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Abstract— In this paper, a data detection/correction approach
is proposed for a real environmental monitoring system, in
order to provide a reliable dataset when sensor faults occur.
This is the case of communication faults that may prevent
the acquisition of a complete dataset, which is of paramount
importance in order to successfully apply further system tasks
such as fault diagnosis. Sensor detection/correction method
presented here is based on the combined used of spatial
and time series models. Spatial models take advantage of the
physical relation between different variables emplaced in the
system (temperature sensors here) while time series models
take advantage of the temporal redundancy of the measured
variables, by means of Holt-Winters models here. The proposed
approach is successfully applied to the rock collapse forecasting
system in the Torrioni di Rialba located in Lombardy (Italy).

I. INTRODUCTION

Sensor network monitoring real environments requires a
real-time scheme ensuring high performance and ease of
maintenance under unfavourable conditions, such as sensor
malfunction due to faults or aging, which may jeopardise
overall system performance. To deal with this problem, the
use of an on-line Fault Diagnosis Systems (FDS) able to
detect such faults and correct them by means of different
techniques is highly desirable. Also, the FDS should iden-
tify which fault has occurred including both hardware and
software faults.

Generally, two main strategies may be found in the litera-
ture when addressing the FDS problem, which are hardware
redundancy, based on the use of extra sensors and preferred
in critical systems, and analytical redundancy, based on the
use of software sensors or models, combining information
gathered by the sensor measurements or using physical
description for the process. Nevertheless, the use of hardware
redundancy in sensor network systems is very expensive
and it is not a commonly viable solution. Hence, in a real
environment sensor network as considered here, the FDS
must take advantage of software sensors or models, based
on the spatial and temporal relationships among sensors in
this network.

In this paper, an innovative framework investigating the
application of data validation/correction methodology in [1]
for sensor networks monitoring real environments, is pro-
posed. Sensor detection/correction method is based on the
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combined used of spatial (both static and dynamic) and
time series models of the sensors set. Spatial models take
advantage of the relation between different variables in the
system (temperature sensors here) while time series models
take advantage of the temporal redundancy of the measured
variables by means of Holt-Winters time series models.
The proposed approach is successfully applied to the rock
collapse forecasting system located in the Torrioni di Rialba
(Lombardy, Italy).

The structure of the paper is as follows: In Section II, the
methodology to validate/correct the sensor data, in order to
provide a reliable dataset when faulty situations occur within
the sensor set, is proposed. In Section III, the application
case study is described, based on the environmental sensor
network located in Torrioni di Rialba (Lombardy, Italy),
measuring several real magnitudes of interest such the en-
vironmental temperature, and considering several real-world
scenarios. In Section IV, the results obtained applying the
proposed methodology to the case study in Section III are
detailed. Finally, conclusions of this work are outlined in
Section V.

II. DATA DETECTION/CORRECTION APPROACH

In real systems such the one considered here, there is
usually a telemeasurement system acquiring, recording and
validating data gathered from different kind of sensors at
each sample time to accurately real-time monitor the whole
system [1]. In this process, problems in the communication
system e.g. between sensors and data loggers or in the tele-
measurement system itself, often arise and produce data loss
which may be of great concern in order to have valid historic
records. When this is occurring, lost data should be replaced
by a set of estimated data which should be representative
and coherent. Also, another common problem in real system
monitoring is caused by the unreliable sensors, which may
be affected by some fault (e.g. offset, drift, freezing) in their
measurements. These unreliable data should also be detected
and replaced by estimated data, since they may be used for
system management tasks such that maintenance, planning,
investment plans and system fault detection and isolation
(Figure 1).

Different types of data detection methods with distinct
degrees of complexity may be considered according to the
available system knowledge. Generally, two types of methods
are considered, one for elementary ‘low-level’ signal based
methods and another for ‘high-level’ model-based methods.
The first type uses simple heuristics and limited statistical
information from the sensors [2] [3] and is typically based on
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RAW DATA DETECTION/CORRECTION AND SYSTEM FDI APPROACH

checking either signal values or variations, whilst the second
type uses models for consistency-checking of the sensor data
[4]. Here, the first type of data detection methods has been
used to deal with sensor communication faults.

A. Data detection process

The data detection process is inspired by the Spanish
AENOR-UNE norm 500540 [1]. The methodology presented
here applies a set of consecutive detection tests to a given
dataset (Figure 2), to finally assign a certain quality level
depending on the tests passed.
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DATA DETECTION TESTS

In a system like the one considered in this paper and
in telemeasurement systems in general, one of the most
common faults occurring are sensor communication faults.
These type of faults are related with level zero of the sensor
data detection methodology in [1]. This level checks whether
the data is properly recorded, assuming that data acquisition
systems sample data at a certain fixed rate. Hence, this
level allows detecting problems in the data acquisition or
communication system.

