
Online Learning Control Based on Projected
Gradient Temporal Difference and Advanced

Heuristic Dynamic Programming

Jian Fu, Sujuan Wei
School of Automation

Wuhan University of Technology
Wuhan, Hubei, China 430070
Email: fujian@ whut.edu.cn
Email: weisujuan@whut.edu.cn

Haibo He
Department of Electrical,Computer
and Biomedical Engineering
University of Rhode Island

Kingston,Rhode Island, USA 02881
Email: he@ele.uri.edu

Shengyong Wang
WISDRI(WuHan) Automation Co.,Ltd

Wuhan, Hubei, China 430070
Email: 10118@wisdri.com

Abstract—We present a novel online learning control algo-
rithm (OLCPA) which comprises projected gradient temporal
difference for action-value function (PGTDAVF) and advanced
heuristic dynamic programming with one step delay (AHD-
POSD). PGTDAVF can guarantee the convergence of temporal
difference(TD)-based policy learning with smooth action-value
function approximators, such as neural networks. Meanwhile,
AHDPOSD is a specially designed framework for embedding
PGTDAVF in to conduct online learning control. It not only
coincides with the intention of temporal difference but also
enables PGTDAVF to be effective under nonidentical policy
environment, which results in more practicality. In this way,
the proposed algorithms achieve the stability and practicability
simultaneously. Finally, simulation of online learning control on
a cart pole benchmark demonstrates practical control capability
and efficiency of the presented method.

I. INTRODUCTION

Arising as a promising and effective approach, Adaptive
dynamic programming (ADP) has made great success in
solving the complex sequential decision problem in large and
infinite space, performing perfect autonomous/optimal control
in noisy, nonlinear, and model free environments [1]–[8].

Briefly speaking, the core idea of ADP is built on the
Bellman equation to achieve optimization over time. Given
a system with a performance cost function, the objective
of dynamic programming is to seek the optimal policy π∗

(generating a control sequence u(x(k)) denoted as uk) [9].

J∗(xk, u
π∗

k) = min[r(xk, u
π∗

k) + αJ∗(xk+1, u
π∗

k+1)] (1)

so that the expected total discount reward J in infinite horizon
is minimized.

J∗(xk, u
π∗

k) = min

∞∑

l=0

αlrl+k

= min

∞∑

l=0

αlr(xl+k, u
π∗

l+k)

(2)

where k is the kth discrete time step, xk = x(k) is the state
vector of the system, uπ

k = uπ(k) = π(xk) is the control
action under policy π in the time step k, rk is the immediate
cost in the time step k, and α is a discount factor. Here, we

just list the formula in deterministic condition for the sake of
simplicity. A more general formula in the stochastic case is
easy to deduce.

Typical online ADP employs universal approximator, such
as neural network, to approach and generalize state-value
function J(x) and policy function u(x) based on online
samples (trajectory) to address the curse of dimension and
generalization ability when the state of Markov decision pro-
cess is large and infinite. Together with policy iteration, it
could asymptotically and almost-surly converge to optimal/
suboptimal policy according to the given functional criteria
from the viewpoint of Hamilton-Jacobi-Bellman equation [10].

However, temporal difference (TD(λ)), which could be
roughly regarded as alternative version of bellman equation
in stochastic environment without modeling, is known to con-
verge only under condition of linear function approximating
[11], [12]. Specifically, TD(λ) may diverge when it is with
nonlinear functional approximator. Bair [12] presented residual
gradient which can alleviate the problem to some degree, but
its convergent value may bias. Recently, Maei [13] proposed a
theoretical strategy, gradient temporal difference with smooth
value function approximation (GTDSVF), to untangle this
long pending issue for the first time. However, its practical
algorithm is absent even though a theoretical algorithm frame-
work was given. Also it only estimates the value function
under stationary policy instead of non-stationary policy which
happens during the procedure of online learning control. So
how to develop it to conduct online learning control is an
interesting and challenging issue.

Heuristic dynamic programming with one step delay (HD-
POSD) is a powerful algorithm of ADP proposed firstly by Si
[14]. It stores the previous J value at first. One step later, it
conducts the temporal difference calculation in training period
together with current J value. So the model or analogous
component which is indispensable in previous ADP or ACD
is not required any more. Fu, He and Ni developed the
original version to generalize multiple-inputs-multiple-outputs
(GMIMO) ADP and three networks form associated with
adaptive internal immediate reward representation [15], [16].
Nevertheless, Storing the previous J value simply doesn’t
completely match the definition of cost function and orig-

2014 International Joint Conference on Neural Networks (IJCNN)
July 6-11, 2014, Beijing, China

978-1-4799-1484-5/14/$31.00 ©2014 IEEE 3649

inal intention of TD. Since the policy between consecutive
moments may change during online learning control process,
so the previous J value should be recalculated based on new
policy instead of being constant. That limits its capabilities to
a certain extent.

