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Abstract—In recent years, evolutionary algorithms have been
successfully adopted for the optimization of various electro-
magnetic problems. One of the most common electromagnetic
application is in the framework of microstrip antennas, thanks to
the advantage of being low cost and low profile. In order to reduce
the computational effort of the electromagnetic optimization, a
suitable equivalent model by ANN has been created in order to
substitute the commercially available full-wave analysis solvers.
With the aim of reducing committed error level, a new solution
of multiple neural networks instead of one network is presented.
In addition, efficiency of new training scheme is also shown
in Numerical results section. The effectiveness of proposed
techniques will be illustrated by optimizing a particular type
of antenna, namely proximity coupled feed.

I. INTRODUCTION

Thanks to the advantage of being low-cost and low-profile,
microstrip antenna has been successfully adopted in a wide
range of applications. In the literature, typical proximity
coupled-feed microstrip antennas have been carefully studied
by full-wave spectral analysis in [1]. The dual rectangular
ring configuration, reported in Figure 1, yields more degrees
of freedom to the designers but introduces in the same time
more complexity. This structure has been first optimized in
[2], and later on has been considered as an electromagnetic
(EM) benchmark for comparing the effectiveness of different
optimizers in [3]. In order to reduce the computational effort
of traditional approaches (Figure 2), a fast and accurate model
has been first introduced in [4], where this simplified equiv-
alence has been embedded and directly managed by global
optimizers, as shown in Figure 3.

In [4], ANN systematic pattern has been trained by a
Gradient Descent Method: the well-known Error Backward

Fig. 1: The considered test antenna

Propagation. In this context, the aforementioned antenna be-
comes the benchmark test for the proposed approach to deal
with a typical EM problem, in terms of effectively managing
both the non-linear complexity and the ANN dimensions
and characteristics. A new solution where separated neural
networks in order to reduce error commited by the surrogate
model have been adopted is here proposed. The implemented
training rule is the Second-derivative Levenberg-Marquandt
algorithm. The new proposed approach shows significant im-
provements both in terms of time convergency and accuracy.
All the numerical results will be presented in detail in the next
sections.

II. OPTIMIZATION TOOL AND MODEL DESCRIPTION

A. Meta-Particle Swarm Optimization

The construction of conventional PSO is based on a model
of social interaction between independent individuals (parti-
cles) and uses social knowledge (i.e., the experience accu-
mulated during the evolution) [5]. A specific class of PSO
that namely Meta-PSO has been used in literature [2] and its
effectiveness can be further enhanced by keeping swarms apart
from each other and widening in this way the global research
[6],[7]. This ability can be fulfilled by introducing an inter-
swarm repulsion: it allows the best swarm to keep exploring
the surroundings of the current best position, whereas other
swarms are repelled and obliged to extend the search in
other points of the space, hence improving the possibility of
escaping from the local minimum. In the Differentiated Meta-
PSO, velocities V and positions X of particles are updated at

Fig. 2: Block diagram of a traditional antenna optimization
scheme.
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Fig. 3: Block diagram of ANN-assisted optimization.

each time step k > 1 according to the following equation (1):

Vj,i
(k+1) = ω(k)Vj,i

(k) + φη1(Pj,i −Xj,i
(k))+ (1)

φη3(Sj −Xj,i
(k)) + δj,i

(L1)φη2(G−Xj,i
(k))

while the updating rule for the velocity of the position remains
the same (2):

Xj,i
(k+1) = Xj,i

k + Vj,i
(k+1) (2)

B. Extracting the training data

Sampling the target data and using the neural networks are
two discrete steps. Regarding this ”Regular meothodology”,
the desired outputs have been obtained by a full-wave analysis
from formally chosen geometrical inputs in the possible region
of interest. For each parameter 5 values have been considered,
and more variables to be optimized also means that the needed
training set grows exponentially, as reported in Table I

The knowledge extracted from physical models may be used
as the target data for training the Artificial Neural Network. As
can be seen from Table I, the more inputs to be optimized, the
more training data need to be extracted. This possibly leads to
the huge amount of target data, which can be tackled by the
use of ”Irregular training” presented in the next section.

C. Optimization scheme

Geometrical antenna parameters are directly managed by
Meta-PSO optimizer, each set of inputs represents one specific
antenna configuration. Once ANNs are trained succesfully,
they will be used as substitution model for full-wave anal-
ysis. Since ANN architecture only deals with binary and
simple activation function, this surrogate model saves a crit-
ical amount of execution time with respect to very complex
even commercialy available or in house university developed
electromagnetic solvers. The best results ever found by ANN
will be validated by full-wave analysis in order to check the
accuracy of the simplified model.

TABLE I: Computational cost for different problems

Assessments 3 inputs 4 inputs 5 inputs
Number of samples 25 125 625
Time consumption 40 mins 3.5 hour 18 hours
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Fig. 4: The considered multilayered perceptron structure, with
5 inputs and 2 outputs neurons and 2 hidden layers of 9 and
7 neurons, respectively.

