
Parallelized Neural Networks as a Service

Altaf Ahmad Huqqani
Workflow Systems and Technology

Faculty of Computer Science
University Of Vienna

Austria,
Email:aahuqqani@gmail.com

Erich Schikuta
Workflow Systems and Technology

Faculty of Computer Science
University Of Vienna

Austria,
Email:erich.schikuta@univie.ac.at

Erwin Mann
Workflow Systems and Technology

Faculty of Computer Science
University Of Vienna

Austria,
Email:erwin.mann@gmail.com

Abstract—We present a novel neural network simulation
framework, which provides the parallelized execution of artificial
neural network by exploiting modern hardware and software
environments adhering to the service oriented paradigm within
the N2Sky system. The goal of the N2Sky system is to share
and exchange neural network resources, neural network specific
knowledge, neural network objects and paradigms and, in turn,
to deliver a transparent environment to novice and experi-
enced users to do neural network research. The parallelization
techniques are deployed transparently for the user reducing
significantly the time consuming training of neural networks
by selecting appropriate service implementation according to
complexity of the problem. N2Sky follows the sky computing
paradigm fostering ample resources by using federated clouds.

I. INTRODUCTION

Neural networks are efficient to solve problems where
mathematical modeling of the problem is difficult. They are
used to overcome problems including predictions, classifica-
tions, feature extraction, image matching and noise reduction.
There are two things that must taken care to make neural
networks feasible. One is to present the neural network re-
sources, objects and paradigms to the users and researchers
transparently and accessible over the internet. Second is to
reduce the training time of the neural networks as the time
required to train increases exponentially with the size of the
data.

The cloud computing paradigm provides access to large
amounts of computing power by aggregating resources both
hardware and softwares and offering them as a single system
view. It hides the details of implementation and management
of softwares and hardware from the end user. Could computing
has been evolved from technologies like cluster computing and
grid computing and has given rise to sky computing [17];
an architectural concept that denotes federated cloud com-
puting. Sky computing is an emerging computing model
where resources from multiple cloud are leveraged to create
a large scale distributed infrastructure. The cloud computing
was originally intended for business oriented approach. High
performance computing (HPC), which was confined to super
computers (strictly preserved system software) or dedicated
grids, is making in-roads in cloud computing paradigm fa-
cilitating scientists to build their own virtual machines and
configure them to suit their needs and preferences.

N2Sky is an artificial neural network simulation environ-
ment facilitating the users to create, train, evaluate neural
network providing different types of resources from clouds

of different affinity, e.g. computational power, disk space,
networks etc, on one hand and exploits the parallelization
techniques to reduce the time consuming training phase on
the other hand. The aim of the project is to facilitate the ever
growing community of users that want to play around, test,
and solve their problems without buying expansive hardware
and worrying about the installation and configuration of the
required software.

Typically large amount of data is required to train and
evaluate neural networks. Many efforts are made to reduce
the training time of the neural network by selecting initial
values [19], controlling the learning parameters of a neural
network [16] and determining weight adjustments [38]. Recent
technology advancement in hardware and software enabled us
to use capabilities of modern hardware and softwares inter-
faces, specifically by exploiting the parallelization capabilities
of multicore/multithreaded CPUs or of graphic processing
units (GPUs), which earned a strong research focus today. A
modern GPU provides hundred of streaming cores and handles
thousands of threads, which makes it specifically suitable for
computation-intensive applications like neural network simu-
lation.

In N2Sky we have explored two software environments,
CUDA and OpenMP, which have established themselves as
quasi-standard for GPU and multicore systems respectively.
The Compute Unified Device Architecture (CUDA) is a par-
allel computing platform and programming model invented by
NVIDIA [4]. It provides set of extensions to standard pro-
gramming languages, like C, that enables implementation of
parallel algorithms. Since the launch of the CUDA architecture
many applications were developed and more features were
added to new GPUs. The OpenMP Application Programming
Interface is a powerful and compact programming model for
shared memory parallelism in C/C++ and FORTRAN in multi-
core servers [20]. It provides directives, library routines, and
environment variables to manage parallel program across the
different processors in a server. OpenMP exits in industry since
the 90’s and became a de-facto standard to exploit the capabil-
ities of available multi-core processors with virtualization and
hyper-threading with shared memory.

