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Abstract—Uncertainty is known to be a concomitant factor
of almost all the real world commodities such as oil prices,
stock prices, sales and demand of products. As a consequence,
forecasting problems are becoming more and more challenging
and ridden with uncertainty. Such uncertainties are generally
quantified by statistical tools such as prediction intervals (PIs).
PIs quantify the uncertainty related to forecasts by estimating
the ranges of the targeted quantities. PIs generated by traditional
neural network based approaches are limited by high computa-
tional burden and impractical assumptions about the distribution
of the data. A novel technique for constructing high quality PIs
using support vector machines (SVMs) is being proposed in this
paper. The proposed technique directly estimates the upper and
lower bounds of the PI in a short time and without any assump-
tions about the data distribution. The SVM parameters are tuned
using particle swarm optimization technique by minimization
of a modified PI-based objective function. Electricity price and
demand data of the Ontario electricity market is used to validate
the performance of the proposed technique. Several case studies
for different months indicate the superior performance of the
proposed method in terms of high quality PI generation and
shorter computational times.

Index Terms—Deregulation, Particle swarm optimization, Pre-
diction interval, Support vector machines, Uncertainty.

I. INTRODUCTION

Deregulation of power sector is a key step taken up by
many countries for improving the efficiency of their power
transactions. In the deregulated scenario, electricity is sold
and purchased in a market in quite a similar fashion as other
commodities. The prospective power generators submit their
selling bids indicating the price and the quantum of power they
are willing to trade with in the market. Similarly large scale
consumers and retailer submit their offer bids to the market
indicating their willingness and capacity of the purchase
power. An independent entity known as market operator clears
the submitted bids and offers and declares a uniform market
clearing price which are applicable to both the buyers and the
sellers. The market participants have to rely on forecasting
models to estimate the future prices and demands and plan
their operation and bidding strategies for maximizing their
profit. Consequently, research and development of fast and
accurate price and demand forecasting techniques is gradually
gaining prominence in the deregulated power market scenario.

Nitin Anand is with the Department of Electrical Engineering, Indian
Institute of Technology, New Delhi, India. (e-mail: anandnitin26@gmail.com)

A. Khosravi is with the Center for Intelligent Systems Research, Deakin
University, Australia.(e-mail:abbas.khosravi@deakin.edu.au)

B.K.Panigrahi is with the Department of Electrical Engi-
neering, Indian Institute of Technology, New Delhi, India. (e-
mail:bijayaketan.panigrahi@gmail.com.)

Electricity is a very distinct market commodity compared
to other commodities such as oil and gas owing to its non-
storability and mandatory balance between demand and sup-
ply. Unlike demand, electricity prices are known for their
unpredictable fluctuations and spikes and accurate forecast of
electricity prices is quite a challenging problem for the market
participants. Many researchers have delved into the problem
of developing accurate forecasting modules encompassing a
variety of market scenarios with varying ranges of forecast
accuracy. Time series based methods rely on the past behavior
of the prices and other exogenous variables like demand to
estimate its future movement. Some of the time series based
methodologies using transfer function, ARIMA and GARCH
have been presented in [1], [2], [3] and reasonable accuracy
levels have been achieved by them. Artificial intelligence
based methods are also quite popular as they are simple
and computationally efficient. The philosophy behind these
methodologies is to find a mapping between the electricity
prices and other explanatory variables such as historical prices,
demand and weather, using historical examples. Some of the
well known artificial intelligence techniques proposed in the
price and load forecasting literature are neural networks [4],
[5], fuzzy NNs [6], [7], [8] and support vector machines
(SVM) [9].

It is impossible to eliminate forecasting errors due to the
prominent uncertainty component intertwined with the elec-
tricity prices. This uncertainty amply reflects in the forecast
errors generated by different models and needs to be quantified
through certain measures. The commonly known statistical
tools for quantifying the uncertainty in the predictions are
Confidence Intervals (CIs) and Predictions Intervals (PIs).
Confidence intervals are generated for an existing data based
on the accuracy of the prediction of the regression i.e., of the
mean of the target probability distribution. Prediction intervals
take into account the accuracy with which the future targets
have been encapsulated by the model [10]. PIs are more
relevant to decision makers as compared to the CIs as they are
more informative about the future. Wide PIs indicate higher
uncertainty at that instance whereas low interval width indicate
lower uncertainty. Therefore, forecasts with wide PIs should
be used more cautiously by the decision makers while narrow
width PIs can be used more confidently [11].

