first
removes the unsorted paths, then sorts all the paths and

3715

Algorithm 1 The ASP Algorithm

Input: SD, ISAO: Initial sensor appearance order,
min_sup, min_all_conf
Output: Complete set of associated sensor patterns

1: Begin
2: SO ← an SO-list arranged in ISAO
3: ASPTA ← a prefix-tree with null initialization
4: while (Not end of SD) do
5: Scan an epoch from the current location in SD;
6: Insert the scanned epoch into ASPT according to

ISAO by following FP-tree construction method:
7: end while
8: Calculate SFD from SO in frequency-descending order

using merge-sort method;
9: for each branch in ASPTA do

10: Sort the branch in SFD using branch sorting method
(BSM);

11: end for
12: for each branch in restructured ASPTA do
13: Identify the same support sensor node in each branch

and merge them to a single node
14: end for
15: while any mining request from the user do
16: Input α and β from the user
17: for sensor υ from the bottom of SO-list do
18: Create CPB tree CPBυ with SO-listυ for sensor

υ
19: Call Mining (CPBυ, SO − listυ, υ)
20: end for
21: end while
22: End

reinserts them into the tree. Fig. 1(d) shows the structure
of ASPT after the restructuring operation. At this stage,
we employ a simple but effective compression process that
selects the same support sensor nodes in each branch and
merge them into a single node. The final ASPT, after
restructuring and compression is shown in Fig. 1(e).

Property 1: The support value of any node in ASPT is
greater than or equal to the sum of total support value of its
children.

Property 2: ASPT can be constructed in a single
database scan.

Lemma 1: Given a sensor database SD, the complete
set of all sensor projections of all epochs in the SD can be
derived from its ASPT.

Proof: From the ASPT construction process, we can see
that, all sensor projections of each epoch are mapped to only
one path in the ASPT. For this reason, ASPT conserves a
complete set of all sensor projections of each epoch for SD
only once.

B. Mining Process

Let the SD presented at Table I, the constructed ASPT
in Fig. 1(e), min_sup = 3 and min_all_conf = 0.55.
Like [10], we recursively mine the ASPT of decreasing
size to generate associated patterns by creating conditional
pattern-bases (PB) and the corresponding conditional trees

{ }SO-list

s1:3 s1:3

(a) Conditional pattern-base
for ‘s5’

(b) Conditional pattern-
base and conditional tree

for ‘s7’

{ }

s2:1

s4:1

s7:1

SO-list

s1:2
s2:2
s7:1

s1:2 s2:1

{ }

s2:3

s1:3 s2:1

SO-list

s1:3
s2:4

{ }

s1:3

s2:3

(c) Prefix and
conditional-tree

for ‘s7s4’

SO-list

s1:3
s2:4

SO-list

s1:4

{ }

s1:4

(f) Conditional-tree
for ‘s2’

s4:1
s4:3

s4:3

SO-list

s1:4
s2:4

{ }

s1:4

s2:4

(e) Conditional-tree
for ‘s4’

(d) Prefix and
conditional-tree

for ‘s7s4s2’

s2:1

Fig. 2. Conditional pattern-base and conditional tree construction with the
ASPT

(CT) without any additional database scan. We start building
the conditional pattern-base and conditional trees from the
sensor at the bottom of the SFD list (Fig. 1(e)). The three
bottom sensors s6, s8 and s3 do not satisfy the min_sup
threshold. Therefore, at first the conditional pattern-base tree
of s5 is created by taking all the branches prefixing the
sensor s5 as shown in Fig. 2(a). Sensor s5 creates branches
(s1s2s4:1), (s2s7:1) and (s1:1) where s1:1 shares the prefix
with s1s2s4:1. The conditional-tree of s5 is empty, because
s1, s2, s4 and s7 do not satisfy the given min_sup and
min_all_conf thresholds.

For the other sensors, the conditional pattern-base and
the corresponding conditional trees are shown in Fig. 2(b-
e). Now prefix and conditional-tree for s7 is created in Fig.
2(b). Its conditional-tree contains two path (s1s2s4 : 3) and
(s2 : 1) and the generated associated sensor patterns for s7
are s1s7 : 3, s2s7 : 4, s4s7 : 3. The prefix and conditional-
tree of associated sensor pattern s4s7 is created in Fig. 2(c).
Patterns s1s4s7 : 3 and s2s4s7 : 3 are generated here. The
prefix tree of patterns s2s4s7 is shown in Fig. 2(d) and
s1s2s4s7 is the generated pattern here. Now the prefix and
conditional-tree for sensor s4 is shown in Fig. 2(e). It has
only one branch (s1s2 : 4) and the generated associated
sensor patterns are s1s4 : 4, s2s4 : 4 and s1s2s4 : 4. The
conditional pattern-base and conditional-tree for sensor s2 is
shown Fig. 2(f). The generated associated sensor pattern for
s2 is s1s2 : 4. Finally, the top-most item is s1 and there is
no associated sensor pattern for this. Algorithm 1 shows
pseudo-code of ASP. The overall mining process for the
given sensor database of Table I is shown in Table II.