Here, communication faults are considered as the faults
affecting the sensor of the telemeasurement system, and the
data detection/correction procedure is used as a prefilter
to estimate the missing data when this type of faults is
occurring.

B. Data correction process

The output of the data detection process (Figure 2) is used
to identify the invalidated data that should be reconstructed.
Static and Dynamic Spatial Models (SSM and DSM, respec-
tively), both related with Level 4 in Figure 2, and Time Series
Models (TSM), related with Level 5 in Figure 2, are used for
this purpose, depending on the performance of each model.

SSM and DSM take advantage of the relation between
different variables physically related. SSM can be obtained
using linear regression input-output models among higher
correlated sensors as follows

x̂sn(k) = anxfn(k) + bn (1)

where, given f−s pairs of higher correlated sensors, x̂sn(k)
is the estimation of sn sensor data, given its high correlated
paired sensor measurement xfn(k) and the linear regression
model parameters [an, bn] for model n.

Also, different wide used structures of DSM have been
considered for the same purpose, including AutoRegressive
with eXternal input (ARX) models, AutoRegressive-Moving-
Average with eXternal input (ARMAX) models and Output
Error (OE) models, for given f − s pairs:
ARXsf :

A(q)ŷs(t) = B(q)uf (t) + e(t) (2)

ARMAXsf :

A(q)ŷs(t) = B(q)uf (t) + C(q)e(t) (3)

OEsf :

ŷs(t) =

[
B(q)

F (q)

]
uf (t) + e(t) (4)

where uf (t) is the system input, ŷs(t) is the forecasted
system output, e(t) is white noise of variance λ, and A, B,
C, F are the parameter polynomials expressed in terms of
the time-shift operator q−1, so q−1uf (t) = uf (t−T ), being
T the sampling interval.

Alternatively, TSM take advantage of the temporal redun-
dancy of the measured variables. A wide used method for
time series modelling is the Holt-Winters (HW) approach
[6]. This method is widely used because of its simplicity.
There are different versions of this method e.g. additive or
damped trend, additive or multiplicative seasonality, single or
multiple seasonality [5]. Here, good performance has been
attained with the additive single seasonality version, which
estimated value is obtained for a forecasting horizon `

x̂TS(k) = R̄(k − `) + `Ḡ(k − `) + S̄(k − L) (5)

where R̄ is the level estimation removing seasonality,

R̄(k − `) =α
(
x(k − `) − S̄(k − L− `)

)
+ (1 − α)

(
R̄(k − `− 1)

+Ḡ(k − `− 1)
)

0 < α < 1

(6)

Ḡ is the trend estimation,

Ḡ(k − `) =β
(
R̄(k − `) − R̄(k − `− 1)

)
+ (1 − β) Ḡ(k − `− 1) 0 < β < 1

(7)

S̄ is the seasonal component estimation,

85



S̄(k − `) =γ
(
x(k − `) − R̄(k − `)

)
+ (1 − γ) S̄(k − `− L) 0 < γ < 1

(8)

and L is the season periodicity, α, β and γ are the HW
parameters (level, trend and season smoothing factors, re-
spectively), x is the measured value and x̂TS is the TSM
estimated value.

Hence, analysing the historic records of a certain sensor,
a HW TSM model can be obtained and used to estimate
missing data of this element when a fault is affecting its
readings.

The models accuracy is measured by the Mean Squared
Error (MSE) of each model, evaluated in the m previous
values to k

MSE(k) =
1

m

k∑
j=k−m

e(j)2 (9)

where m is the number of data, e(j) = x(j) − x̂(j) is the
error at instant j, x(j) is the measured value at instant j, x̂(j)
is the estimated value by the model (SSM, DSM or TSM,
respectively) at instant j and k is the actual time instant. The
model having best MSE index when the communication fault
is produced (i.e. when a fault is detected by the detection
process) is used to produce the reconstructed sensor signal.