In this paper we extend our prior work of CUDA on
GPU and OpenMP on multicore CPUs for the parallelized
simulation of a neural network based face recognition ap-
plication and make these features available to end users by
incorporating them into the N2Sky system. We provide these
parallelization schemes transparently to the users allowing for

2014 International Joint Conference on Neural Networks (IJCNN)
July 6-11, 2014, Beijing, China

978-1-4799-1484-5/14/$31.00 ©2014 IEEE 2282

automatic fostering of available parallel resources aiming for
high performance execution of network tasks.

The paper is structured as follows: Section II presents the
state of the art and elaborates the recent research trends. Sec-
tion III describes the details of the transparent parallelization
approach. In section IV we present the deployment scheme
on federations of clouds followed by the description of the
N2Sky architecture and the scientific workflow in section V.
A practical use case in section VI discusses the results obtained
and derive our recommendations. Finally, section VII gives a
summary and future directions of our work.

II. RELATED WORK

The computational intelligence community developed
many neural network simulators. NeuroWeb [26] exploits
internet-based networks as transparent layer to exchange neu-
ral network information, NeuroAccess [3] integrates neural
networks into relational database, Emergent Neural Network
Simulation System [5] focuses on easiness for user to create,
train and test the neural network by providing drag and drop fa-
cility of components and XNBC [39] a tool for neurobiologists
to simulate and analyze the behavior of simulated biological
neurons and neural networks, to name a few. Most of these
simulators are stand alone application, developed to serve a
particular purpose and need to be configured before using
them. We have developed N2Cloud [12] which is based on
the Service Oriented Architecture (SOA) and is an Evolution
of N2Grid [25]. We further extend the idea of N2Cloud to
N2Sky [28] environment using sky computing paradigm with
enhanced features of best execution environment of the service.

There are many efforts in the research community to
bridge the gap between HPC and cloud computing. In [18]
traditional HPC, grid and cloud in terms of their motiva-
tion, strengths and weaknesses are discussed. It combines
the important characteristics of each proposing a model for
how these paradigms can work together and how scientific
workloads can be managed terming it as hybrid computing
environment. The authors in [1] presented a gap analysis
between the HPC and cloud computing resources in terms
of price; pay-as-you-go model. They describe the difficulties
and performance of both computing paradigms. In [11] the
authors presented an approach that makes use of InfiniBand
clusters for HPC cloud computing. They also proposed a
performance-driven design of HPC IaaS layer for InfiniBand,
which provides throughput and latency-aware virtualization
of nodes, networks, and network topologies, as well as an
approach to an HPC-aware, multi-tenant cloud management
system for elastic virtualized HPC compute clusters. While
in [21] author introduced a service composition Framework for
Market-Oriented High Performance Computing Cloud by an
ontology that describes dependencies and relationships among
HPC software and resources. The authors in [10] focused
on evaluating the technical capability of current public cloud
computing platforms (Amazon EC2, IBM, GoGrid), and their
suitability for running scientific HPC applications comparing
these public clouds by running standard benchmark and NASA
climate prediction application.

In the course of exploiting cloud resources for HPC we
deliver the N2Sky environment which offers neural network

resources as a service which dynamically uses the available
computing environment to reduce the execution time. Sum-
ming up, the N2Sky environment provides:

• Sharing of neural network paradigms, objects and
related information between the researchers and end
user world wide.

• Reduction of training time of neural network by au-
tomatically selecting appropriate parallel implementa-
tions of the neural network services exploiting suitable
cloud resources.

• Transparent access to High-end neural network re-
sources stored in cloud environment.

• Uniform Look and feel for location independence of
computational, storage and Network resources.

