
  

Abstract—The least trimmed squares (LTS) estimator is a 
robust estimator as it can avoid undue influence from outliers. 
The exact solution of the LTS estimation is however hard to find 
and if the number of data is large then the method is unfeasible. 
In this work, we apply the LTS criterion to adaptive filtering 
and develop the trimmed affine projection algorithm (TAPA) 
and kernel trimmed affine projection algorithm (KTAPA). The 
proposed adaptive algorithms are very robust to outliers and 
have low computational complexity. Simulation results confirm 
their excellent and robust performance.     

 Index Terms—Least trimmed squares (LTS) estimator; affine 
projection algorithm (APA); kernel affine projection algorithm 
(KAPA). 

 

I. INTRODUCTION 
HE classical least squares (LS) estimator usually 
assumes that errors are Gaussian and i.i.d., and it may 
perform poorly when the data are non-Gaussian, 

particularly in the case of large outliers (observations that 
significantly deviates from the bulk of data). Thus, many 
robust estimators are proposed to deal with the problem of 
outliers. The least trimmed squares (LTS) estimator, which 
minimizes the sum of the M smallest squared residuals, is a 
well-known high break-down point robust estimator [1-5]. 
Fig. 1 shows a simple example demonstrating how the 
performance of the LS deteriorates, whereas that of the LTS 
is little affected by the outliers. Although the LTS estimator 
has desirable robustness properties and asymptotic 
efficiency, the exact computation of LTS is in general 
computationally very demanding [1-3]. There is a clear 
academic interest in making the procedure more 
computationally feasible. In this work, we will apply the LTS 
criterion to develop some robust adaptive filtering algorithms 
with low computational complexity.       
    Adaptive filtering algorithms [6] like the least mean square 
(LMS), affine projection algorithms (APA) and recursive 
least squares (RLS) are simple online estimators, which solve 
the LS problem in an iterative manner. In recent years, kernel 
adaptive filtering algorithms are also developed, which  are a 
class of nonlinear adaptive filtering algorithms derived in 
reproducing kernel Hilbert space (RKHS) by using the linear 
structure (i.e. inner products) of this space to implement the  
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Fig. 1. An example demonstrating the robustness of LTS regression. 

 
well-established linear adaptive algorithms [7]. The kernel 
least mean square (KLMS) [8], kernel affine projection 
algorithms (KAPAs) [9], and kernel recursive least squares 
(KRLS) [10] are typical examples of the kernel adaptive 
filtering algorithms.  
     The APA algorithms appear as intermediate complexity 
algorithms between LMS and RLS, which inherit the 
simplicity of LMS while reducing the gradient noise by using 
multiple samples [6,7]. They provides a unifying framework 
for adaptive filtering including the sliding-window RLS. 
Therefore, in the present paper, our focus is mainly on the 
APA  algorithms and their kernelized versions. The rest of 
the paper is organized as follows. The LTS estimator is 
briefly described in section II. The trimmed APA (TAPA) 
and kernel trimmed APA (KTAPA) are then developed in 
section III. The new algorithms are robust to outliers and 
have low computational cost. Encouraging simulation results 
are provided in section IV and finally, conclusion is given in 
section V.   

II. LTS ESTIMATOR 
Let us consider the linear regression model: 

,   1, ,T
i i iy W x i Nε= + =                          (1) 

where iy ∈ represents the dependent variable (the observed 

output), ,1 ,2 ,, , , p
i i i i px x x x⎡ ⎤= ∈⎣ ⎦ denotes the input vector, 

and pW ∈ stands for the underlying parameter vector (or 
weigh vector) that needs to be estimated. The term iε denotes 
random noises. In ordinary least squares, the parameter 
vector W is estimated by minimizing the sum of the squared 
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errors: 

( )22
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where T
i i ie y W x= − denotes the error sample (residual). It is 

well-known that the LS estimator is very sensitive to outliers. 
To address this issue, the trimmed LS estimator was 
introduced [1]. Let M be an integer such that 0 M N< ≤ . 
The LTS  estimator ofW is defined as 

( )2

,
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ˆ arg min
p

M

LTS i NW i
W e

∈ =

= ∑                         (3) 

where ( ) ( )2 2

1, ,N N N
e e≤ ≤ are the ordered squared errors. 

The LTS method is very robust to outliers and 
simultaneously possesses desirable asymptotic properties.  
    Let iz be the indicator for whether observation i is a good 
observation or not. The LTS estimator can be obtained by 
solving the mixed integer programming problem [2, 3]: 
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Although some efforts have been made to reduce the 
computational complexity, the exact calculation of the LTS 
estimator is still very expensive.   

