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Abstract— The property of changing resistance according
to applied currents of memristors makes them candidates
for emulating synapses in artificial neural networks. In this
paper, we introduce a memristive synapse design into neu-
ral network circuits. Combined with modified integrate-and-
fire (I&F) complementary metal-oxide-semiconducter (CMOS)
neurons, the memristive neural network shows similarities to
its biological counterpart, in respect of biologically realistic,
current-controlled spikes and adaptive synaptic plasticity. Then,
the spike-rate-dependent plasticity (SRDP) of the synapse, an
extended protocol of the Hebbian learning rule, is originally
implemented by the circuit. And some advanced neural ac-
tivities including learning, associative memory and forgetting
are realized based on the SRDP rule. These activities are
comprehensively validated on a neural network circuit inspired
by famous Pavlov’s dog-experiment with simulations and quan-
titative analyses.

I. INTRODUCTION

THE BRAIN has excellent parallel computation capa-
bility and ultra high integration density, outperforming

today’s most advanced computer in the world. For this rea-
son, building a new-type computer to emulate the brain has
always been a target for scientific and engineering research
[1]. However, due to von Neumann architecture’s occupation
in computer industries, hardware and software in modern
computers are principally designed for serial computing,
with separated data storage and computation units. Several
decades ago, artificial neural networks, the novel computing
architecture emulating the brain structure, were proposed.
Neural networks are able to conduct parallel computing,
and perform data storage and computation simultaneously
on a single component, the synapse. To make use of these
advantages, attempts have been proposed to build neural
networks on silicon chips [2], [3], [4], [5]. The features of
neural networks, especially the synaptic plasticity, however,
are not easy to be implemented by solely utilizing CMOS
transistors. Although designs of artificial synapses in analog
VLSI circuits have been presented [6], the circuits are gener-
ally too complex to be integrated in large scale, diminishing
the performance of the brain-like system.
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Recently, following HP Labs’ demonstration of TiO2

memristor [7] (short for memory resistor [8]), a plenty
of researches have been focused on the device [9], [10],
[11], [12]. One research direction is concentrated on its
characteristic of changing internal state following current or
voltage excitation. The feature is analogous to plasticity of
synapses, whose weight varies according to action potentials
of adjunct neurons. The device has also been proven to be
suitable for neural network applications theoretically due to
its high nonlinearity and dynamic property [13], [14].

Since the designs of CMOS synapses are not suitable for
large scale integration due to their complexity, it is reasonable
to adopt memristors into the design of artificial synapses. The
combination of memristive synapses and CMOS neurons is
defined as the memristive neural network, which has richer
dynamic behaviors than an ordinary artificial neural network
[15]. In this emerging area, pioneering works have been
conducted [16], [17], [18], [19]. Some important features of
neural networks, such as synaptic multiplication [20], spike-
timing-dependent plasticity (STDP) [21], unsupervised learn-
ing [22], [23] etc., have been thoroughly studied and realized
on memristive neural networks. Besides these features, there
is another basic characteristic of neural networks, the spike-
rate-dependent plasticity (SRDP), which claims the synaptic
plasticity’s weight is dependent on pre-synaptic spiking rate
[24]. The SRDP rule is captured by the BCM model [25], and
it is an extended protocol of the Hebbian learning rule [26],
[27]. Li et al. realized SRDP on a single synaptic device, the
Ag/conducting polymer/Ta memristor [24]. Wang et al. also
implemented the protocol on a memristor, whose material
is amorphous InGaZnO [28]. However, their works only
considered the SRDP protocol on a single memristive device
with precisely designed signals emulating action potentials.
The research about the implementation of SRDP in a neural
network, where advanced neural activities happen, is scarcely
discussed.

