
 

Abstract—A method of non-singular Terminal sliding mode 
control was proposed for landing asteroids with uncertainty 
and strong nonlinearity based on RBF neural network. The 
dynamics of the detector in the landing environment was 
analyzed, and the nominal trajectory guidance method based 
on optimal polynomial was designed, by which the 
consumption of fuel was suboptimal. Controller was designed 
using non-singular Terminal sliding mode. The influences 
caused by unknown disturbance and uncertainty during 
landing phase was compensated by RBF neural network 
real-time compensation, which could effectively suppress the 
influence of external disturbance and weaken the system 
chattering. Simulation results show that the proposed method 
was effective. 

INTRODUCTION 

OMETS and asteroids exploration is one of the most 
complex missions in the 21st century. Mankind had 

carried out several times flew, fly around the probe and 
returning probe samples mission [1]. Japan's Hayabusa 
spacecraft successfully returned to Earth and brought the 
"Itokawa" asteroid samples in 2010 [2]. The Chinese 
"Chang’e-3" successfully soft landed on the moon on Dec.2, 
2013. 

Due to the small asteroids gravitational potential energy, 
the landing is highly susceptible to sun detector 
perturbations and other disturbances [3]. Scholars at home 
and abroad had obtained great achievements on the studying 
about spacecraft landing on small bodies. Cui et al. proposed 
an autonomous closed-loop control method, using the 
potential function guidance way to confirm the time, the size 
and the direction when braking each time [4]. Mei jie et al. 
proposed a robust adaptive control, making the acceleration 
difference of gravity to be the interaction, and supposing 
there is an unknown upper bound, to amend the adaptive 
control law [5]. A sliding mode variable structure guidance 
and control system was proposed by Li Shuang et al. divided 
the control law into equivalent control and compensation 
control using the equivalent control method [6]. Zhang 
Guoming et al. achieve the disturbance dynamics of early 
warning satellites adaptive learning based on the RBF neural  
 

network structural properties, reducing the chattering of the 
system [7]. Munoz et al. conducted a study on a class of 
nonlinear discrete robotic arm system, and designed a 
sliding adaptive controller based on neural networks [8]. 
Aero-engine system has great time-varying and nonlinear. A 
sliding mode control method was designed in the paper 
[9,10], doing the real-time compensation for influences of 
system disturbances based on neural network characteristics. 
   The dynamic model of probe is deduced in the landing 
site coordinate system firstly in this paper. Then the fuel 
suboptimal guidance law was designed on the basis of full 
analysis of the probe landing process. Proposed a 
non-singular Terminal sliding mode control method based 
on RBF neural network to avoid the singular problem nearby 
the sliding mode surface and to accelerate reaching at the 
siding surface. Using RBF neural network to real time 
compensate the landing detector with the influences of 
unknown disturbances and items for no model. The dynamic 
quality of probe landing control system was improved 
effectively. The method could satisfy the requirements of 
flying probe and ensure that the probe landed safely. 

DETECTOR GUIDANCE CONTROL LAW DESIGN 

A. Probe Dynamics Model 

The asteroid body-fixed coordinate system a a a ao x y z , 

and the probe landing site coordinate system l l l lo x y z  are 

set-up firstly. The a ao z  axis coincides with the asteroid’s 
maximum moment of inertia. As probe landing site 
coordinate system with the origin coinciding with the 
landing site, l lo z  axis for the extension of center of mass 
and the landing site of attachment. θ φ、  stand for the 
longitude and latitude of the landing site location; R  
denotes the position vector from the target small body mass 
center to the probe, as shown in Fig. 1. 
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Fig.1. Coordinate systems definition 
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The dynamic equations of motion for probe in the 
fixed-body coordinate system are given as follows [11] . 
    2R+ ω×R+ω×(ω×R)+ω×R=F+U+δ          (1) 
Where R denotes the position vector from the mass center 
of the target asteroid to the probe;ω  is the angular vector of 
the asteroid rotation; F is the control acceleration;U  is the 
gradient of the gravitational potential;δ  is the perturbative 
acceleration for no model (including the solar radiation 
pressure and third-body gravitational perturbations).  

Assuming that the asteroid at a fixed angular velocity 
aω around the z axis of rotation, we can 

define [ ]0 0 T
a aω≅ =ω ω , then 0=ω , the expression of 

dynamic model in the landing point coordinates is 
2 2 2

2

2 2 2

2 sin sin sin cos
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ω φ ω φ ω δ
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− − − = + +

+ + − = + +

− − − = + +

   (2) 

Whereθ ,ϕ is the longitude and latitude of the landing 

site location;
xF , yF , zF are components of control 

acceleration;
xU ,

yU ,
zU are components of the asteroid 

gravitational potential [12].  