III. PARALLELIZATION OF NEURAL NETWORK TASK
EXECUTION

Neural networks proved extremely well for solving prob-
lems, which are hard to catch in mathematical models. How-
ever, the usage and employment of neural networks in such
application domains is often dependent on the tractability of
the processing costs. The problem domains for the employment
of neural networks are increasing and also the problems
themselves are getting larger and more complex. This leads
to larger networks consisting of huge numbers of nodes and
interconnection links, which results in exceeding costs for
the network specific operations, as evaluation and training.
Especially the cost intensive training phase of a neural network
inherits a major drawback, due to the situation that large
numbers of patterns (input and/or target values) are fed into
the network iteratively. Thus, a key aspect of an artificial
neural network simulation infrastructure to be accepted by
the community is the efficient execution of the calculation
intensive training phase. High performance computing ap-
plications typically apply specialized hardware and software
infrastructure to speed up performance by parallelization of
task execution. However, parallelization of applications is a
difficult and error-prone task, very often leading to hand-
crafting of code by experts.

Many research on parallelization of neural network simu-
lation are done in the past. Also the authors of this paper did
ample research on this issue. We focused on different neural
network paradigms, as Backpropagation[23], Kohonen [22],
and cellular neural networks [34], and various parallel infras-
tructures, as hyper-cube [24], cluster [32], GPU and multicore
systems [13]. As result of our work we developed set of
rules [34], [35] for the simplified development of parallel
execution scenarios, which are even applicable for the arbitrary
user. To make parallelization feasible for arbitrary users we
believe that it has to be done automatically and transparently
by the simulation system.

Therefore, our vision is a smart system, which adminis-
trates parallelized execution patterns for neural network simu-
lation in a repository and selects applicable schemes based
on given information on networks, problem and available
infrastructure using expert know-how stored in a rule-based
knowledge base.

2283

In a first attempt[13] we concentrate on two parallelization
approaches motivated by our problem domain and the available
hardware resources: structural and topological data parallelism.

• Structural Data Parallelization: The structural data
parallelization techniques is used for cluster and mul-
ticore systems. The training images are divided into
disjoint sets. Identical copy of neural networks are cre-
ated for each thread. Each thread is trained on its own
data. After certain number of epochs the weights of
all the threads are collected, updated and broadcasted
to the threads again. This process is continued unless
the error is less than the defined threshold value.

• Topological Data Parallelization: The topological
node parallelization is deployed on GPU using CUDA.
In this approach only one copy of the neural network
is instantiated, which resides on GPU. Each thread
on the GPU behaves like a neuron and executes
independently. To speed up the implementation the
training weights and input data are stored in an one
dimensional array aligned with the host and the device
memory for looping in GPU.

The complexity of neural network increases as the number
of neurons in hidden layer increases. So we defined the
problem size as the product of neurons of the input layer
and the hidden layer. Choosing a particular hardware and soft-
ware configuration takes basically into considerations neural
network paradigm and the problem size. Figure 1 presents
the dependencies of absolute execution time of the neural
network training as we changed number of neurons in input
and hidden layers for openMP (optimal number of threads)
and GPU implementations. This figure basically represents a
decision map illustrating which parallelization scheme is to be
applied for what problem characteristics.

Fig. 1. Selection of openMP or GPU

The core of our envisioned system is a knowledge base
which consists of set of rules, which selects parallelization
schemes for given neural network paradigms, available parallel
hardware and software infrastructure and problem characteris-
tics.

The realization of this knowledge base is done by semantic
web tools. The W3C has published the XML based standards

Ontological Web Language (OWL) and the Resource De-
scription Framework (RDF) for defining ontologies. As these
technologies are platform independent, exchangeable, compre-
hensive and widely-accepted we use these technologies to build
our architecture. For the management of the knowledge base
we apply SPARQL [31] and Jena [15]. Summing up, RDF
and OWL are used for ontologies, whereas SPARQL is used
to query these ontologies, and Jena is used to execute rules
from the knowledge base.

IV. N2SKY CLOUD DEPLOYMENT

Fig. 2. N2Sky Cloud Deployment

We deployed N2Sky on Eucalyptus [6]. Eucalyptus is
an open sources software framework (like Amazon Elastic
Compute Cloud) for cloud computing by implementing Infras-
tructure as a Service (IaaS); that provides users the ability to
run and control instances deployed across a variety of physical
resources. The N2Sky design approach allows easy portability
to other cloud computing platforms.