With the above mining process, one can see that, for
given min_sup and min_all_conf thresholds the complete
set of associated sensor patterns can be generated from an
ASPT constructed on a SD.

V. EXPERIMENTAL RESULTS

To evaluate the performance of our proposed ap-
proach, we performed experiments on IBM synthetic dataset
(T10I4D100K), real life dataset BMS-POS and kosarak from
frequent itemset mining dataset repository [23]. Context and
objects in these datasets are similar to the epochs and sensors
in the terminology of this paper. The datasets are widely
used in similar studies [17, 18]. We also used another dataset
containing real WSN data from Intel Berkely Research Lab
[24] which is widely used by many research community [16,
17, 21]. We utilized one datasets for historical periods of 10
days where 30 second is the slot size. Our programs are
written in Microsoft Visual C++ and run with Windows 7

3716

TABLE II. MINING THE ASPT BY CREATING CONDITIONAL (SUB-) PATTERN BASE

Sensor Conditional Pattern-base Conditional-tree Associated sensor
patterns

s5 {(s1s2s4 : 1), (s2, s7 : 1), (s1 : 1)} - -

s7 {(s1s2s4 : 3), (s2 : 1)} < s1 : 3, s2 : 4, s4 : 3 > s1s7 : 3, s2s7 : 4,
s4s7 : 3, s1s4s7 : 3,

s2s4s7 : 3, s1s2s4s7 : 3
s4 {(s1s2 : 4)} < s1s2 : 4 > s1s4 : 4, s2s4 : 4,

s1s2s4 : 4
s2 {s1 : 4} < s1 : 4 > s1s2 : 4

20 30 40 50 60 70 80 90
70

80

90

100

110

120

130

140

R
un

tim
e

(s
ec

.)

min_all_conf (%)

 CoMine++
 ASP

(a)

20 30 40 50 60 70 80 90
150
200
250
300
350
400
450
500
550
600

R
un

tim
e

(s
ec

.)
min_all_conf (%)

 CoMine++
 ASP

(b)

20 30 40 50 60 70 80

5
10
15
20
25
30
35
40
45

R
un

tim
e

(s
ec

.)

min_all_conf (%)

 CoMine++
 ASP

(c)

20 30 40 50 60 70 80 90
5

10
15
20
25
30
35
40
45
50
55
60
65
70

R
un

tim
e

(s
ec

.)

min_all_conf (%)

 CoMine++
 ASP

(d)

Fig. 3. Runtime comparison: ASP v/s CoMine++ when min_sup is fixed at (a) T10I4D100K (10%), (b) BMS-POS (3%), (c) Kosarak (0.1%) and (d)
10 Days data (30%)

on a 2.66 GHz machine with 4GB of main memory. Runtime
specifies the total execution time (i.e., CPU, I/Os) and in-
cludes tree construction, tree reconstruction and compression
(for ASPT), and mining time.

Our experimental analysis is divided into three parts.
First, we show its performance on mining the set of associ-
ated frequent patterns; second, we study the compactness of
ASPT; and finally, we give the results to prove the scalability
in mining associated frequent patterns by ASPT.

A. Execution time of the ASP

PLT [16] store only the frequent items with a given
threshold. Therefore, it is not possible to find a set of
associated frequent patterns from these tree. We compare
our technique with CoMine++ [14], which proposed for
mining correlated pattern mining for static transactional
database. CoMine++ algorithm is not suitable for stream data
mining due to scanning a database twice. In the first scan, it
finds all single-element frequent patterns and in the second

scan it performs the tree construction and mining opera-
tion. CoMine++ used FP-tree to represent the information
of SD with respect to given user assigned min_sup and
min_all_conf values. CoMine++ needs to design its tree
structure again for every new user request because it does
not maintain build once and mine many property. Firstly, the
mining operation was performed by varying min_all_conf
thresholds, where the min_sup values were fixed as 10%,
3%, 0.1% and 30% respectively for the above mentioned
datasets. The results are represented in Fig. 3. From Fig.
3., it is shown that an increase in min_all_conf values
decreases the runtime in both ASP and CoMine++. The
reason is that, with the increase of the min_all_conf values,
the associated patterns number is deceased, however for
all case ASP is outperformer over CoMine++. Secondly,
the mining operation is performed by varying min_sup
thresholds, where the min_all_conf is fixed as 20% for all
datasets. The results are shown in Fig. 4, where ASP always
outperformed than CoMine++ over the entire supports of
experiments.