III. TRIMMED APA ALGORITHMS 
Assume that ix , iy and iε are i.i.d. samples from random 
variables x , y and ε . The optimal weight vectorW can be 
obtained by solving 

22min ( )T

W
E y W x Wλ⎡ ⎤− +⎣ ⎦                       (5) 

where E denotes the expectation operator, and 0λ ≥ is the  
regularization factor. The closed-form solution of (5) is 

1( )x yxW I R rλ −= +                              (6) 

where T
xR E xx⎡ ⎤= ⎣ ⎦ , [ ]yxr E yx= , and I is a p p× identity 

matrix. The solution (6) can be recursively solved using a 
gradient based or Newton's recursion method. For example, 
we consider 

1 1

1 1

( )
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ηλ η
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⎡ ⎤= − + −⎣ ⎦

                 (7) 

whereη denotes step-size. The APA algorithm can then be 
easily derived by approximating xR and yxr in (7) using 
the L most recent observations (let i be the current instant): 
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                                 (8) 

where [ ]1, ,i i L i p L
X x x− + ×

= , [ ]1, , T
i i L iY y y− +=  ( ix and iy  

are  set zero if the subscripts are less than 1). Combining (7) 
and (8) yields: 

1 1(1 ) T
i i i i i iW W X Y X Wηλ η− −⎡ ⎤= − + −⎣ ⎦             (9) 

Unlike the above ordinary APA algorithm, the trimmed APA 
(TAPA) algorithm approximates xR and yxr using M (0 M L< ≤ ) 
observations selected from the L most recent observations 
based on the idea of LTS. Specifically, the matrix iX and the 
vector iY  in (9) are replaced by the matrix ( )i

X  and vector 

( )i
Y , which are   

( ) ( ) ( )

( ) ( ) ( )

1, ,

1, ,

, ,
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i i M i p M
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                       (10) 

where ( ) ( ){ }, ,
,

j i j i
x y ( 1, ,j L= ) are ordered L most recent 

observations such that   

( ) ( )( ) ( ) ( )( )2 2

1 11, 1, , ,
T T

i ii i L i L i
y W x y W x− −− ≤ ≤ −       (11) 

The pseudocode for TAPA is listed in Table 1.  
 

TAPA Algorithm 

Input: { }, , 1, 2,i ix y i =  
Parameter Setting: η , λ , L , M (0 M L< ≤ ) 
Initialization: 0W  
Computation: 
      while { },i ix y ( 1i ≥ ) do 

       1) compute the 1L× error vector ,1 ,, ,
T

i i i Le eξ ⎡ ⎤= ⎣ ⎦ : 

1
T

i i i iY X Wξ −= −  
       2) arrange the errors in ascending order of magnitude: 

1

2 2
, ,( ) ( )

Li j i je e≤ ≤  
       3) update the weight vector : 

( )1(1 )i i ii
W W Xηλ η ζ−= − +  

          where 
( )

1

1, ,

, ,

, ,

M

M

i L j i L ji p M

T

i i j i j

X x x

e eζ

− + − + ×
⎧ ⎡ ⎤= ⎣ ⎦⎪
⎨

⎡ ⎤⎪ = ⎣ ⎦⎩

 

     end while 
Table 1. The pseudocode for TAPA  

Remark: The proposed TAPA algorithm is computationally 
simple. Compared with the ordinary APA algorithm, the only 
extra computational cost is the ordering of the L errors, which 
is not significant especially when L is small. If M L= , the 
TAPA algorithm will reduce to the APA algorithm.  

     One can extend the TAPA algorithm into a high (possibly 
infinite) dimensional RKHS and derive the kernel TAPA 
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(KTAPA) algorithm. Let us consider the general nonlinear 
regression model: 

( ) ,   1, ,i i iy f x i Nε= + =                          (12) 
where (.)f is the underlying nonlinear mapping from the 
input space to output space. Let if be the learned mapping in 
RKHS Hκ induced by a Mercer kernel ( , )i jx xκ [7]. Then the 
KTAPA algorithm can be derived as 

( )1(1 )i i ii
f f Kηλ η ζ−= − +                     (13) 

where 
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1
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T

i i j i j
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e e
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             (14) 

in which the indices 1, , Mj j are obtained by arranging the 

error vector ,1 , 1, , ( )
T

i i i L i i ie e Y f Xξ −⎡ ⎤= = −⎣ ⎦  in ascending order 
of magnitude, where 
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If the Mercer kernel κ is a radial kernel (e.g. the Gaussian 
kernel), the KTAPA algorithm will produce naturally a radial 
basis function (RBF) network with growing size. 
Denote ( )C i  the set of RBF centers (the dictionary) at 
iteration i , and ( )iα  the corresponding coefficient vector. 
The learned mapping if can be expressed as       

( )
( ( ))

1

( ) ( ),.
size C i

i j j
j

f i C iα κ
=

= ∑                         (16) 

where ( )j iα and ( )jC i denote, respectively, the j -th element 
of the coefficient vector ( )iα and dictionary ( )C i . The 
pseudocode for KTAPA is summarized in Table 2.  
 