Some of the commonly known techniques for constructing
PIs are Bayesian [12], delta [13], bootstrap [10], mean-
variance estimation [14] and lower upper bound estimations
using neural networks [15]. PIs are now being constructed for
some of the real world problems and some of the contemporary
applications of PIs have been reported for transportation [16],
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baggage handling systems [17] and financial services [18].
In [19], a hybrid method using support vector machines and
a nonlinear conditional heteroskedastic forecasting model was
proposed for constructing PIs of electricity prices. However,
the methodology focussed on improvement of coverage prob-
ability and the width of the PIs was ignored. In [20], a de-
coupled extended Kalman filter-based NN method is employed
for estimation of confidence intervals for electricity prices. An
ARIMA-based method is developed in [21] for construction
of CIs assuming a gaussian or uniform distribution for the
residual errors. No discussion is made regarding PIs for a
future electricity price in these papers. In [22], authors employ
the delta technique for generating optimal PIs for electric load
data. Delta technique is applied on the outcomes of neural
network models and simulated annealing method is used
for cost function minimization and optimization of network
parameters. Authors reported that the proposed method could
outperform traditional delta technique and generate reliable
PIs.

The motivation of this work is derived from a lower-upper
bound estimation technique proposed in [15] where the upper
and the lower bounds of the PIs are directly generated by a
two output NN model. In this work we propose a modification
wherein support vector machines (SVM) are utilized for esti-
mating the upper and lower bounds of the prediction intervals
instead of NNs as proposed in the earlier work. NNs applica-
tions are limited by their possibility of getting stuck in local
minima. SVM training, on the other hand, is claimed to always
find a global minima [23]. The simple geometric interpretation
of SVM gives a great scope for further investigations [24].
Keeping in view the advantages of SVM over NNs, SVM is
considered as the learning technique in this work. Appropriate
selection of the SVM parameters can tremendously boost its
learning capabilities. Swarm intelligence optimization tech-
niques are very effective in selecting optimal parameters for
many real world problems. Particle swarm optimization (PSO)
technique is a well known swarm intelligence method and has
been used in this work for determination of optimal SVM
parameters. The proposed SVM-PSO based lower-upper bound
estimation method is used to construct optimal PIs for the
future prices and demands of Ontario electricity markets. The
performance of the proposed technique is also compared with
some benchmark techniques and the ability of the proposed
method to construct high quality PIs is clearly observed.

The rest of the paper is organized as follows. In Section
II, review of the SVM, PSO and the various performance
measures employed in the proposed method are presented.
The steps of the model development are discussed in detail in
Section III. The experimental studies and results are presented
in Section IV. Section V highlights the conclusions of the
work.

II. GENERAL BACKGROUND

A. Support Vector Machines

Support vector machine algorithm originates from the Gen-
eralized Portrait algorithm developed in Russia in the late
sixties and its present form was developed at the AT@T

Bell Laboratories by Vapnik and associates. Initial focus of
these algorithms was in the field of classification, but later
on it was successfully extended to regression and time series
predictions as well. In this section we give a brief introduction
to support vector regression (SVR). Assume a training data
{(𝑥1, 𝑦1), ...., (𝑥ℓ, 𝑦ℓ)} ⊂ 𝑋 × ℜ where each 𝑋 denotes the
input space of the sample. The objective of the algorithm is
to determine a function 𝑓(𝑥) that allows at most 𝜖 deviation
from the targets 𝑦𝑖 for the entire training data and it should
be as flat as possible. For the case of linear functions, 𝑓 takes
the form

𝑓(𝑥) = ⟨𝑤, 𝑥⟩+ 𝑏 𝑤 ∈ 𝑋, 𝑏 ∈ ℜ (1)

where ⟨⋅, ⋅⟩ denotes the dot product in 𝑋 . Minimum flatness
of 𝑓 can be ensured by minimizing the norm ∥𝑤∥2. This can
be formulated as a convex optimization problem:

minimize
1

2
∥𝑤∥2 (2)

subject to

{
𝑦𝑖 − ⟨𝑤, 𝑥𝑖⟩ − 𝑏 ≤ 𝜖
⟨𝑤, 𝑥𝑖⟩+ 𝑏− 𝑦𝑖 ≤ 𝜖

In practical situations, this constrained optimization problem
may be infeasible and we have to allow for some errors. By
introducing the slack variables 𝜉𝑖, 𝜉