3717

1.0 1.5 2.0 2.5 3.0 3.5 4.0
0

20

40

60

80

100

120

140

R
un

tim
e

(s
ec

.)

min_sup (%)

 CoMine++
 ASP

(a)

3.0 3.5 4.0 4.5 5.0 5.5 6.0
100
150
200
250
300
350
400
450
500
550
600

R
un

tim
e

(s
ec

.)

min sup (%)

 CoMine++
 ASP

(b)

0.10 0.15 0.20 0.25 0.30 0.35 0.40
0

10

20

30

40

50

R
un

tim
e

(s
ec

.)

min_sup (%)

 CoMine++
 ASP

(c)

30 35 40 45 50 55 60
0

10

20

30

40

50

60

70

R
un

tim
e

(s
ec

.)

min_sup (%)

 CoMine++
 ASP

(d)

Fig. 4. Runtime comparison: ASP v/s CoMine++ when min_all_conf is fixed at 20% for all datasets (a) T10I4D100K, (b) BMS-POS, (c) Kosarak and
(d) 10 Days data

0.2 0.4 0.6 0.8 1.0
0

10

20

30

40

50

R
un

tim
e

(s
ec

.)

Database size (100K)

 CoMine++
 ASP

(a)

0.1 0.2 0.3 0.4 0.5
0

100

200

300

400

500

R
un

tim
e

(s
ec

.)

Database size (100K)

 CoMine++
 ASP

(b)

Fig. 5. Scalability comparison: ASP v/s CoMine++. (a) Kosarak(δ = 0.1%, α = 50%) and (b) BMS − POS(δ = 3%, α = 40%)

B. Compactness of the ASPT

To show the compactness of ASPT we compared its
size with PLT [16] and FP-tree [10] for given min_sup
and min_all_conf thresholds. CoMine++ algorithm [14],
used FP-tree for mining correlated pattern from transactional
database. For PLT and FP-tree, we considered min_sup
only, because they are support threshold-based tree structure.
Their memory consumptions for different values of param-
eters using all the four data sets are shown in Table III.
From Table III, we observe that, keeping the min_sup fixed,
the memory usages of ASPT decreases with the increasing
min_all_conf . From Table III, we also observe that an

ASPT achieves compactness better than an PLT and FP-tree
for all min_sup and min_all_conf .

C. Scalability of the ASP

For the scalability test, we used kosarak and BMS-POS
datasets. kosarak dataset was divided into five portions,
each of 0.2 million transactions. On the other hand, BMS-
POS dataset also divided into five portions, each of 0.1
million transactions. The experimental results are presented
in Fig. 5(a-b), where we fix min_sup 0.1%, min_all_conf
50% , and min_sup 3%, min_all_conf 40% respectively.
Fig.5 shows the total execution time (including the ASPT

3718

TABLE III. MEMORY COMPARISON AMONG ASPT, PLT AND FP-TREE

Dataset Tree min_all_conf Memory (MB)
min_sup(shown as δ%) (%) δ1 δ2 δ3

T10I4D100K ASPT 20 6.10 3.10 0.21
δ1 = 1.0, δ2 = 2.0, δ3 = 3.0 40 5.50 2.30 0.15

60 4.60 1.20 0.09
PLT – 7.50 3.60 0.35

FP-tree – 8.35 4.66 0.50

BMS-POS ASPT 40 15.30 8.90 5.80
δ1 = 2, δ2 = 4, δ3 = 5 50 12.40 7.20 3.40

60 9.55 6.50 2.30
PLT – 20.30 15.5 9.60

FP-tree – 30.5 23.5 14.7

kosarak ASPT 20 670 540 330
δ1 = 0.2, δ2 = 0.3, δ3 = 0.4 30 620 90 280

40 580 350 250
PLT – 700 610 520

FP-tree – 3000 2000 1500

Intel data ASPT 20 1410 480 250
δ1 = 30, δ2 = 40, δ3 = 50 40 1250 390 170

60 1090 320 105
PLT – 1500 510 280

FP-tree – 3800 1250 700

constructing time and corresponding mining time) in the y-
axis and the number of transactions in the x-axis. The ASP
algorithm demonstrates stable result of about linear increase
of execution time with respect to the size of the database.

VI. CONCLUSION

In this paper, we provide an efficient method for min-
ing associated sensor patterns from WSNs data using a
prefix tree called ASPT. We have used a pattern growth
approach to avoid the level-wise candidate generation-and-
test method. Our proposed, ASPT have the build once and
mine many property and is highly suitable for interactive
mining. This tree structure requires only one database scan
to determine the complete set of associate sensor patterns.
Extensive performance analysis shows that our tree structure
is very efficient for associated sensor patterns mining and
outperform the existing algorithm in both execution time
and memory usage. Future research will explore ways to
use the extracted knowledge to improved the performance
and quality of services (QoS) of WSNs.