In this paper, we propose a new design of memristive neu-
ral networks consisting of memristive synapses and CMOS
neurons, where the SRDP protocol and some advanced neural
activities are originally implemented. SPICE simulations are
conducted to show bio-inspired features of these models.
The neuron model capable of generating biologically realistic
spikes is a modification of the leaky integrate-and-fire (I&F)
model derived from Mead’s work [2], [29]; the relationship
between the neuron’s spiking frequency and input current
is established quantitatively. The synapse model is based
on HP’s TiO2 memristor, in which a tunable nonlinear
window function with two controlling parameters is included;
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thus arbitrary dynamics of a realistic memristor can be
simulated. Integrating the neuron and synapse models, the
SRDP protocol is originally implemented, underlying the
mechanism of advanced neural activities including learning,
associative memory and forgetting.

These neural activities are comprehensively realized on
a network of three neurons and two synapses in Fig. 1.
The topology of the network is an inspiration of Pavlov’s
classic dog-salivation experiment [30]. In the experiment,
two afferent neurons’ action potentials are controlled by
“sign of food” and “sound of ring”, respectively, and one
efferent neuron’s spike represents “dog’s salivation”. By
properly setting the initial weights of synapses between these
neurons, learning and forgetting activities are realized: at
first, only the “food” neuron can trigger the “salivation”
neuron; after simultaneous spiking of both afferent neurons,
representing learning, the “ring” neuron is able to activate
the efferent neuron solely; then, the newly built strong
connection between “ring” and “salivation” neurons can be
weakened by continuous stimulation of “food” neuron alone,
showing forgetting, another significant neural activity.

Nfood

Nring

Nsal

Input

Output
 Dog ś Salivation 

 Sign of Food 

 Sound of Ring 
Input

Fig. 1. The schematic of the neural network consisting of two afferent
neurons Nfood, Nring , and one efferent neuron Nsal. Two lines connecting
the afferent and efferent neurons are synapses, the solid one represents strong
(or high weight) synaptic connection, while the dashed one is weak (or low
weight).

Previously, several experimental demonstrations on emu-
lating Pavlov’s dog-experiment have been proposed. Pershin
et al. applied micro-controllers to emulate neurons and
memristor-based synapses, and Pavlov’s associative mem-
ory was first implemented through softwares and codes
in the controllers [31]. Another experiment was conducted
by Ziegler et al., whose realization of associative memory
lay in a single functional memristive device with precisely
controlled signals [32]. Bichler et al. also successfully carried
out the emulation on organic memristive devices, combined
with a global clock signal and some micro-chips [33].

Our design in this paper provides novel perspectives
inspired by, but not limited to, original Pavlov’s dog-
experiment. Firstly, the action potential generated by the
modified leaky I&F neuron is more analogous to its bio-
logical counterpart, in respect of pulse width and spiking
frequency. Secondly, the mechanism behind these neural
activities is originally explained by the SRDP protocol, with
visualized and clear illustration. Thirdly, we comprehensively
simulate and analyse the neural activities, including not only
learning and associative memory, but also forgetting, which

has not been studied yet in circuit emulation of Pavlov’s dog-
experiment. Finally, our experiment needs neither complex
auxiliary structures such as micro-controllers, nor global
clock or precisely controlled signals.

The rest of the paper is organized as follows: in Section
II, we present the design and analysis of the CMOS neuron
model. Memristors, memristive synapses and the implemen-
tation of the SRDP protocol are discussed in Section III
and IV. Then in Section V, the advanced neural activities
including learning and forgetting are simulated on a neural
network circuit inspired by Pavlov’s experiment. Section VI
concludes the paper.