KTAPA Algorithm 

Input: { }, , 1, 2,i ix y i =  
Parameter Setting: κ ,η , λ , L , M (0 M L< ≤ ) 
Initialization: 0 0f = , (0)α φ= , (0)C φ=  
Computation: 
      while { },i ix y ( 1i ≥ ) do 

       1) compute the 1L× error vector ,1 ,, ,
T

i i i Le eξ ⎡ ⎤= ⎣ ⎦ : 

1( )i i i iY f Xξ −= −  
       2) arrange the errors in ascending order of magnitude: 

1

2 2
, ,( ) ( )

Li j i je e≤ ≤  

       3) update ( )C i  and ( )iα  based on (13) 
      end while 

Table 2. The pseudocode for KTAPA  

Remark: The computational complexity of KTAPA is 
similar to the KAPA algorithm and  can be significantly 
reduced if one constrains the network growth using some 
sparsification or quantization methods [7,11-14]. 

IV. SIMULATION RESULTS 
We now present simulation results to demonstrate the 
performance of the proposed algorithms.  

A. FIR System Identification 
Consider the FIR system identification where the underlying 
system has transfer function 

1 2 3 4 5 6 7( ) 0.5 0.8 1.2 0.1 2.4 1.9 0.8 1.7G z z z z z z z z− − − − − − −= − + + + − + +  (17) 
The common input to the unknown system and the adaptive 
filter (which has the same structure as the unknown system) 
is a white Gaussian process with unit power. The output of 
the unknown system is disturbed by an impulsive (long-tailed) 
noise  with symmetric alpha-stable ( S Sα ) distribution whose 
characteristic function is ( 0γ > , 0 2α< ≤ ) [15] 

( ) ( ), exp | |αγ αψ ω γ ω= −                         (18) 
The alpha-stable noise is very useful in modeling outliers. 
The performance measure adopted is the mean square 
deviation (MSD) defined as 

* 2

* 2

||W W ||
MSD=

||W ||
i−

                             (19) 

where * [0.5, -0.8, 1.2, 0.1, 2.4, -1.9, 0.8, 1.7]TW = .  
     First, we show how the values of the trimming constant 
M affect the performance of TAPA. Let the parameters L , 
η  and λ be 10L = , 0.01η = , 0λ = . The noise parameters 
are 0.1γ = , 1.2α =  . The average convergence curves (over 
100 independent Monte Carlo runs) of TAPA with different 
trimming constants are shown in Fig. 2. As expected, when 
the trimming constant is larger, the algorithm will converge 
faster but will be more sensitive to the outliers.   
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Fig. 2. Average convergence curves with different trimming constants. 
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Fig. 3. Average convergence curves (alpha-stable noise). 

 
 

Algorithms MSD 
APA 0.0181±0.0059 

MCC 0.0071±0.0002 

TAPA 0.0020±0.0005 

Table 3. MSD at final iteration (alpha-stable noise). 

      Next, we compare the performance of three algorithms: 
APA, TAPA, and the maximum correntropy criterion (MCC) 
based adaptation algorithm [16]. The MCC algorithm is also 
very robust to outliers [16]. The sliding window lengths of 
APA and TAPA are both set at 10L = , and the regularization 
factor and trimming constant of TAPA are 0λ = , 8M = . 
The kernel width of MCC is set at 3.5 so as to achieve 
desirable performance. The step-sizes of the three algorithms 
are adjusted such that they have similar initial convergence 
rate. The average convergence curves are illustrated in Fig. 3, 
and the MSDs at final iteration are listed in Table 3. 
Simulation results indicate that the TAPA algorithm may 
perform much better than APA, and is even more robust to 
outliers than MCC algorithm.  
     It is worth noting that the performance of TAPA is not 
always better than APA and MCC. In fact, if the noise 
distribution is not long-tailed (hence there are few outliers), 
the APA may perform better than TAPA. This is confirmed 
by simulation results shown in Fig. 4, where noise is 
Gaussian distributed with variance 0.04. In this simulation, 
the kernel width of MCC is set at 2.5, and the step-sizes of the 
three algorithms are chosen such that the steady-state MSDs 
are visually identical. One can see clearly from Fig. 4 that the 
APA achieves a faster convergence speed than both TAPA 
and MCC. The TAPA achieves a faster initial convergence 
speed but a slower overall convergence rate than MCC.           
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Fig. 4. Average convergence curves (Gaussian noise). 