REFERENCES

[1] I.F. Akyildiz, W. Su, Y. Sankarasubramaniam and E. Cayirci, "A
survey on sensor networks," IEEE Communications Magazine, vol. 40,
no. 8, pp. 102-114, 2002.

[2] W.B. Heinzelman, Amy L. Murphy, Hervaldo S. Carvalho and Mark
A. Perillo, "Middleware to support Sensor Network Applications,"
IEEE Network, PP. 6-14, 2004.

[3] F. Zhao and L.J. Guibas, "Wireless Sensor Networks: An Information
Processing Approach," Morgan Kaufmann publisher, 2002.

[4] A. Boukerche, R.W. Pazzi, and R.B. Araujo, "A fast and reliable
protocol for wireless sensor networks in critical conditions monitoring
applications," Proc. 7th ACM Int. Symp. Model., Anal. Simul. Wireless
Mobile Syst., pp. 157-164, 2004.

[5] U. Fayyad, G. Piatetsky-Shapiro, and P. Smyth, "From data mining
to knowledge discovery: An overview," Advances in Knowledge
Discovery and Data Mining, pp. 1-34., 1996.

[6] U. Fayyad, G. Piatetsky-Shapiro, and P. Smyth, "From data mining
to knowledge discovery in databases," AI Mag., vol. 17, no. 3, pp.
37-54, 1996.

[7] P.-N. Tan, "Knowledge discovery from sensor data," Sensors, pp. 14-
19, 2006.

[8] R. Agrawal, T. Imielinski and A. N. Swami, "Mining Association
Rules between Sets of Items in large Databases," Proc. ACM SIGMOD
Conference on Management of Data, pp. 207-16, 1993.

[9] R. Agrawal and R. Srikant, "Fast Algorithms for Mining Association
Rules," Proc. of the 20th VLDB Conf, pp. 487-99, 1994.

[10] J. Han, J. Pei and Y. Yin, "Mining Frequent Pattern without Candidate
Generation," ACM SIGMOD Record, vol. 29, no. 2, pp. 1-12, 2000.

[11] E. Omiecinski, "Alternative interesting measures for mining associ-
ations," IEEE Trans. on KDE,vol. 15, no. 1, pp. 57-69, 2003.

[12] B. Liu, W. Hsu and Y. Ma, "Pruning and Summarizing the Discovered
Association," Proceedings of the fifth ACM SIGKDD international
conference on Knowledge discovery and data mining, pp. 125-134,
1999.

[13] Y.K. Lee, W.Y. Kim, Y.D. Cai and J. Han, "CoMine: Efficient Mining
of Correlated Patterns," Proceedings of the Third IEEE International
Conference on Data Mining, 2003.

[14] R.U. Kiran and M. Kitsuregawa, "Efficient Discovery of Corre-
lated Patterns in Transactional Databases Using Items’ Support In-
tervals,"DEXA 2102, pp. 234-248, 2012.

[15] Z. Zhou, Z. Wu, C. Wang and Y. Feng, "Mining Both Associated
and Correlated Patterns," Computational Science–ICCS, pp. 468-475,
2006.

[16] A. Boukerche and S.A. Samarah, "Novel Algorithm for Mining
Association Rules in Wireless Ad-hoc Sensor Networks," IEEE Trans-
actions on Parallel and Distributed Systems, vol. 19, no. 7, pp. 865-
877, 2008.

[17] A. Boukerche and S.A. Samarah, "A New Representation Structure
for Mining Association Rules from Wireless Sensor Networks," emph-
Wireless Communications and Networking Conference, WCNC, pp.
2855-2860, 2007.

[18] S.K. Tanbeer, C.F. Ahmed, B.S. Jeong, "An Efficient Single-Pass
Algorithm for Mining Association Rules from Wireless Sensor Net-
works," IETE Technical Review, Vol. 26, Issue 4, 2009.

[19] K.K. Loo, I. Tong and B. Kao, "Online Algorithms for Mining
Interstream Associations from Large Sensor Networks," Advances in
Knowledge Discovery and Data Mining, pp. 143-149, 2005.

[20] G.S Manku and R. Motwani, "Approximate frequency counts over
data streams," Proc. on VLDB, pp. 346-357, 2002.

[21] K. Romer, "Distributed Mining of Spatio-Temporal Event Patterns
in Sensor Networks," EAWMS / DCOSS, pp. 103-116, 2006.

[22] S.K. Tanbeer, C.F. Ahmed and B.S. Jeong, "Efficient Single-Pass
frequent pattern mining using a prefix-tree," Information Sciences
(Elsevier) vol.179, no. 5, pp. 559-583, 2009.

[23] http://fimi.cs.helsinki.fi/data/

[24] http://db.csail.mit.edu/labdata/labdata.html.

3719