B. Detector Guidance Control Law Design 

1) Nominal Trajectory Guidance Law 
  To ensure the detector complete the speed adjustment and 
attitude adjustment under the limited thrust, planning the 
trajectory equation for the detector to satisfy boundary 
conditions based on the fuel optimal guidance theory. 
       2 3

0 1 2 3( )zr t a a t a t a t= + + +               (3) 
  Assuming the landing time isτ , the boundary condition is 
given by 
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  Where 0z denotes the initial position of the 

probe, nz denotes the probe’s terminal location, 0z denotes 
the initial high rate of change. According to the initial and 
terminal position and velocity of the detector, we can get the 
parameter values in ( )zr t . The cubic curve to satisfy the 
boundary condition and the planned descent velocity is 
given as follow: 

2 3
0 0 0 0 0 0( ) (3 3 2 )( ) (2 2 )( )z n n

t tr t z z t z z z z z zτ τ
τ τ

= + + − − + + −      (5) 

2

0 0 0 0 02 3( ) (6 6 4 ) (6 3 6 )z n n
t tr t z z z z z z zτ τ

τ τ
= + − − + + −       (6) 

  By this way, the velocity trajectory of x-axis and y-axis 

are also planned.   

2) RBF Neural Network Sliding Mode Controller Design. 
Define the tracking error and the velocity tracking error 

as de r r= − and de r r= − , where [ , , ]T
d x y zr r r=r denotes 

the reference trajectory. 

If [ ]1 2 3 4 5 6e e e e e e x y z x y zx r y r z r x r y r z r⎡ ⎤= − − − − − −⎣ ⎦ , 

then the Eq.(2) can be converted into the type:  
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  (8) 

 Eq.(7) and Eq.(8)could be transformed into state equations 
=

= + +
i j

j k k k

e e

e f g u
⎧⎪
⎨
⎪⎩

              (9) 

Where ie and je ( 1, 2,3; 4,5,6)i j= = denote the system 

state variables, kf  denotes nonlinearities of the system,
kg  

denotes uncertainties and disturbances and it is satisfied 
with , 0k g gg l l≤ > , ku denotes control law 
( , , )k x y z= . 

2 sin
2 sin 2 cos

2 cos

x a x

y a a y

z a z

r y U
r x z U

r y U

ω φ
ω φ ω φ

ω φ
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kf  

T

x y zδ δ δ⎡ ⎤= ⎣ ⎦kg , 
T

x y yF F F⎡ ⎤= ⎣ ⎦ku . 
The non-singular Terminal sliding mode based on 

exponential approach law can avoid the singular problem 
nearby the sliding mode surface. Improve the speed of 
approaching the sliding surface and reduce the adjustment 
time of the controller. Ensure the detector response rapidly 
and stability during the landing phase. 

So，select detector non-singular Terminal sliding mode 
surface as follow: 

1 ( ) p q

β
= +i i js e e              (10) 

Where 0β > , (1, 2)p q ∈ . The Eq.(10) can be proved 

to have no negative powers, so as to avoid the singular 
problem [13].  

In order to keep the control law responds immediately, we 
use the exponential reaching law to approach the sliding 
surface sgn( ) , 0, 0s s ks kε ε= − − > > , and taking the 

first-order derivative of is . 
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1 11 1( ) ( ) ( )p q p qp p
q qβ β

− −= + = + + +i i j j j j k k ks e e e e e f g u (11)    

Suppose 11( ) ( ) p qp
q

ρ
β

−=j je e , get the control law ku . 

1( )[ ( )( ) sgn( ) ]kρ ρ ε−= − + + + +k j j j k k i iu e e e f g s s (12)           

  When taking no consideration of the disturbance 
influences to the system and neglecting kg , we will get the 

equivalent control law: 
2( ) ( )sgn( )p q

g
q k l
p

β ε−= − − − − +eq j k i iu e f s s (13)             

  RBF neural network is a kind of forward with three layers 
and has faster learning rate. Its structure diagram is as shown 
in Fig.2. 
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Fig.2.  RBF network structure diagram 

Here [ ]1 2 ... T
nx x x=X is the input vector of the RBF 

network structure. Suppose the radial basis vector 
is [ ]1 2 ... T

mh h h=H , jh is Gaussian function, 

[ ]1 2 ... T
mb b b=B is the base width vector, [ ]1 2 ... T

mw w w=W is 

the weight vector. 
2

2exp( )
2

j

j
jh

b
−

= −
X c

            (14) 

[ ]1 2 ...j mc c c=c  1, 2j m= .      

Choosing ie , je as the input of the neural network, and 

equivalent compensation control T
n =u W H as the output. 

Then the system control law can be expressed 
as k eq n=u u + u . 

The difference of the neural network output and the actual 
output of the system is 1 2[ ]kn nu u uΔ = Δ Δ Δu . We choose 

21 ( )
2 nQ u= Δ as the networks’ learning indicator. 