III. ARTIFICIAL NEURAL NETWORK

A. Feed forward multi layer topology

An artificial neural network consists of a pool of simple
processing units (neurons or cells) which communicate by
sending signals to each other over a large number of weighted
connections [8]. It is also known that ANN is a self-adaptive
modeling tool that changes its structure on the basis of external
or internal information that flows through the network during
the learning phase [9],[10]. The resulting network structure is
the one reported in Figure 4, where the input nodes correspond
to the geometrical parameters of the antenna, as defined in [4].
The input composition in each neuron is made by a nonlinear
weighted sum:

f(x) = k(x)
∑
i

wigi(x) (3)

where k(x) is sigmoid, a nonlinear activation function, de-
scribed as

k(x) =
1

1 + e−x
(4)

B. Error Backward Propagation

Error Backward Propagation (EBP) is based on the gradi-
ent descent algorithm [11]. EBP propagates error backwards
through the network to allow the error derivatives for all
network weights to be efficiently computed. The objective is
to minimizing the mean-squared error betwween the network
outputs, f(xi) and target data yi.In general, Backpropagation
algorithms update weights between layers based on the gradi-
ent of error function:

E =
1

2
‖f(x, i)− y(i)‖ (5)

C. Levenberg-Marquandt Training

However, when dealing with large-scale problem with huge
amount of data set, EBP algorithm is not adequate to handle
that kind of sophisticated problem. In order to tackle this issue,
a second-order algorithm namely Levenberg-Marquandt (LM)
is adopted[12]. LM algorithm uses second-order derivative of
total error function for weight updates. In this technique, the
Hessian matrix is used in order to save more training time of
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Fig. 5: Training error level as a function of number of
iterations versus proposed methods.

ANN. Training is a time and memory consuming process and
it is the most critical phase in the ANN setup [13]. The update
rule for the weights of LM method can be illustrated as:

wk+1 = wk − (Jk
TJ + µI)

−1
Jkek (6)

The idea is to create multiple and smaller neural networks
and train them at the same time, such that training effort
will be minimzed. In order to check out the robustness of
proposed method, numerical comparisons are presented in the
next section.

IV. PRELIMINARY RESULTS

In this optimization scheme, first reflection coefficients are
retrieved by full-wave analysis and then they are used as
training set data for ANN training.It is also worth noting
that antenna radiation is a lossy process and return loss is
always a complex number. Reflection coefficient is separated
into two part: Real and Imaginary before being recombined
to produce Amplitude which is the main interest in terms of
bandwidth optimization problem. In stead of one network of
two outputs, we separeate it into two distinguished networks
with one output for each: Real and Imaginary. The dimension
of splitted neural network is reduced: 5,4 neurons for first and
second hidden layer respectively. The original neural network
has the dimension of 9 and 7 neurons for first and second
hidden layer.

Figure 5 illustrates the robustness of proposed method: LM
training for two separated network. For what concerns the
EBP algorithm, the division of NN decline significantly error
committed to the value of 0.001. However, as reported in
Figure 5, LM is proved to be more effective in minimizing
the error grade. Both full network approach and separated one
demonstrate the great improvement in solution accuracy. The
best result is achieved by implementing LM-2 outputs.

The effectiveness of a proper ANN has been observed, con-
sidering both its numerical efficiency and the error introduced

by the model. Regarding the 3D plot in Figure 6, the axis
of Frequency remains unchanged since we need to investigate
the structure in fixed frequency range (from 1.5 GHz to 3.5
GHz) with the resolution of 400 steps. The other interval is
geometrical parameter b1 that has been discretized with 17
samples each. What attained from the full-wave approach is
considered as target value for the training of Neural Network.
The color bar of left subfigure stand for the change of the
amplitude from 0 to 1 while that of the right subfigure (from
0 to 0.2) indicates the error introduced by ANN approximation.
As can be seen in the plots, at some certain cases, the largest
error introduced by ANN model is approximately 0.1; this
difference can be neglected since we exploit ANN as an
effective tool to minimize the computation effort.

V. NEW SCHEME OF EXTRACTING TARGET DATA

As aforementioned, regular sampling of target data for
training Neural Network may far exceed the required amount.
In order to strictly control the training process, training process
is stopped once we know ANN model is robust enough.In new
proposed “Irregular scheme”, the geometrical parameters are
arbitrarily selected by optimizer to generate different antenna
configurations. The data from unsatisfied antenna structures
will be used as the training set for surrogate model. Artificial
Neural Network in this context can be considered as a black
box that can auto-correct itself on the basis of prior knowledge.
After a certain of time inserting the new training data, an
appropriate ANN can be found.

Efficiency comparison is shown in Figure 7, a maximum
value of error at some certain values of interval is recorded less
than 0.08 in the interval of [0,1]. This fact again confirms that
the differences between ANN approximations and physical
characterization are negligible . Although the error is slightly
higher in this new scheme with respect to the regular one,
when data are processed by the optimizer it still can find
the antenna configurations satisfying the design constraints.
The best results ever found by ANN model again have been
validated by full-wave analysis. It also worth noting that new
scheme saves a large amount of computational time and, more
importantly, ANN surrogate model and global optimizer com-
bines smoothly to form a new and hybrid class of optimization.

VI. NUMERICAL RESULTS AND CONCLUSION

After the optimization run, the resulting geometrical config-
urations are validated by full-wave analysis. Figure 8 shows
the comparisons between the different uses of ANN (by LM
training). It demonstrates that all proposed methods have a
good match with target data. However, the 2 output solution
appears to be the best since the output data is closer to outputs
since the absolute difference between the target data and ANN
outcome is just 0.0005.

The aim of implementing multiple neural networks is to
reduce mean-square error therefore ANN convergence will
be speed up. This approach shows a great prospect to be
employed in ”Irregular sampling”
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Fig. 6: Reflection coefficient amplitude versus b1 of the proposed antenna configuration, computed with the full wave (left)
and reconstructed with the ANN (right) in the certain frequency range.
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Fig. 7: Numerical comparison between the two ANN training schemes

TABLE II: Computational cost for different approaches

Methods Conventional Regular sampling Irregular sampling
Number of assessments 300 125 90

Time consumption 10 hours 4.7 hours 3 hours
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