III. CASE STUDY: ENVIRONMENTAL APPLICATION

The case study considered here involves the rock col-
lapse forecasting system installed in the Torrioni di Rialba,
which is located in the Alps of Lombardy in northern Italy
(Figure 3). This is a real-time rock-fall monitoring system
designed by Politecnico di Milano, including several types
of sensors such Micro Electro-Mechanical Systems (MEMS)
accelerometers, geophones, inclinomenters, crackmeters and
temperature sensors, in order to non-invasively check for
micro-acoustic bursts, which are related with the formation of
cracks in the rocks conforming the environment. The infor-
mation gathered by these sensors is monitored from a Control
Room located in Lecco city (Figure 4). The system has been
installed in some critical areas of the Italian-Swiss Alps, such
Saint Martino mountain (April, 2010), Val Canaria (Ticino,
Switzerland, August 2011), Gallivaggio (July 2012) or the
case considered here (Torrioni di Rialba, July 2010). The
implemented monitoring system is conformed by a network
of systems, which are meant to detect and localize micro-
acoustic emissions from the rock surface while keeping a
low energy consumption, which is of great importance in
environmental monitoring setups. The benchmark used here
is related to the measurements gathered by a new genera-
tion of intelligent clinometer sensors, which incorporate an
internal thermal sensor used to compensate and correct the
online measurements provided by these units. Here, an study
on the data loss of these temperature sensors is performed.
Concretely, there are three temperature sensors installed in
this emplacement, which may suffer communication faults,
a widely spread cause of missing data problems in real
telecontrolled systems [1].

Fig. 3
TORRIONI DI RIALBA EMPLACEMENT

Fig. 4
TORRIONI DI RIALBA, AREA MAP

IV. RESULTS

The scenario dataset is depicted in Figure 5. The time
range of the measurements is from 2012-07-25 17h00 to
2012-10-17 12h30, with a sampling rate of 10 min. The
sampling rate for all the scenario is depicted in Figure 6
where it can be observed how a regular sample period of
600 s (10 min) is respected for almost all the samples.
However, there are some samples which present longer sam-
pling rate (i.e. when a communication problem is occurring),
having its maximum at 4200 s. This is a relatively low
gap between samples (around 7 missing measurements).
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Hence, a simulated communication fault enduring a whole
day (i.e. 144 samples) has been used as a test scenario
here. The available dataset has been divided into different
parts: identification dataset (first 1440 samples), validation
dataset (next 576 samples) and test dataset (remaining data),
where the described simulated communication fault has been
applied at sample 3250 (enduring 1 day). Regarding the
linear regression SSM and the TSM used for this benchmark,
the sensor pairs and parameters for each model are shown in
Table I.
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Regarding DSM, different type of model structures have
been used: ARX, ARMAX and OE. In order to obtain the
models, mean and trend of the data have been removed for

identification purposes. This process helps estimating linear
models in a more accurate way, since they cannot cope
arbitrarily differences between input and output signal levels.
For steady state data (the case considered) this process should
be applied in both input and output model data. The best
models have been obtained according to Rissanen Minimum
Description Length (MDL) and Akaike Information Criterion
(AIC). The quality of the identified models is measured
in terms of Loss Function, Akaike’s Final Prediction Error
(FPE) and Data Fit [7].

Considering e.g. the models obtained for the sensor 1 using
the other available sensors (i.e. sensor 2 and sensor 3, respec-
tively), the following models are obtained when sensor 2 is
used as input:
ARX12:

A12(q) = 1 − 1.476q−1 + 0.4151q−2 − 0.001438q−3

+ 0.06736q−4 + 0.01919q−5

B12(q) = 0.02426q−1 − 0.01991q−2 − 0.005864q−3

− 0.007134q−4 + 0.03287q−5

fit = 50.74%

ARMAX12:

A12(q) = 1 − 1.925q−1 + 0.932q−2

B12(q) = 0.007096q−2

C12(q) = 1 − 0.5005q−1

fit = 51.2%

OE12:

B12(q) = 0.019q−2 + 0.07228q−3

F12(q) = 1 − 0.9193q−1

fit = 62.33%

The outputs provided by these models are depicted in
Figure 7. Alternatively, when sensor 3 is considered as the
model input, the following models are obtained:
ARX13:

A13(q) = 1 − 1.965q−1 + 0.9707q−2

B13(q) = 0.5012q−1 − 1.174q−2 + 0.8603q−3

− 0.1734q−4 − 0.02324q−5 + 0.0572q−6

− 0.2332q−7 + 0.409q−8 − 0.2168q−9

fit = 41.9%

ARMAX13:

A13(q) = 1 − 1.906q−1 + 0.9175q−2

B13(q) = 0.03744q−1 − 0.03458q−2 − 0.01869q−3

+ 0.005067q−4 + 0.03134q−5 − 0.02729q−6

− 0.0084q−7 + 0.1485q−8 − 0.1195q−9

C13(q) = 1 − 0.4621q−1 − 0.2066q−2

fit = 53.81%
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TABLE I
SSM/TSM PARAMETERS, RIALBA BENCHMARK

SSM TSM
n sensor sn sensor fn correlation an bn αn βn γn
1 1 3 0.847024 0.442 13.105 1 1 ×10−5 0.237
2 2 3 0.847488 0.519 11.213 1 0.762 1 ×10−5

3 3 2 0.847488 1.383 -7.405 0.502 3.89 ×10−4 0.344
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Fig. 7
SENSOR 1 MODELS PERFORMANCE USING SENSOR 2 AS MODEL INPUT

OE13:

B13(q) = 0.3978q−1 − 0.1375q−2

F13(q) = 1 − 0.8095q−1

fit = 51.23%

The outputs provided by these models are depicted in
Figure 8.