The N2Sky system is Java-based environment providing
simulation of neural networks by using Apache Axis Library
and Apache Tomcat Web container as hosting environment for
the web services. To access these services Java Servlets/JSPs
have been deployed as the web frontend. N2Sky can be
deployed as a federated clouds model by fostering the specific
affinities (capabilities) [14] of different cloud providers like
data/storage clouds and compute clouds etc. A possible specific
deployment is shown in Figure 2. Four different clouds Busi-
ness Cloud, Data Cloud, Decision Cloud and Compute Cloud
are depicted providing unique functionalities. Data Cloud
provides ample storage resources by accessing relational or
NoSQL database systems. The Business Cloud administrates
the user management, SLA management, business logic and
act as central access point to N2Sky system. The Decision
Cloud stores in the parallelization knowledge base the descrip-
tion about various neural network parallelization schemes as
a set of rule (classical Horn clauses). This knowledge base
can be extended by knowledge from other web services as
well. The Decision Cloud acts like an agent using service
selection rules for training and evaluation for particular service
implementation to execute tasks on the Computational Cloud,
which provides the specific hardware resources, as Multicore

2284

Servers, GPUs etc. and software environments, as OpenMP
etc.

V. N2SKY ARCHITECTURE

The architecture and the systems components are depicted
in Figure 3.

N2Sky Simulation Service: This service provides three
basic functionalities, as Train, Retrain and Evaluate. In the
Train phase the user provides input and output data sets to the
neural network and performs the training. In the Retrain phase
an already trained neural network is provided with additional
input data sets so that its accuracy can be increased. In the
Evaluation phase the trained neural network calculates the
solutions to the given problem. This service also uses the
Paradigm Replication Service which provides information and
starts paradigm specific cloud instances. The Simulation Selec-
tion Service caters the selection of the hardware environment
on which the simulation has to be executed according to the
rules of the parallelization in knowledge base.

N2Sky Simulation Selection Service: Different implemen-
tations of a service running on different hardware environments
can have different execution times as shown in Figure 1.
The N2Sky Simulation Service chooses the most appropriate
implementation of the service doing the job in minimal time
transparently to the end user. In a self-adaptive fashion it
dynamically updates its knowledge base learning from the
executed simulations.

N2Sky Paradigm Execution Service: This service resides
on the physical resources, sequential and parallel ones. The
N2Sky Paradigm Replication service executes the required
implementation of the service in co-ordination of N2Sky
simulation Service by using this service. It also provides status
during execution of the service as well as results at the end of
the execution of the simulation.

N2Sky Data Archive: This service provides key informa-
tion about already trained neural network, available paradigms,
neural networks object, evaluation data sources, input data sets
and output data sets for training and retraining of the neural
network by publishing. It provides two methods to store and
retrieve data from the data archive. The put method stores a
neural network object and it corresponding input and output
results, total execution time as well as the environment on
which the simulation was carried out. The get method fetches
all information regarding the a particular neural network from
the data source when needed.

N2Sky Database Service: Already trained neural network
object and paradigm are available to end users. This function-
ality provides the N2Sky Database Service as it dynamically
updates itself, by storing input/output data sets, paradigm
used, weight and error matrix, simulation environment, by
storing information as a particular training/retraining/evaltion
simulation ends. These results are then published by the N2Sky
Data Archive service so that these are available to users.

N2Sky Service Monitor: This is the entry point of the
whole system to end user. This service keeps track of available
neural network services and publishes these services. This
module enables the N2sky user to select either already pub-
lished paradigms like Back Propagation, Quick Propagation,

Jordan etc. or submit its own modified paradigm by defining
or selecting input / output data sets or parameters. Hardware
virtualization play important role in presenting the resources
and services transparently to end user to interact with this
system.

N2Sky Paradigm / Replication Service: It contains the
business logic of the neural network implementation and uses
the Paradigm Execution Services to install / start new instance
in the cloud environment.

N2Sky Registry: This services plays a key role in the
whole system. This service publishes the available paradigm,
neural network objects, input / output data sets to end user. It
also provides the information / status of a simulation during the
execution and at finish stage of the simulation. It co-ordinates
between Simulation Selection Service, Paradigm Replication
Service and the N2Sky Web Portal.