II. CMOS NEURON MODEL

Among various CMOS neuron models previously demon-
strated, one viable implementation is the leaky I&F model
[2], [29]. The universally acknowledged MOSFET model,
BSIM3v3.1 (HSPICE MOS49) [34], is adopted as the transis-
tor in our circuit. Then the original leaky I&F neuron model
is modified as in Fig. 2. Several modifications have been
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Vdep=0.5V
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Fig. 2. The circuit of the modified I&F neuron model. MOSFETs and
capacitors are utilized to construct the circuit. Some nodes are biased at
certain voltages to guarantee the function. The model is regarded as a block
with three terminals Vin, Vout and Vdrive.

made to improve the electrical performance. The input port
Vin receives signals from thousands of presynaptic neurons.
If the signals are not blocked by Min, they will be transferred
to capacitors C1 and C2. As an emulation of membrane
capacitors in biological neurons, C1 and C2 integrate input
currents to increase the voltage at node Vcap. Once Vcap
crosses the threshold of inverter M3M4, an action potential
generates assisted by inverter M5M6 and the feedback path
controlling the resistance of branch M1M2. During the action
potential state, Vout is high enough to turn on transistors
Minj , Mdep and M2, and turn off input transistor Min by the
means of inverter M7M8. Hence the injection voltage Vinj is
directly applied to the driving port Vdrive of the post-synapse.
The on-state Mdep transfers Vdep to depress inputs, and the
off-state Min blocks input currents; therefore Vcap cannot be
influenced by any inputs during the stage, representing the
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refractory period in biology. Meanwhile, the low resistance
branch M1M2 offers a leakage path for Vcap to discharge,
thus decreasing Vcap. After Vcap falls below the threshold of
inverter M3M4, the action potential immediately vanishes,
and the neuron comes back to its original state. The electrical
process of the action potential is simulated on HSPICE in
Fig. 3(a), showing similarities to biological action potentials
in respect of waveform, spiking width, and frequency.

-1

0

1

2

3

4

5

6

316m 318m 320m 322m 324m

V
o

lt
a

g
e

 (
V

)

(a)

Vcap

Vout

Time (s)

2n

4n

6n

8n

10n

12n

14n

16n

18n

-1

0

1

2

3

4

5

6

0 200m 400m 600m 800m 1

Time (s)

V
o

lt
a

g
e

 (
V

)

C
u
rr
e
n
t 

(A
)

Vout

Iin

(b)

Fig. 3. Process of action potentials in the neuron model. (a) The diagram of
the generation of action potentials in the neuron circuit. An action potential
represented by Vout happens when Vcap exceeds the threshold voltage of
the neuron. (b) The inter-spike-interval (ISI) of spikes is controlled by the
injection current Iin. When Iin increases, the output spikes get intensive,
and the frequency of the spikes increases accordingly.
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Fig. 4. Relationship between the input current I and the frequency f of
spikes. (a) Comparison of f − I curves between the neuron model (cross-
marked) and cats’ neocortex (dot-marked). (b) An equation (purple smooth
line) is used to fit the f − I relationship of the neuron model. (c) Residuals
of the fitting in (b), showing the accuracy of the fitting.

The frequency of action potentials is determined by the
value of input current Iin according to simulation curves
in Fig. 3(b). As Iin increases, spikes of Vout get intensive,
which means the inter-spike-interval (ISI) of the neuron
becomes less. Then, different values of Iin are injected
into the neuron, and the f − I relationship between the
spiking frequency and the input current is presented in
Fig. 4(a), showing similarities in trend and slope with bi-
ological measurements of cats’ neocortex [35]. Thanks to
the monotonicity and smoothness of the f − I curve, it is
possible to quantify the relationship between f and I by a
simple mathematical expression. Hence we fit the curve in
Fig. 4(b) using an equation:

f = 10I + 1.8, (1)

where the units of f and I are Hz and nA, respectively. The
negligible residuals shown in Fig. 4(c) exhibit the relative
accuracy of the fitting. With the help of Eq. (1), the spiking
rate f of the neuron model can be precisely controlled
by input currents I , providing a convenient approach for
adjusting a neuron’s firing rate, which is important for setting
spiking conditions of neurons in our simulative experiments.
The similarity between our model and biological neuron in
respect of frequency response underlies the SRDP protocol
discussed in this paper.