∗
𝑖 , the revised formulation

can be stated as

minimize
1

2
∥𝑤∥2 + 𝐶

ℓ∑

𝑖=1

(𝜉𝑖 + 𝜉∗𝑖 ) (3)

subject to

⎧
⎨

⎩

𝑦𝑖 − ⟨𝑤, 𝑥𝑖⟩ − 𝑏 ≤ 𝜖+ 𝜉𝑖
⟨𝑤, 𝑥𝑖⟩+ 𝑏− 𝑦𝑖 ≤ 𝜖+ 𝜉∗𝑖
𝜉𝑖, 𝜉

∗
𝑖 ≥ 0 𝑖 = 1, . . . , 𝑙

The flatness of 𝑓 and tolerance limits of the error beyond
𝜖 is regulated by the constant C. Inclusion of the constraints
ensures that most of the data 𝑥𝑖 lies in the tube ∣𝑦𝑖−⟨𝑤, 𝑥𝑖⟩−
𝑏∣ ≤ 𝜖. If 𝑥𝑖 goes out of the tube, it results in an error 𝜉𝑖 or
𝜉∗𝑖 which is to be minimized in the objective function. The
underfitting and overfitting of the training data is avoided by
minimizing the training error 𝐶

∑ℓ
𝑖=1(𝜉𝑖 + 𝜉∗𝑖 ) as well as the

regularization term 1
2 ∥𝑤∥2. Real world problems are primarily

non linear and the above formulation can be made non-linear
by mapping the data 𝑥 to a higher dimensional space using a
function Φ : 𝑥→ Γ. Further details about SVMs can be found
in [25], [26].

B. Particle Swarm Optimization

The PSO was developed and introduced by Kennedy and
Eberhart as a stochastic optimization algorithm and is being
widely used for solving a variety of complex optimization
problems [27]. It is primarily a population based algorithm
which employs a population of individuals to iteratively search
a multi-dimensional search space for global minimum (maxi-
mum).The population in this case is referred to as swarm and
the individuals are called as particles. Algorithm is initialized
with a population of random particles and the particles explore
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the search space according to their individual velocity vector.
The particles are considered to have the history of the best
positions attained personally by them (personal best) and the
best position attained by the entire group (group best) in every
iteration. The further movement of each particle is influenced
by these two factors.

Consider a PSO model with N particles which occupy
positions in a D-dimensional problem space. The particles
can be denoted as 𝑥𝑖1, . . . , 𝑥𝑖𝑑, . . . 𝑥𝑖𝐷 and this population
of particles represents a potential solution to the problem
in hand. The velocity of each particle is denoted as 𝑣𝑖 =
(𝑣𝑖1, . . . , 𝑣𝑖𝑑, . . . 𝑣𝑖𝐷 ). The projected position and velocity of
the particle i at (𝑘+1)𝑡ℎ iteration are defined by the following
equations:

𝑣𝑘+1
𝑖𝑗 = 𝜔𝑣𝑘𝑖𝑗 + 𝑐1𝑟

𝑡
1𝑗

(
𝑃 𝑘
𝑖𝑗 −𝑋𝑘

𝑖𝑗

)
+ 𝑐2𝑟

𝑘
2𝑗

(
𝑃 𝑘
𝑔𝑗 −𝑋𝑘

𝑖𝑗

)
(4)

𝑋𝑘+1
𝑖𝑗 = 𝑋𝑘

𝑖𝑗 + 𝑣𝑘+1
𝑖𝑗 (5)

The constants 𝑐1 and 𝑐2 known as the cognitive and social
coefficients respectively control the relative proportion of cog-
nition and social interaction. 𝑟1𝑗 and 𝑟2𝑗 are two independent
random numbers uniformly distributed in (0, 1) for the 𝑗𝑡ℎ

dimension. Vector 𝑃𝑔 = (𝑃𝑔1, . . . , 𝑃𝑔𝑗 , . . . , 𝑃𝑔𝐷) is the best
position obtained so far by the entire population and is called
gbest. Vector 𝑃𝑖 = (𝑃𝑖1, . . . , 𝑃𝑖𝑗 , . . . , 𝑃𝑖𝐷) is the position with
the personal best fitness found so far by the 𝑖𝑡ℎ particle, and
it is called pbest. 𝜔 is known as the inertia weight parameter
and it controls the velocity of particles from one iteration to
the next iteration. The original version of PSO was found
to lack velocity control mechanism and therefore a linearly
decreasing inertia weight approach was introduced by Eberhart
and Shi [28] to overcome that defect and it has been used in
this work.