Based on the gradient-descent method, the weight 
learning algorithm of the neural network can be gained as 
follows: 
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x C
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2
j
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c c b

η η η
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∂ ∂

( ) ( 1) [ ( 1) ( 2)]ji ji ji ji jic k c k c c k c kα= − + Δ + − − −
  Where η denotes the learning rate, α denotes t
he inertia coefficient, i denotes the number of inp
ut layers, j denotes the number of hidden layers. 

C. Stability Proof 

  Selecting Lyapunov function as follows: 
                          

1 2

2 2
1 2

1 1 1,
2 2 2i
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= +

= = =
          (15) 

1 ( )[ sgn( ) sgn( )]

( sgn( ) ) 0
i i i j i i g i

i i i

V s s s e s ks l s

s s ks

ρ ε
ε

= = − + +

≤ − + <
(16) 
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Taking Eq.(19)~(21)into 2 ( )V kΔ , then 

2 2 2
2

2 2 2 2 2
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  When taking 0 1η< < , we can get
2 ( ) 0V kΔ < , so 0V < . 

The tracking control law is proved to be stable. 
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SIMULATION AND ANALYSIS 

Taking one asteroid as the target small body, and its 
parameters are listed in Table 1(Zhang Z.X et al. 2012; Li S 
et al. 2006). 

TABLE 1 
 NUMERICAL SIMULATION PARAMETERS 

 
 

Choose the parameters of non-singular Terminal sliding 
mode control: 2β = , 1.5p q = , 2k = , 0.015gl = . The x, 
y, z-axis position and velocity are designed as RBF network 
input. By using three groups of the 2-6-1 network structure, 
we select [ ]0.1 0.1 0.1 0.1 0.1 0.1 T=W as the initial value of 

network weights, [ ]0.1 0.1 0.1 0.1 0.1 0.1 T=B as the base 

width vector, 0.1 0.1 0.1 0.1 0.1 0.1
0.1 0.1 0.1 0.1 0.1 0.1
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

c  as the nodal 

center vector, 0.6η =  as the learning rate, 0.05α =  as the 
inertial coefficient. In the landing phase, the simulation 
results are shown in Fig.3. to Fig.7. 
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        Fig.3.  Landing trajectory based on RBF sliding mode  
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Fig.4.  Curve of landing phase position 
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               Fig.5.  Curve of landing phase velocity 
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Fig.6.  Curve of control acceleration 

Parameters Real value Simulation parameters 

ua 4.749E-04 4.800E-04 

Spin period (h) 10.54 10.55 

R0(km) 1.150 1.148 

C20 -0.113 -0.110 

C22 0.0396 0.0397 

C40 0.068 0.069 

C42 0.0032 0.0031 

C44 2.790E-04 2.780E-04 

KPx= KPy= KPz  0.0005 

KDx= KDy= KDz  0.05 

Descending position  [3550,4050,11000] 

Descending velocity  [-2.2,1.2,-9] 

Landing position  [300,300,2000] 

Landing velocity  [-1.2,0.2,-1] 

Landing final site  [20,20,20] 
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Fig.7.  Curve of landing phase position error with RBFSMC controller 
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Fig.8  Curve of landing phase position error with SMC controller 

Fig.3 gives the probe’s three dimensional landing 
trajectory curve based on the non-singular Terminal sliding 
mode control with the compensation control of RBF 
network. Compared with the general sliding mode control 
the detector based on the non-singular Terminal sliding 
mode control is stable operation and has small chattering. It 
also can follow the tracks of nominal trajectory accurately. 
The probe turns to be vertical landing when at height of 
1400 meters in the z axis. Fig.4 to Fig.6 show the position, 
velocity and control acceleration time history of the probe, 
the control force can be satisfied with engineering 
requirements. Fig.7 and Fig.8 show the distinction of the 
detector position error of z-axis in the landing phase for the 
RBF neural network real-time compensation control and the 
traditional sliding mode control. From the curves we can 
clearly see that under the control of RBF neural network 
real-time compensation, the convergence rate of trajectory 
error is significantly faster than that of traditional sliding 
mode. Control convergence time is shorter and control effect 
is well. 

CONCLUSION 
  In this paper, a method of non-singular Terminal sliding 
mode control was proposed for landing probe with 
uncertainty and nonlinearity based on RBF neural network. 
The controller could avoid the singular problem nearby the 
sliding mode surface and ensure the probe accelerate 

reaching at the siding surface. Using RBF neural network to 
real time compensate the landing probe with the influences 
of unknown disturbances and items for no model. Research 
results show that the controller designed in this paper has 
good effect in reducing the chattering of the system, and 
could make sure the probe vertically land on the scheduled 
landing site. Ensure that the probe landing safely and 
accurately finally. 
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