III. MEMRISTORS–CANDIDATES FOR SYNAPSES

Since the introduction of HP Labs’ TiO2 memristor, a
growing number of models and implementations of mem-
ristors have been proposed [17], [28], [36], [37]. According
to Chua’s generalized concept of memristive systems [38],
these memristors with various mechanisms and materials are
essentially the same; every presented memristor model is able
to adjust its resistance according to history, resembling the
plasticity of synapses in the brain. In spite of the variance,
in existing literatures, the TiO2 memristor model is most
commonly used in analysis of memristor-based systems.
Therefore in this paper, we adopt the HP TiO2 memristor
model in our design and simulations.

We define x(t) as the weight of the memristor,

x(t) =
w(t)

D
∈ (0, 1), (2)

where w(t) and D are widths of doped and total regions,
respectively, of the TiO2 layer sandwiched between platinum
contacts [7]. The doped region has high concentration of ions,
ensuring its low resistance Ron, while the undoped region has
high resistance Roff with low ions concentration. The total
resistance Rmem of the memristor comes from the series
connection of doped and undoped regions, described in the
following equation:

Rmem(x(t)) = Ronx(t) +Roff (1− x(t)). (3)

As current passes through the device, the boundary between
doped and undoped regions moves accordingly. When the
applied current is conducted in positive direction, Rmem de-
creases while x(t) increases, and vice-versa. If the boundary
approaches terminals of the device, namely, w(t) = 0 or
w(t) = D, Rmem is clipped to Roff and Ron, respectively,
until the applied current changes its direction.

The memristor’s weight x(t) is considered as a state
variable, and the applied current i(t) and voltage v(t) are
regarded as input and output variables, respectively; then the
model’s state space representation can be:

dx(t)

dt
= ki(t)g(x(t)),

v(t) = Rmem(x(t))i(t).

(4)

The speed of the boundary’s movement, namely, the deriva-
tive of x(t) in Eq. (4), is determined by the input current
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i(t), constant k, and window function g(x(t)), where

k =
µνRon
D2

,

g(x(t)) = λ
[
1− (2x(t)− 1)2p

]
, (5)

and µν is the dopant mobility of the material. Inspired
by Joglekar’s window function [10], g(x(t)) in Eq. (5) is
designed to guarantee zero speed of the boundary when it
approaches terminals of the memristor. And in order to sim-
ulate arbitrary dynamics of a realistic memristor, two positive
real controlling parameters, λ, p ∈ R+, are added, adjusting
vertical and horizontal scaling of g(x(t)), respectively.

Based on aforementioned descriptions, we modify the
original SPICE model in [11] to be viable in HSPICE envi-
ronment, and determine parameters (Ron = 1MΩ, Roff =
50MΩ, D = 10nm, µν = 10−10cm2s−1V −1, p = 1, λ = 1)
based on the need for emulating synapses in neural networks.
Notice that the values of Ron and Roff are determined to
be compatible with resistance of CMOS transistors. In spite
of the numerical distinction to TiO2-based devices [7], the
order of magnitudes of these parameters can be achieved
through various alternatives, such as nanoscale silicon-based
memristors [17].
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Fig. 5. The canonical I − V curve of the memristor model. When a
sinusoidal voltage of 1Hz is applied, the I−V curve is hysteretic and zero-
crossing. While the curve tends to be a straight line when the frequency
increases to 10Hz. The insets show the change of the applied voltage and
current (upper) and the weight (lower) of the memristor over time.

The simulation results are shown in Fig. 5, manifesting
canonical properties of memristors: hysteresis, crossing o-
riginal point and getting pinched when the frequency of
input increases. Another important feature of the memristor
model is the change of weight x(t) when pulses (like
spikes) are applied to its terminals. The response of x(t)
according to randomly generated pulse series (positive and
negative) is shown in Fig. 6, where applied positive pulses
increase the memristor’s weight, and negative ones decrease
the weight. Though biological spikes are unipolar, we use
bipolar simulative spikes here to show the scalability of
the memristor model. This property is key to the plasticity
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Fig. 6. The memristor’s response to random generated bipolar pulses. The
upper figure shows random pulses over time, and the lower one reflects the
corresponding variance of the memristor’s weight.

of synapses, whose weights change as well when action
potentials generate.