N2Sky Java Application / Applet: The aim of N2sky
system is to provide the end user (experienced or novice)
predefined neural network objects and paradigms. The system
presents an application/applet which is a Java based Graphical
User Interface (GUI) to interact with it. This interface allows
the users to solve their problems by using either predefined
neural network objects or by customising paradigms and
defining their own parameters.

N2Sky (Mobile) Web Portal: The N2Sky (Mobile) Web
Portal provides the access point to the N2Sky system by a web
browser interface which can be used on PCs, tablets or even
a smart phones.

N2Sky User Management Service: This service provides
session ID and check credentials.

Figure 3 shows the layout of the system services and
the execution workflow is described (the numbers refer to the
labels in the figure).

1) During the Publishing process all the components
update themselves by fetching information from the
N2Sky Data Archive Service and Database Services
and register the available resources and services to
the N2Sky Registry and the N2Sky Service monitor.

2) The Paradigm Replication Services activates and
maps available paradigms to running instances in the
Paradigm Execution Service.

3) Via web browsers users login into the N2Sky sys-
tem. The N2Sky Services Monitor sends users login
request to User Management and Access Control
Services.

4) User Management and Access Control Services check
the Users Credentials.

5) User Management and Access Control Services send
a new Session ID or access rejection.

6) The user is provided with either a new Session ID or
the access is denied.

7) On successful login the user is able to query the
available neural network Paradigms.

8) The user is provided with the query results. He can
select a Paradigm or can modify it by defining own
parameters.

9) The user requests Creating / Training / Retraining /
Evaluation of the neural network.

2285

Fig. 3. Parallelized N2Sky Architecture and components

10) The system receives the simulation request and
lookups the Simulation Selection Service rules to se-
lect a service implementation on sequential or parallel
resource as to minimize the execution time of the
simulation.

11) The Simulation Service starts Training / Evaluation of
the selected neural network implementation by using
the Paradigm Execution Service.

12) The Simulation Service sends the status / results to
the Simulation Selection Services which updates its
selection rules if new knowledge is available.

13) The results are sent to N2sky Service Monitor.
14) The simulation results are presented to the user.

VI. N2SKY USE CASE

N2Sky user interface is driven by guiding principles of
acceptance, simplicity, originality, homogeneity and system
extensibility. Using HTML5, CSS 3.0 and JQuery we are able
to provide the access to user through web browser (Safari,
Chrome, Mozilla Firefox or the Internet Explorer) as well as
from tablets, Macs and smart phones. Figure 4 shows the
login screens for N2Sky on IPhone and Mac. For a detailed
interface walk-through see [28].

Fig. 4. N2Sky Login Screens iPhone(left) and Mac (right)

As use case we target the face recognition problem by a
Backpropagation neural network (BPNN) trained by a super-
vised learning mode. The face images we used are from [29]

2286

and are available in a pgm-p2 format. These images contain
faces of 20 people, in various head poses (left, right, straight,
up), various expressions (neutral, happy, sad, angry) and dif-
ferent eye status (open, closed). The images are available in
different resolutions: 32x30, 64x60 and 128x120 pixels. In
our evaluation we used images in the resolutions 32x30 and
128x120. For each resolution 70 images were used as the
TrainSet and 32 images were used as the TestSet – for the
evaluation phase of a neural network – to verify the quality of
the training.

Output values range from 0.0 to 1.0, where a high value
(above 0.9) indicate that the image matches an assumed
person. A low value (below 0.1) indicates that the image
does not belong to the assigned person. After a feed-forward
operation, the output value is compared with the target value
and classified to rather high (above 0.5) or rather low (below
0.5), to check whether the BPNN has correctly classified the
face image. Both multithreaded and GPU implementations
make use of the existing timer function clock_gettime()
to record the system time and calculate the overall execution
time of a simulation run of the algorithm. For the two multi-
threaded versions of the BPNN face recognition algorithm we
used the following hardware and software environment: the
multithreaded CPU program was compiled by GCC 4.3.3 and
runs on a dual Xeon X5570 machine (2x 2.93GHz quad-cores
with hyper-threading, each 6GB memory at 1333MHz). Thus
totally 16 logical cores can be used. The multithreaded GPU
program was compiled by CUDA NVCC 3.0 and runs on a
Tesla C1060 graphics card (240x 1.296GHz streaming cores,
4GB memory at 800MHz).