C. Performance measures

Quite analogous to point forecasts, the performance of the
PI forecasting models need to be assessed in terms of the
quality of PIs obtained by them. Coverage probability and PI
width are the two commonly used PI performance measures.
PI coverage probability (PICP) refers to the ability of the
constructed PIs to capture the actual target variables. PICP
can be mathematically stated as:

PICP =
1

𝑁

𝑁∑

𝑖=1

𝐶𝑖 (6)

where 𝐶𝑖 =

{
1 𝑡𝑖 ∈ [𝐿𝑖, 𝑈𝑖]
0 𝑡𝑖 /∈ [𝐿𝑖, 𝑈𝑖]

where N is the number of samples in the test set, and 𝐿𝑖 and
𝑈𝑖 are lower and upper bounds of the 𝑖𝑡ℎ PI respectively.

PIs should be able to capture the target variables with a
prescribed probability called the confidence level ((1−𝛼)%).
PIs can be considered to be reliable if 𝑃𝐼𝐶𝑃 ≥ (1 − 𝛼)%
otherwise they should be discarded. Wide PIs have a high
PICP but such PIs convey no information about the variation of
the underlying target variables and are not practically useful.

Therefore the width of PIs is a critical factor in evaluating
their quality. PI normalized averaged width (PINAW) assesses
PIs from this aspect and it can be mathematically stated as
follows:

𝑃𝐼𝑁𝐴𝑊 =
1

𝑟𝑁

𝑁∑

𝑖=1

(𝑈𝑖 − 𝐿𝑖) (7)

where 𝑟 is the range of the underlying targets. The PICP and
PINAW indices explained above assess the quality of PIs from
two different aspects. A high PICP may come at the cost
of wide PIs which are less informative and less useful for
practical purposes. Similarly, reducing the width of intervals
may reduce the possibilities of covering the desired target.
Therefore evaluation of these indices independently or alone
is not sufficient to give clear idea about the quality of the
constructed PIs. Therefore, a comprehensive index consisting
of both PICP and PINAW known as coverage width criterion
(CWC) has been developed [29]:

CWC = 𝑃𝐼𝑁𝐴𝑊 ∗ (1 + 𝛾(𝑃𝐼𝐶𝑃 )𝑒(−𝜂(𝑃𝐼𝐶𝑃−𝜇))) (8)

where 𝛾(𝑃𝐼𝐶𝑃 ) is given by 𝛾 =

{
0 𝑃𝐼𝐶𝑃 ≥ 𝜇
1 𝑃𝐼𝐶𝑃 < 𝜇

where 𝜂 and 𝜇 refers to the hyperparameters controlling the
magnitude of CWC index. 𝜇 is the nominal confidence level
for which the intervals are constructed. 𝜂 value is set between
10 to 100 to penalize the invalid PIs. The CWC index is
designed such that if PICP is less than the nominal confidence
level, then CWC should be large regardless of the widths of
intervals. If PICP is greater than the nominal confidence level,
then 𝛾 becomes 0 and PINAW becomes the major criterion
to be minimized. In this way, the index accommodates both
requirements and gives a better indication of the quality of the
PIs.

During our experiments, some irregularities were observed
with respect to the present definition of CWC. It can be
observed in (8) that the PINAW index is multiplied by all
other terms and if PINAW is reduced to zero then the entire
term (in effect, CWC) becomes zero irrespective of the PICP
value. The objective of optimization technique used in our
work is to minimize the CWC, therefore it is highly likely
that CWC may be minimized to zero resulting in zero-width
intervals. If PINAW is reduced to zero, even very low values
of PICP become immaterial. Therefore, we suggest a slight
improvement in the original CWC definition where PINAW is
added rather than being multiplied with the rest of the terms.
The modified CWC definition is stated as follows:

𝐶𝑊𝐶 = 𝑃𝐼𝑁𝐴𝑊 + 𝛾(𝑃𝐼𝐶𝑃 )𝑒(−𝜂(𝑃𝐼𝐶𝑃−𝜇)) (9)

Note that the original and modified CWC are equal if
𝑃𝐼𝐶𝑃 ≥ (1− 𝛼)%. Another index for evaluating the quality
of PIs which is widely used in the literature is the Winkler
score [30]. The score is calculated as follows:

𝜗𝑖 = 𝑈𝑖 − 𝐿𝑖 (10)
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𝑆𝑖 =

⎧
⎨

⎩

−2𝛼𝜗𝑖 − 4[𝐿𝑖 − 𝑡𝑖] 𝑖𝑓 𝑡𝑖 < 𝐿𝑖
−2𝛼𝜗𝑖 𝑖𝑓 𝑡𝑖 ∈ 𝜗𝑖

−2𝛼𝜗𝑖 − 4[𝑡𝑖 − 𝑈𝑖] 𝑖𝑓 𝑡𝑖 > 𝑈𝑖

where 𝛼 is related to the confidence level (𝛼 = 0.1 for
90% nominal confidence level). Then the overall score can
be evaluated as:

𝑆 =
1

𝑁

𝑁∑

𝑖=1

𝑆𝑖 (11)

III. MODEL DEVELOPMENT

Some of the traditional methods which are generally used
for constructing PIs are the delta technique, the Bayesian
technique and the Bootstrap technique. The delta technique is
based on the assumption that multilayer feedforward NNs are
non-linear regression models and they can be linearized using
Taylor’s series expansion [13]. Bayesian technique considers
each parameter in a NN as a distribution and therefore the
output of the network will also be in the form of distributions
conditional on the observed training data [12]. Application of
this method is limited by its massive computational burden and
calculation of Hessian matrix. Bootstrap method [10], which
is essentially a resampling method, is the most well known
method for construction of PIs. However, this method requires
large computational cost for large data sets. The mean-variance
estimation-based method proposed by Nix and Weigand [14]
uses a NN to estimate the characteristics of the conditional
target distribution. The key assumption in this method is that
noise is considered to be additive Gaussian with a nonconstant
variance. This method requires lesser computational burden
during the training and testing phase but it underestimates
the variance of data, leading to a low empirical coverage
probability [31]. Recently a new method for constructing
the NN based PIs, called the LUBE method, was proposed
in [15]. In this method, the PIs are constructed directly using
a two-output NN structure without any assumption about
the distribution of the sample data. The two outputs of the
network directly give the lower and upper bounds of PIs. This
one step process is easy, straightforward and can be easily
implemented.

In this work we consider the same principle with a different
approach. We use SVM as the machine learning technique
in place of NNs. The motivation behind this step is to con-
struct better quality PIs with a SVM which has some known
advantages over NNs. SVM has the advantage of always
finding a global minima while other approaches like NNs
may be trapped in local minima [24]. In SVM, the number
of parameters to be fixed are few in number and the basis
functions are automatically selected. Additional advantage of
SVM over NNs is that their results are stable over repeated
executions. Results can be reproduced any number of times
and they are also independent of the type of algorithm used to
optimize the model [23]. Unlike NNs which can have multiple
outputs, SVM is designed to give a single output. Therefore,
in order to get two outputs corresponding to the lower and the
upper bounds of the PI, we have to use two SVM models. One
SVM model predicts the upper bound and the other predicts

Fig. 1. Model structure for construction of PIs using two SVM models

the lower bounds subject to the same set of input features. The
structure of the proposed model is depicted in Fig. 2

Radial basis function is generally considered to be a suitable
kernel function for SVM. The reason is that RBF kernels
are capable of analyzing higher-dimensional data with a few
hyperparameters thus reducing the complexity of model se-
lections [32]. Hence, the RBF function, exp

{
−𝛾 ∣𝑥𝑖 − 𝑥𝑗 ∣2

}

is used in this work. 𝐶 and 𝛾 are the two parameters of
the RBF kernel function which influence the accuracy of
forecasting [32], [33]. In order to determine the best parameter,
a strategy for parameter selection needs to be devised. The
most straightforward and basic technique is grid Search where
a sequential search of the appropriate parameters is done
within the possible bounds of these parameters. However, this
technique is quite time consuming therefore some kind of
optimization technique is required. Here we consider particle
swarm optimization technique which is a powerful swarm
intelligence based optimization technique. Since two SVM
need to be used in this work, therefore totally four parameters (
𝐶 and 𝛾 for each model) need tuning. The objective function
to be minimized is the CWC index. As the PSO iterations
proceed, optimal parameters which minimize the CWC index
or in other words, improve the quality of the PIs, are obtained
by the algorithm. Care should be taken during the training
session that SVM does not over-fit the data as it may result
in poor testing accuracy. The over-fitting problem during
the training period can be avoided by the cross validation
technique. In k-fold cross validation, the training data is
divided into k equal size subsets. The model is trained using
𝑘 − 1 subsets and tested on one subset. In this way, each
instance of the entire training set is predicted once and cross
validation accuracy is given by the average accuracy obtained
for all the subsets.