IV. NEURAL NETWORK CONNECTION WITH SRDP

The key to learning and memory in the brain lies in
the plasticity of synapses; hence the connection, i.e, the
mimetic synapse model, is vital in the neural network design.
The memristor presented above is a candidate for emulating
biological synapses. However, a single memristor is not
quantified for the job because of its significant change of
resistance during the learning phase, which may cause the
stability-plasticity dilemma in the learning system [39]. Here,
we adopted a feasible synapse design described in Fig. 7
[29], where neurons are represented by blocks with three
terminals, omitting the detailed circuit shown in Fig. 2. The
synapse model consists of a memristor and a n-channel
MOSFET, whose states are controlled by spiking patterns
of Npre and Npost. For instance, if Npre is spiking while
Npost is in quiescence, the voltage at node Vdrive will cause
the positive current injection to the memristor, increasing the
weight of the synapse. But if Npost is spiking too, the voltage
at node Vout of Npost will turn on Ms, pulling down Vdrive
to the ground, reducing the positive current injection to the
memristor. It is to be noted that the practical feasibility of
the integration of I&F neurons and the combination between
memristors and MOSFETs has already been testified in [40]
and [17].

The plasticity of synapses is symbolized by the synaptic
weight x(t) of the TiO2 model. Biologically speaking,
high weight means strong connection between two neurons,
which results in spikes of pre-neuron (presynaptic neuron)
can trigger action potentials of post-neuron (postsynaptic
neuron). On the contrary, low weight or weak connection
cannot guarantee the generation of these triggered spikes.
The connection model is able to emulate such neural ac-
tivities. Fig. 8 shows the corresponding HSPICE simulation
results, where Npre alone is able to activate the spiking of
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Fig. 7. The circuit of the neural network’s synaptic connection. Two
neuron blocks, Npre and Npost, are connected by a synapse consisting
of a memristor and a n-channel MOSFET. Action potentials of Npre will
cause current injection of Npost.

Npost due to the high weight (0.9) connection, but unable to
trigger Npost with a low weight (0.1) synapse.
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Fig. 8. Simulation results based on Fig. 7. (a) The synaptic weight is
high (0.9); thus the resistance of the memrisor is low, and Npre is able to
activates Npost due to the large current injection to Npost. (b) The synaptic
weight is low (0.1); thus the memrisor’s resistance is high, and Npre cannot
activate Npost because of the little current injection to Npost.

The modification of synaptic weights is basis for learning
and memory in neural systems. A generally accepted theory
explaining this mechanism is the Hebbian learning rule [26],
which expounds the adaptive synaptic plasticity following
correlated excitation of pre- and post-neurons. The mathe-
matical description of the canonical Hebbian learning rule
[41] is

τw
dw

dt
= vu, (6)

where w is the synaptic weight, u and v represent firing
rates of pre- and post-neurons, respectively. τw is a time