For our simulation we used the same BPNN configuration
(learning rate, momentum, number of neurons, initialized
weights and number of epochs) for CPU (serial execution),
OpenMP and GPU programs. Therefore we can directly com-
pare the execution times of the different runs. For all runs
we set the learning rate (0.3) and the momentum (0.3) and
vary only the number of epochs (100 epochs for 960 inputs,
20 epochs for 15, 360 inputs) and the number of hidden
neurons (from 8 to 1, 024). For 960 input neurons in the input
layer the execution time for the serial execution increases
dramatically as the numbers of hidden neurons increases.
However the multi-threaded OpenMP program outperforms the
GPU version having a better runtime for each variation of the
hidden neurons. The Figure 5(a) and 6(b) which shows the
reduction in execution time as compared to serial execution for
960 input neurons and 15360 input neurons respectively. As the
complexity of problem increases GPU environment performs
better by utilizing the streaming cores than the multi-threaded
OpenMP version.

VII. CONCLUSION & FUTURE WORK

We presented N2Sky, realizing neural networks as a service
paradigm, which fosters cloud resources delivering a frame-
work for the Computational Intelligence community to share
and exchange neural network resources.

Parallelization of neural network training is key for in-
creasing the overall performance. The specific focus of this
paper lies on the parallelization mechanism which transpar-
ently delivers available high performance computing resources,

Fig. 5. BPNN Execution Time Reduction Analysis: Time reduction for
(32x30)-100 Epochs)

Fig. 6. BPNN Execution Time Reduction Analysis: Time reduction for
(128x120)-20 Epochs)

as clusters, multi core architectures and GPGPUs, utilizing
parallel processing schemes. Based on our research on neural
network parallelization we envision an automatically definition
and usage of parallelization patterns for specific paradigms.

N2Sky is a prototype system with quite some room for fur-
ther enhancement. Ongoing research is done in the following
areas:

• We are working on an enhancement of the neural
network paradigm description language ViNNSL [2]
to allow for automatic sharing of resources based on
the formalized description.

• Key for fostering of cloud resources are service level
agreements (SLAs) which give guarantees on quality

2287

of the delivered services. We are working on the
embedment of our research findings on SLAs [8],
[9], [7] into N2Sky to allow for novel business mod-
els [37], [27], [36], [33] on the selection and usage of
neural network resources based on quality of service
attributes [30].

• A further important issue is to find neural network
solvers for given problems, similar to a ”Neural Net-
work Google”. In the course of this research we
are using ontology alignment by mapping problem
ontology onto solution ontology.

REFERENCES

[1] R. Aversa, B. Di Martino, M. Rak, S. Venticinque, and U. Villano, “Per-
formance prediction for hpc on clouds,” Cloud Computing: Principles
and Paradigms, R. Buyya, J. Broberg, and AM Goscinski, Ed., John
Wiley &Sons, pp. 437–454, 2011.

[2] P. P. Beran, E. Vinek, E. Schikuta, and T. Weishäupl, “ViNNSL - the
Vienna Neural Network Specification Language,” in Proceedings of
the International Joint Conference on Neural Networks, IJCNN 2008,
part of the IEEE World Congress on Computational Intelligence, WCCI
2008. IEEE, June 2008, pp. 1872–1879.

[3] C. Brunner and C. Schulte, “Neuroaccess: The neural network data base
system,” Masters Thasis, University of Vienna, Vienna, Austria, 1998.

[4] CUDA, “CUDA Specifications and Documentation,”
http://docs.nvidia.com/cuda/index.html.

[5] Emergent, “Emergent Neural Network Simulation System,”
http://grey.colorado.edu/emergent/index.php/Main Page.

[6] Eucalyptus, “Eucalyptus Website,” http://www.eucalyptus.com.
[7] I. U. Haq, R. Alnemr, A. Paschke, E. Schikuta, H. Boley, and C. Meinel,

“Distributed trust management for validating sla choreographies,” in
Grids and Service-Oriented Architectures for Service Level Agreements,
P. Wieder, R. Yahyapour, and W. Ziegler, Eds. Springer US, 2010, pp.
45–55.