The various steps of the model are discussed as follows:

∙ Step 1 Initialize the parameters of PSO algorithm such
as the number of particles, maximum iterations, initial
position and velocity. Each particle comprises of four
dimensions i.e., the cost and the 𝛾 value for each of
the two SVM’s. The general range of the 𝐶 should be
between [10−5, 105] and that for 𝛾 should be between
[0, 101]. Since the most suitable bounds of the SVM
parameter for the given problem are not known apriori,
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therefore initially tests are conducted in the coarse range
and then the search area is reduced to a finer zone with
the boundaries of 𝐶 and 𝛾 being [0, 102] and [0, 100]
respectively. PIs are constructed for a confidence level of
90% and the 𝜂 value lies between 10 to 100 for different
case studies.

∙ Step 2 The data to be studied needs to be selected from
the available historical records. Since we are dealing with
time series, a suitable time duration for training the model
and for testing the actual performance of the model needs
to be decided. A correlation analysis is done for each
of the selected data set to determine prominent input
features which affect the variation of electricity prices
and demand.

∙ Step 3 The selected data set should be splitted into two
major divisions. One division corresponds to the training
data which will be used to tune the model parameters and
the other division corresponds to the testing data which
is not seen by the model during the training session.
It is very important to scale the data before applying
it to the SVM model as it avoids numeric difficulties
during calculation and also prevents features with large
numeric ranges from dominating the features with low
ranges. Therefore all the data sets are scaled in the range
[−1,+1].

∙ Step 4 The training data is now given to the PSO
optimization module. In this work, we consider a 5-fold
cross validation strategy to avoid overfitting of the model
to a specific set of data. The training data is further
divided into 5 sets. 4 data sets are used for training at
a time and PIs are constructed for the remaining data set.

∙ Step 5 The PI performance measures like CWC, PICP and
PINAW are evaluated for each of the cross validation step.
The average CWC value of all the folds are considered as
the fitness of each particle. This step is repeated for each
particle of the swarm population and the fitness vector
for that iteration is determined.

∙ Step 6 The best fitness attained by the swarm and its
corresponding particle dimensions are recorded as the
group best fitness and group best position attained so
far. The personal best position and the fitness of all the
particles are also updated simultaneously.

∙ Step 7 The termination condition for the optimization
considered in this work is the maximum number of iter-
ations. If the maximum iteration number is not reached,
then the particle positions and velocities are updated
and the next iteration starts with a new population. If
the termination criterion is met, then the optimization
is stopped and the most optimal values of the SVM
parameters 𝐶 and 𝛾 are recorded.

∙ Step 8 The optimized values of the SVM parameters
are now used to construct PIs for the testing data set.
The quality of the constructed PIs is evaluated with
the performance indices like PICP, PINAW, CWC and
winkler score.

IV. EXPERIMENTAL STUDIES AND RESULTS

The data sets considered in this work are electricity prices
and demands from the Ontario electricity market for the year
2010 [34]. Experiments are performed for all the months of
the year 2010 with the available Hourly Ontario electricity
prices (HOEP) and the total market demand. The input features
required for creating the training and testing data sets for each
of the month are determined using correlation analysis with
the historical prices and demands respectively. The data sets
are generally further scaled in the range [−1,+1] in order to
avoid conflicting numerical ranges of different features and
also to make calculations easier.

Several experiments are now performed to evaluate the
performance of the proposed methodology in different seasons.
After performing the correlation analysis for historical prices
for each of the data set, best six input features are selected
and given as input to the model. For secure operation of
the power systems and the electricity markets which affect
the economy as well as the operation of entire nation, it is
desirable to have forecast information with high confidence
levels. Therefore in this study, we construct PIs for a nominal
confidence level of 90%(𝛼 = 0.1), 95%(𝛼 = 0.05) and
99%(𝛼 = 0.01). For comparison purpose, we also implement
two benchmark PI construction methodologies i.e., the Naı̈ve
method and NN based LUBE method. All the above studies
are performed for the same set of datasets. The ANN based
LUBE method is implemented using a single hidden layer
network as performed in previous studies and the optimal
network structure is obtained after a 5-fold cross validation.
The number of neurons in the hidden layer is changed between
5 to 20.