Taking into account all the possible models for sensor 1
data reconstruction (Figure 7 and Figure 8), an ARMAX
model using sensor 2 is chosen since it obtains a good fit (i.e.
51.2 %) with a reduced order (i.e. 2) when compared with
the rest of the models obtained. This model also provides
a qualitative good prediction (see Figure 9) when compared
with the others. Similar procedure has been applied to the rest
of the sensors in order to select the best models to reconstruct
their data when a communication fault is affecting them.
Similarly as explained for sensor 1, the trade-off between
model fit and order is considered. As a result of this selection
procedure, a different DSM has been obtained for each
sensor, as detailed in Table II. The model expressions for
each sensor are as follows

Sensor n = 1:

A12(q) = 1 − 1.925q−1 + 0.932q−2

B12(q) = 0.007096q−2

C12(q) = 1 − 0.5005q−1

fit = 51.2%

Sensor n = 2:
A21(q) = 1 − 0.9446q−1 − 0.9779q−2 + 0.9238q−3

B21(q) = 2.054q−1 − 2.99q−2 − 1.167q−3 + 2.934q−4

− 0.6256q−5 − 0.1925q−6 − 0.08352q−7

+ 0.1556q−8 − 0.08346q−9

C21(q) = 1 + 0.06096q−1

fit = 51.84%

Sensor n = 3:

B32(q) = 0.5547q−7 − 0.5428q−8

F32(q) = 1 − 0.9871q−1

fit = 42.98%
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SENSOR 1 SELECTED MODEL PERFORMANCE USING SENSOR 3 AS

MODEL INPUT

The outputs provided by these DSM models for sensors 2
and 3 are presented in Figure 10 and Figure 11, respectively.

Finally, the performance of the best DSM models obtained
is compared with the SSM and the TSM models in order
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TABLE II
DSM PARAMETERS, RIALBA BENCHMARK

n sensor sn sensor fn model structure Loss Func. FPE Fit
1 1 2 ARMAX 0.109607 0.109753 51.2 %
2 2 1 ARMAX 1.14146 1.14641 51.84 %
3 3 2 OE 0.840637 0.841478 42.98 %
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SENSOR 1 SELECTED MODEL PERFORMANCE USING SENSOR 2 AS

MODEL INPUT

to use the best among them to correct the sensor signal.
The results attained with these models for the sensor com-
munication faults are shown from Figures 12 to 14. In the
latter figures, upper sub-plots depict the outputs obtained by
SSM (dashed), DSM (dash-dotted) and TSM (thick dashed)
models, gathering the estimated data best representing the
measured data (solid) according to their MSE index, depicted
in sub-plots below. For sensor 1 (see Figure 12), it may be
observed how the model having the best performance (i.e.
lowest MSE when the fault is produced) is the DSM, hence
it is used for data reconstruction of this sensor. In the case of
sensor 2, the model of choice according to the same criterion
is the SSM (see Figure 13). In the latter figure, TSM plots
are out of range due to bad performance of this model for
this particular sensor and hence do not appear in the plot. In
the case of sensor 3, the model considered to reconstruct the
sensor signal is the DSM (see Figure 14).

V. CONCLUSION

In this paper, an effective sensor data detection/correction
method has been proposed to provide reliable datasets in
a real environmental data telemeasurement system. The
method proposed detects and corrects sensor data commu-
nication faults using a data pre-filter, in order to provide
reliable datasets to be used in further system operations such
fault diagnosis or system monitoring. Regarding the sen-
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sor data pre-filter, sensor data validation and reconstruction
using combined spatial and time series models have been
implemented with successful results when communication
faults occur in the telemeasurement system, which is one
of the most common faults affecting this kind of systems.
The proposed method has been successfully tested with
the temperature sensors implemented in the rock collapse
forecasting system in the Torrioni di Rialba, located in
Lombardy (Italy).
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SENSOR 1 COMMUNICATION FAULT
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SENSOR 2 COMMUNICATION FAULT
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