[8] I. U. Haq, I. Brandic, and E. Schikuta, “SLA validation in layered
cloud infrastructures,” in Economics of Grids, Clouds, Systems, and
Services, 7th International Workshop, GECON’10, ser. Lecture Notes
in Computer Science, vol. 6296. Ischia, Italy: Springer Berlin /
Heidelberg, 2010, p. 153–164.

[9] I. U. Haq and E. Schikuta, “Aggregation patterns of service level agree-
ments,” in Frontiers of Information Technology (FIT’10). Islamabad,
Pakistan: ACM, 2010.

[10] Q. He, S. Zhou, B. Kobler, D. Duffy, and T. McGlynn, “Case study
for running hpc applications in public clouds,” in Proceedings of the
19th ACM International Symposium on High Performance Distributed
Computing. ACM, 2010, pp. 395–401.

[11] M. Hillenbrand, V. Mauch, J. Stoess, K. Miller, and F. Bellosa,
“Virtual infiniband clusters for hpc clouds,” in Proceedings of the 2nd
International Workshop on Cloud Computing Platforms. ACM, 2012,
p. 9.

[12] A. A. Huqqani, L. Xin, P. P. Beran, and E. Schikuta, “N2Cloud: Cloud
based Neural Network Simulation Application,” in Neural Networks
(IJCNN), The 2010 International Joint Conference on, July 2010, pp.
1–5.

[13] A. A. Huqqani, E. Schikuta, S. Ye, and P. Chen, “Multicore and
gpu parallelization of neural networks for face recognition,” Procedia
Computer Science, vol. 18, pp. 349–358, 2013.

[14] H. Jang, A. Park, and K. Jung, “Neural Network Implementation
Using CUDA and OpenMP,” Digital Image Computing: Techniques and
Applications, vol. 0, pp. 155–161, 2008.

[15] A. Jena, “Reasoners and rule engines: Jena inference support,”
http://jena.apache.org/documentation/inference/.

[16] H. Kanan and M. Khanian, “Reduction of neural network training time
using an adaptive fuzzy approach in real time applications,” Interna-
tional Journal of Information and Electronics Engineering, vol. 2, no. 3,
2012.

[17] K. Keahey, M. Tsugawa, A. Matsunaga, and J. Fortes, “Sky computing,”
Internet Computing, IEEE, vol. 13, no. 5, pp. 43–51, 2009.

[18] G. Mateescu, W. Gentzsch, and C. J. Ribbens, “Hybrid computingwhere
hpc meets grid and cloud computing,” Future Generation Computer
Systems, vol. 27, no. 5, pp. 440–453, 2011.

[19] D. Nguyen and B. Widrow, “Improving the learning speed of 2-layer
neural networks by choosing initial values of the adaptive weights,” in
Proceedings of the international joint conference on neural networks,
vol. 3. Washington, 1990, pp. 21–26.

[20] OpenMP, “OpenMP Specifications,” http://www.openmp.org/mp-
documents/OpenMP3.1.pdf.

[21] T. V. Pham, H. Jamjoom, K. Jordan, and Z.-Y. Shae, “A service com-
position framework for market-oriented high performance computing
cloud,” in Proceedings of the 19th ACM International Symposium on
High Performance Distributed Computing. ACM, 2010, pp. 284–287.

[22] H. Schabauer, E. Schikuta, and T. Weishäupl, “Solving very large
traveling salesman problems by som parallelization on cluster archi-
tectures,” in Sixth International Conference on Parallel and Distributed
Computing, Applications and Technologies, PDCAT 2005. IEEE, 2005,
pp. 954–958.

[23] E. Schikuta, H. Wanek, and T. Fuerle, “Structural data parallel simula-
tion of neural networks,” Journal of Systems Research and Information
Science, vol. 9, no. 1, pp. 149–172, 2000.

[24] E. Schikuta and C. Weidmann, “Data parallel simulation of self-
organizing maps on hypercube architectures,” Proceedings of WSOM,
vol. 97, pp. 4–6, 1997.