The above experiments are implemented in the MATLAB
programming environment. The training data is used to deter-
mine optimal SVM parameters which can be directly applied
for the unknown test data set. During the training session, PIs
are constructed for the validation data sets and the average
CWC of the 5 validation sets is minimized by the PSO
algorithm. The optimal parameters obtained during the training
are now applied to the test data sets.

The experimental results for the test data sets for all the
case studies pertaining to electricity prices are tabulated in
Tables I-III for different nominal confidence levels. Table I
shows the PICP, PINAW, CWC and the Winkler score obtained
for the test data sets corresponding to a 90%(𝛼 = 0.1)
nominal confidence level. From the table it can be seen that
in all the months except May and December, the coverage
probabilities of the PIs obtained with the proposed method
are well above the nominal confidence level and therefore the
PIs can be considered to be reliable. The minimum PICP is
obtained for the May month (85.71%) while the maximum
is for February (97.62%) followed by September (97.02%)
and October (96.43%). However, their corresponding interval
widths are different for each case. The highest width is
obtained for the March month (70.88) which also has a high
PICP. The minimum interval width is obtained for the month
of July (8.13) with a corresponding PICP of (91.07%). A
general observation is that with the exception of December
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month (𝑃𝐼𝐶𝑃 = 89.88% and 𝑃𝐼𝑁𝐴𝑊 = 12.71), generally
higher PI widths are obtained for the fall and winter seasons
and lower PI widths for the spring and summer seasons in the
Ontario region.

Results corresponding to a 95.0% nominal confidence in-
terval are presented in Table II and are quite similar to that of
Table I with minor variations. The coverage probabilities of
the obtained PIs are above the nominal confidence level in 8
out of 12 months. The errors for the lower PICP months are
in the range 0.36% (April) to 6.31% (December). In 6 out of
12 months, a increase in the interval widths is observed with
respect to 90% nominal confidence level results. The coverage
probabilities show a minor increment in 6 months, decrement
in 4 months and remains the same for 2 months. The winkler
scores are significantly lesser for the all the seasons compared
to the results of Table I.

Table III depicts the performance indices for PIs created for
a nominal confidence level of 99.0%. In this case, the PICP of
only one month (March) is above the nominal confidence level.
The maximum and minimum error for the remaining months
are 9.71% (December) and 1.38% (February). The PICP of the
PIs is seen to increase in 4 months with respect to the results
in Table II, remains the same for 4 months and decreases for
4 months. However, the interval widths increase for 7 months
and decrease for the remaining 5 months.

TABLE I
PI PERFORMANCE INDICES FOR ONTARIO MARKET (NOMINAL

CONFIDENCE = 90%)

Data Set PICP PINAW CWC Winkler Score

Nominal confidence = 90%
JAN 95.83 39.89 39.89 -1479.0
FEB 97.62 50.55 50.55 -1395.3
MAR 94.05 70.88 70.88 -1266.4

APRIL 94.05 34.77 34.77 -1501.6
MAY 85.71 26.88 35.40 -3099.6
JUNE 94.05 11.63 11.63 -2698.6
JULY 91.07 8.13 8.13 -5164.4

AUGUST 92.26 30.99 30.99 -1909.2
SEPTEMBER 97.02 11.02 11.02 -2422.2

OCTOBER 96.43 44.63 44.63 -1210.5
NOVEMBER 95.24 40.55 40.55 -1398.7
DECEMBER 89.88 12.71 13.77 -3506.4

TABLE II
PI PERFORMANCE INDICES FOR ONTARIO MARKET (NOMINAL

CONFIDENCE = 95%)

Data Set PICP PINAW CWC Winkler Score

Nominal confidence = 95%
JAN 95.24 39.64 39.64 -856.20
FEB 97.62 51.98 51.98 -786.99
MAR 98.81 78.31 78.31 -635.46

APRIL 94.64 35.87 37.06 -841.76
MAY 95.24 35.43 35.43 -957.52
JUNE 95.83 11.61 11.61 -1791.3
JULY 91.07 7.84 14.97 -3889.1