constant controlling the rate at which the weight changes.
The protocol discussed in this paper is SRDP, an extended
protocol of the Hebbian learning rule, which varies the sign
and magnitude of the change of synaptic weight according
to presynaptic firing rate [27]. Specifically, a high-frequency
train of presynaptic spikes results in long-term potentiation
(LTP) of synapses, or the increase of synaptic weights.
While a low-frequency train results in long-term-depression
(LTD), decreasing synaptic weights [42]. The standard SRDP
protocol form is presented in the inset of Fig. 9(a), showing
weight potentiation when presynaptic input rate >10Hz, and
depression for input rate <10Hz [27]. The connection model
described in Fig. 7 turns out to be capable of implementing
the SRDP protocol, illustrated in the main part of Fig. 9(a).
That is, fixing the spiking frequency of post-neuron fpost at
30Hz, while changing the pre-neuron’s frequency fpre from
0Hz to 35Hz, the modification rate of the synaptic weight
accordingly varies from about -20% (depression) to 50%
(potentiation). Actually, the phenomenon of fpre = 35Hz
and fpost = 30Hz is a realization of the famous Hebbian
rule stating, that “neurons that fire together, wire together”.
The frequencies are controlled by input currents, referring
to the fitting Eq. (1) between f(Hz) and I(nA). Notice
that 30Hz, the value of fpost, is empirically determined
for properly simulating the standard SRDP protocol through
analog circuits.
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Fig. 9. The SRDP protocol is realized by appropriately controlling the
input currents of Npre and Npost. fpost, the spiking frequency of Npost,
is fixed at 30Hz, while fpre is the independent variable to simulate different
situations for the synapse. (a) The initial synaptic weight W0 is 0.5. When
fpre < 17Hz, the synaptic weight decreases (LTD), while the weight
increases (LTP) when fpre > 17Hz. This feature is in accordance with
the SRDP protocol, whose ordinary form is presented in the inset. (b) The
initial synaptic weight W0 varies from 0.1 to 0.9. The SRDP protocol can
be implemented no matter how W0 changes.

The initial synaptic weight W0 in Fig. 9(a) is 0.5, while
experimental results reveal a dependence on W0 of the SRDP
protocol [43], demonstrating different W0 results in different
SRDP curves. Repeating the experiment with varying W0

values, different synaptic weight changes are obtained in
Fig. 9(b). However W0 changes, the SRDP curves have
characteristics in common: low fpre results in LTD while
high fpre leads to LTP; the change of W shows greater
susceptibility to the modulation of fpre when W is large.
Actually, this susceptibility has been discovered in biological
neurons [44]. From Fig. 9 and its properties, the similarity
between our model and the biological neural structure is
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obvious.

V. IMPLEMENTATION OF ADVANCED NEURAL ACTIVITIES

By properly constructing a circuit consisting of the neu-
ron and synapse models, some advanced neural activities,
including learning, associative memory and forgetting, can be
achieved. In order to show these activities, a network inspired
by Pavlov’s famous dog-salivation experiment is built as
in Fig. 10. The network consists of two afferent neurons
Nfood, Nring and one efferent neuron Nsal (see Fig. 1).
Nfood generates spikes when “sign of food” signal transfers
in, and Nring excites when “sound of ring” signal comes.
These two neurons are both connected to Nsal with synapses.
The synaptic weights, however, are different. According to
Pavlov’s original experiment, the spikes generated by Nfood
can trigger Nsal to activate, representing “salivation”. The
activation of Nring, however, is not able to trigger Nsal. For
this reason, a high weight (0.9) is set to the synapse between
Nfood and Nsal, while a low weight (0.1) is set to the
one between Nring and Nsal. These weight configurations
guarantee the initial condition of the experiment. Then,
different currents are injected to afferent neurons to construct
various spiking conditions during the simulation.

Vout

Vdrive
Vin

Vout

Vdrive
Vin

Nfood

Nring

Vout

Vdrive
Vin

Nsal

Wfood=0.9

Wring=0.1

Fig. 10. The circuit of a neural network inspired by Pavlov’s canonical
experiment on dog’s salivation. Two afferent neurons, Nfood for “sign of
food” and Nring for “sound of ring”, are connected to an efferent neuron
Nsal representing “dog’s salivation” by two synapses. The initial weights
are 0.9 and 0.1 for Wfood and Wring , respectively, guaranteeing the initial
strong connection for “sign of food” and weak connection for “sound of
ring”.