[25] E. Schikuta and T. Weishäupl, “N2Grid: Neural Networks in the Grid,”
in Neural Networks, 2004. Proceedings. 2004 IEEE International Joint
Conference on, vol. 2, July 2004, pp. 1409–1414.

[26] E. Schikuta, “Neuroweb: an internet-based neural network simulator,”
in Tools with Artificial Intelligence, 2002.(ICTAI 2002). Proceedings.
14th IEEE International Conference on. IEEE, 2002, pp. 407–412.

[27] E. Schikuta, F. Donno, H. Stockinger, H. Wanek, T. Weishäupl,
E. Vinek, and C. Witzany, “Business in the grid: Project results,” in
1st Austrian Grid Symposium. Hagenberg, Austria: OCG, 2005.

[28] E. Schikuta and E. Mann, “N2sky - neural networks as services in the
clouds,” in International Joint Conference on Neural Networks. USA:
IEEE, 2013. [Online]. Available: http://eprints.cs.univie.ac.at/3709/

[29] A Neural Network Face Recognition Assignment, Shufelt, Jeff, 1994.
[Online]. Available: http://www.cs.cmu.edu/afs/cs.cmu.edu/user/avrim/
www/ML94/face\ homework.html

[30] E. Vinek, P. P. Beran, and E. Schikuta, “Classification and compo-
sition of qos attributes in distributed, heterogeneous systems,” in 11th
IEEE/ACM International Symposium on Cluster, Cloud, and Grid Com-
puting (CCGrid 2011). Newport Beach, CA, USA: IEEE Computer
Society Press, May 2011.

[31] W3C, “Sparql query language for rdf [online],”
http://www.w3.org/TR/rdf-sparql-query/, 2008.

[32] T. Weishäupl and E. Schikuta, “Parallelization of cellular neural net-
works for image processing on cluster architectures,” in Parallel Pro-
cessing Workshops, 2003. Proceedings. 2003 International Conference
on. IEEE, 2003, pp. 191–196.

[33] T. Weishäupl, F. Donno, E. Schikuta, H. Stockinger, and H. Wanek,
“Business in the grid: BIG project,” in Grid Economics & Business
Models (GECON 2005) of Global Grid Forum, vol. 13. Seoul, Korea:
GGF, 2005.

[34] T. Weishäupl and E. Schikuta, “Cellular neural network parallelization
rules,” in IEEE CNNA 2004. IEEE, July 2004. [Online]. Available:
http://eprints.cs.univie.ac.at/868/

[35] T. Weishaupl and E. Schikuta, “How to parallelize cellular neural
networks on cluster architectures,” in Parallel Architectures, Algorithms
and Networks, 2004. Proceedings. 7th International Symposium on.
IEEE, 2004, pp. 439–444. [Online]. Available: http://www.computer.
org/portal/web/csdl/doi/10.1109/ISPAN.2004.1300519

[36] T. Weishäupl and E. Schikuta, “Towards the merger of grid and
economy,” in International Workshop on Agents and Autonomic Com-
puting and Grid Enabled Virtual Organizations (AAC-GEVO04) at the
3rd International Conference on Grid and Cooperative Computing
(GCC04), ser. Lecture Notes in Computer Science, vol. 3252/2004,

2288

Springer. Wuhan, China: Springer Berlin / Heidelberg, 2004, pp. 563–
570.

[37] T. Weishäupl, C. Witzany, and E. Schikuta, “gSET: trust management
and secure accounting for business in the grid,” in 6th IEEE Interna-
tional Symposium on Cluster Computing and the Grid (CCGrid’06).
Singapore: IEEE Computer Society, 2006, p. 349–356.

[38] P. Wu, S.-C. Fang, and H. Nuttle, “Curved search algorithm for neural
network learning,” in Neural Networks, 1999. IJCNN ’99. International
Joint Conference on, vol. 3, 1999, pp. 1733 –1736 vol.3.

[39] XNBC:, “A software package to simulate biological neural networks
for research and education ,” http://www.b3e.jussieu.fr/xnbc/.

2289