B. Mackey-Glass Chaotic Time Series Prediction 

The second example is the Mackey-Glass (MG) time series 
prediction. The time series is generated from the following 
time-delay ordinary differential equation: [7]  

10

( ) ( )( )
1 ( )

dx t ax tbx t
dt x t

τ
τ

−= − +
+ −

                      (20) 

with 0.2, 0.1, 30a b τ= = = , and is discretized at a sampling 
period of 6 seconds. Our goal is to predict the present value 
using the previous seven points. A segment of 1000 samples 
is used as the training data and another 100 as the test data. 
The training data are corrupted by additive S Sα  noise with 
parameters 0.1γ = , 1.4α = . 

    In this example, we compare the performance of several 
adaptive algorithms including APA, TAPA, KLMS, KAPA, 
and KTAPA. For KLMS, KAPA and KTAPA, the Gaussian 
kernel with width 1.0 is chosen as the Mercer kernel. For 
TAPA and KTAPA, the sliding window length is 10L = , and 
the trimming constant is 8M = . The step-sizes of these 
algorithms are experimentally selected so as to achieve a 
good trade-off between the convergence speed and 
steady-state accuracy. Fig. 5 illustrates the learning curves 
averaged over 50 Monte Carlo runs with different segments 
of data. The testing MSE is calculated based on the 100 test 
data (during testing the filter is fixed). From Fig. 5 we 
observe: 1) the kernel adaptive algorithms (KLMS, KAPA, 
KTAPA) perform much better than linear adaptive 
algorithms (APA, TAPA) due to their universal 
approximation property;  2) the trimmed adaptive algorithms 
(TAPA, KTAPA) perform better than their non-trimmed 
counterparts (APA, KAPA) due to their robustness to outliers. 
The testing MSEs at final iteration are summarized in Table 
4.  
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Fig. 5. Average learning curves in MG time series prediction. 

 
Algorithms Testing MSE 

APA 0.023593±0.00025223  

TAPA 0.02193±0.00023026  

KLMS 0.0016714±5.5721e-05  

KAPA 0.0014656±6.7807e-05  

KTAPA 0.0013607±3.6702e-05  

Table 4. Testing MSE at final iteration. 

In [13], a quantization approach is proposed to constrain 
the network growth of KLMS. This quantization method can 
also be applied to KTAPA algorithm, and the new algorithm 
is call the quantized KTAPA (QKTAPA) algorithm. In the 
following, we compare the performance of KTAPA and 
QKTAPA. The experimental setting is the same as the 
previous experiment. For QKTAPA, the quantization size is 
set at 0.2ε =  (see [13] for the description of online vector 
quantization) . The average learning curves and the network 
growth curves are shown in Fig. 6 and Fig. 7, respectively. 
The testing MSEs at final iteration are given in Table 5. 
Simulation results suggest that, by properly selecting a 
quantization size, the network size (number of the RBF 
centers) of the QKTAPA will decrease significantly (in this 
example, the network size is reduced to less than 200), while 
with little loss in performance.  
 

Algorithms Testing MSE 
KTAPA 0.0035484±6.1328e-05  

QKTAPA 0.0046321±8.9293e-05  

Table 5. Testing MSE of KTAPA and QKTAPA . 
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Fig. 6. Average learning curves of KTAPA and QKTAPA. 
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Fig. 7. Network growth curves of KTAPA and QKTAPA. 

V. CONCLUSION 
In most practical situations, the real-world data obtained from 
the environment are often contaminated by outliers. This is a 
crucial problem for adaptive signal processing and machine 
learning algorithms. Great efforts have been devoted to 
design robust statistical methods to reduce or even remove the 
affects of the outliers. The trimmed least squares (LTS) 
estimation is one of such robust methods, which has very 
desirable properties and forms the basis for many other robust 
methods. In this work, we apply the idea of LTS to develop 
some new adaptive filtering algorithms, namely the trimmed 
affine projection algorithm (TAPA) and the kernel trimmed 
affine projection algorithm (KTAPA). The proposed 
algorithms are very robust to outliers, and their computational 
complexity is very low compared with the exact calculation 
of the LTS solution.  
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