AUGUST 90.48 29.18 38.78 -1325.9
SEPTEMBER 96.43 11.69 11.69 -1840.3

OCTOBER 97.02 43.75 43.75 -625.17
NOVEMBER 97.02 44.10 44.10 -735.63
DECEMBER 88.69 11.32 34.77 -2944.3

TABLE III
PI PERFORMANCE INDICES FOR ONTARIO MARKET (NOMINAL

CONFIDENCE = 99%)

Data Set PICP PINAW CWC Winkler Score

Nominal confidence = 99%
JAN 97.02 42.02 44.71 -388.70
FEB 97.62 48.48 50.48 -400.62
MAR 99.40 73.54 73.54 -144.24

APRIL 93.45 36.10 52.12 -499.88
MAY 94.64 34.45 44.28 -425.0
JUNE 95.83 11.78 16.65 -1596.10
JULY 90.48 7.63 78.57 -4094.50

AUGUST 91.07 29.87 82.56 -800.55
SEPTEMBER 95.83 10.82 15.69 -1276.90

OCTOBER 97.02 47.50 50.19 -242.33
NOVEMBER 97.02 45.09 45.09 -314.61
DECEMBER 89.29 12.37 141.03 -2988.2

For a fair comparison, we construct and evaluate PIs for the
same data sets using some benchmark techniques for all the
case studies. These methods are Naı̈ve method and recently
developed NN-based LUBE method. The results of these
experiments for electricity prices are presented in Table IV.
The PICP index for all months of the year are below the
nominal coverage level in case of results obtained with the
Naı̈ve method. The PICP for PIs generated by the LUBE
ANN method are better but in two cases they are below the
nominal coverage probability. High PICPs are also obtained
by the proposed LUBE SVM method except in two cases
where obtained PICP is below the nominal confidence level.
While comparing the interval widths, we find that the Naive
method generates lower width PIs in 9 months compared to
LUBE NN at the cost of lower coverage probabilities. The
interval widths for LUBE NN based methods are higher and
the corresponding coverage probabilities are also higher. The
results obtained with the LUBE SVM method are better in
terms of PICP in most of the cases and the PI widths are also
lower or comparative with the other methods in most of the
cases.

Similar studies are performed for the electricity demand
data of the Ontario market for all months of year 2010.
The comparative results for PIs constructed with a nominal
confidence of 90% are presented in Table V. The superior
performance of the proposed method is clearly visible for all
months except the May season with respect to the coverage
probability. The interval width of PIs generated by the LUBE
SVM method is less in all cases when compared to the Naı̈ve
and LUBE NN method.

The PIs for the month of January generated by Naı̈ve, LUBE
NN and the proposed LUBE SVM method are depicted in
Figures 2, 3 and 4 respectively. The PIs generated by the
Naı̈ve method are able to capture most of the targets but
they are not able to account for the cyclical patterns of the
demand. LUBE-NN based PIs are able to capture the cyclical
patterns but they show large variation around the true targets
which is not very desirable. PIs generated by the proposed
method are able to closely capture most of the targets and
they are also able to follow the cyclical pattern of the demand.
Therefore they convey the maximum information and are more
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Fig. 2. PI for Ontario demand with Naı̈ve method
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Fig. 3. PI for Ontario demand with LUBE NN method

reliable compared to PIs generated by other techniques. The
PICP indices of other months are also well above the nominal
confidence level except in one case. In some months, coverage
probabilities close to 100% are also obtained with a minimum
interval width of the generated PIs.

V. CONCLUSIONS

Prediction intervals are efficient statistical tools for quanti-
fying the uncertainties associated with forecast models. Pre-
diction intervals quantify the uncertainty in terms of the
expected ranges within which the future targets are likely
to lie. Traditionally prediction intervals are constructed using
methods such as Delta, Bayesian and Bootstraps. However,
their application is limited by their massive computational
burden and doubtful assumptions about the data distributions.
To overcome these limitations, we propose a novel technique
using support vector machines where the upper and the
lower bounds of the prediction intervals are directly estimated
without prior assumptions about data distribution. The SVM
parameters are optimized by particle swarm optimization
technique which has strong capabilities of locating global
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Fig. 4. PI for Ontario demand with LUBE SVM method

minima in lesser time. Model parameters are optimized by
PSO through minimization of a modified PI coverage-width
criterion. The performance of the proposed model is tested
using data sets corresponding to the hourly electricity prices
and demand of the Ontario electricity market. The performance
of the proposed technique is compared with some benchmark
techniques and the obtained results indicate the superiority of
the method in generating high quality prediction intervals in
a short time.
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