Detailed simulation procedures and results are presented
in Fig. 11. We divide the whole process into five stages
- S1 to S5. In stage S1, Nfood and Nring both activates
alone for a period of time; it is not surprise to see the
responding spikes and quiescence of Nsal, to Nfood and
Nring, respectively. And the changes of Wfood (synaptic
weight between Nfood and Nsal) and Wring (synaptic weight
between Nring and Nsal) are negligible. In stage S2, the
learning stage, Nfood and Nring fire together causing Nsal to
activate, mainly owing to Nfood. Notice the weights’ change
during the stage, i.e., while Wfood reaches and retains at
upper bound (1.0), Wring increases abruptly, realizing the
learning function of the network. Therefore at the beginning
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Fig. 11. Simulation results of the circuit in Fig. 10 combined with
explanation by the SRDP protocol. Three output voltage over time plots on
top show spiking and quiescence of Nfood, Nring and Nsal, respectively.
All spiking states of these neurons are controlled to be fixed at around 30Hz.
Below the plots, the evolvement of synaptic weights Wfood and Wring

over time is presented. At the bottom, two SRDP curves dot-marked with
the synaptic situation (specific values of fpre and fpost for learning and
forgetting stages) are shown. The whole process is divided into five stages
S1 to S5 for clear analysis.

of stage S3, Wring has jumped to a relative high weight
(0.85). This high weight makes it possible for spikes of
Nring activating Nsal solely; i.e., the “sound of ring” alone
can cause “dog-salivation” during stage S3. The phenomenon
shows the ability of associative memory after learning of the
network. Stage S4, the forgetting stage, is a long period of
time, during which Nfood undergoes a frequent excitement,
while Nring stays quiescent all the way. The corresponding
weights also undergo a meaningful procedure: while Wfood

still retains at upper bound, Wring , however, experiences
a relatively smooth but obvious decrease, so at the end of
the stage, Wring comes back to a low weight (0.2). This
stage emulates forgetting activity successfully: that is, the
newly established strong synaptic connection in the brain will
gradually weaken if there is no repetitive activation of the
synapse while other synapses manifest excitement frequently.
Hence after the forgetting procedure, in stage S5, when Nring
fires alone, it is not surprise to see the non-response of Nsal.

The principle behind the simulation results, especially the
learning and forgetting activities, can be explained by the
SRDP protocol represented at the bottom of Fig. 11. In the
learning stage S2, Nring alone is not able to trigger Nsal
at the beginning, but the simultaneously firing of Nfood
causes spikes of Nsal, thus creating a condition of fpre =
30Hz, fpost = 30Hz for synapse Wring. The condition
results in the synaptic weight potentiation of about 40%
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according to the SRDP protocol and leads to the increase
of weight during the learning stage. Similarly, during the
forgetting stage S4, Nring stays quiescent all the time, while
Nfood undergoes a lasting activation and leads to action po-
tentials of Nsal. A condition of fpre = 0Hz, fpost = 30Hz
for synapse Wring, therefore, is established. Then, based on
the SRDP protocol, the synapse becomes depressed at a rate
of about -18%: the decreasing of weight comes into being.
Actually, the forgetting activity of Wring, resulted from the
influence of Nfood’s lasting activation, is in accordance with
the biological phenomena, where some kinds of synapses
undergo LTD because of inputs of nearby or lateral synaptic
terminals [45], [46].

VI. CONCLUSION

The aforementioned sections demonstrate the feasibility of
our neuron and memristive synapse models to emulate neural
properties, such as biologically realistic spikes, current-
controlled action potentials and adaptive synaptic plasticity
etc. Owing to the memristive synapse, the neural network
consisting of these models originally shows the capacity
of realizing the SRDP protocol. Moreover, advanced neural
activities including learning, associative memory and forget-
ting are comprehensively implemented using the network
configured in Fig. 1, inspired by canonical Pavlov’s dog-
experiment. Thanks to the nanoscale of memristors, high
integration density friendly large scale memristive neural net-
work circuits can be built following the principle discussed in
this paper, accelerating the generation of new-type brain-like
learning system, and contributing to a variety of applications
such as pattern recognition, machine learning, and nonlinear
adaptive control problems.
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