In the paper, we present a novel online learning control
algorithm (OLCPA) which comprises stochastic gradient tem-
poral difference for action-value function (PGTDAVF) and
advanced Heuristic dynamic programming with one step delay
(AHDPOSD). The two components, together with their seam-
less cooperation, to solve the above problem appropriately. To
our best knowledge, this is the first practical online learning
control algorithms which guarantee the convergence of TD-
based policy evaluation learning with smooth action-value
function approximators. Finally, simulation on a cart pole
benchmark demonstrates the practical control capability and
efficiency for OLCPA.

The rest of this paper is organized as follows. In section
II, we present the outline of online learning control algorithm
(OLCPA), and focus on introducing two components AHD-
POSD and SGTDAVF. In section III, we provide complete
implementation of OLCPA, which integrates AHDPOSD and
SGTDAVF seamlessly by means of a special queue, to perform
online learning control in model free environment. In section
IV, the convergence of OLCPA is investigated. In section V, we
apply the proposed strategy to cart pole balance benchmark.
Detailed experimental settings and results are presented and
analyzed. Finally, conclusions are given in section VI.

II. SCHEMATIC DIAGRAM OF PROPOSE ONLINE
LEARNING CONTROL ALGORITHMS (OLCPA)

The schematic diagram of our proposed online learning
control algorithm (OLCPA) is presented in Fig.1. At first
glance, OLCPA works like heuristic dynamic programming
(The sketch of flowchart is given in Fig.2). Critic network
is responsible for policy prediction, and action network is in
charge of policy improvement. The main iteration comprises
applying control, subcyle for policy evaluation and subcyle
for policy improvement. The reinforcement signal r is pro-
vided from the external environment which we mark as the
reinforcement signal explicitly. All discussions in this paper
have assumed that neural network with multi-layer perception
(MLP) architecture is used in both the critic network and the
action network design.

In OLCPA, we regard the policy during the process from
different perspectives, which is shown in Fig.3. As a whole,
no doubt there is a nonidentical policy during online learning
control(e.g. from time point k to k + j − 1 in Fig.3). How-
ever, we also can treat the policy as constant within specific
interval(e.g. from time point k to k + i − 1 in Fig.3). So for
any two consecutive samples, they were obtained either via
identical policy or nonidentical policy, as the case maybe. For
example, as shown in Fig.3, two consecutive samples share
identical policy in the case of A. However, in the case of B,
they were obtained via different policies.

In fact, we design advanced heuristic dynamic programing
with one set delay (AHDPOSD) which takes advantage of
consecutive samples under identical policy instead of just
storing previous J value. Besides, we introduce projected

Fig. 1. Schematic diagram for online learning control(OLCPA)

gradient temporal difference for action-value function (PGTD-
VAF) which employs MSPBE (mean square projected bellman
error) criterion instead of the quasi-MSE (mean square error)
criterion to calculate stochastic gradient descent.

I note that, for the schematic OLCPA, there is dia-
gram blending with spatial and temporal information together.
Specifically, action network with tag A (in the lower right
corner) is identical to action network with tag B in physical
space. However, their parameters may vary along the time
dimension. That why there is an arrow between tag A and tag
B to indicate that they are space snapshot of action network
along consecutive time point. And so are two critic networks
with tag C and D. I will depict the procedure later in detail.

Fig. 2. Flowchart of online learning control(OLCPA)

Fig. 3. Policy from different prospectives in OLCPA

As for critic neural network (CNN), the output can be
defined as follows:

qi(k) =

Ncin∑

j=1

w(1)
cij (k).xj(k), i = 1, . . . , Nch (3)

pi(k) =
1− e−qi(k)

1 + e−qi(k)
, i = 1, . . . , Nch (4)

J(k) =

Nch∑

i=1

w(2)
ci (k)pi(k) (5)

3650

Where qi is the ith hidden node input of the critic network,
pi is the corresponding output of the hidden node qi, Ncin

is the total number of the input nodes in the critic network
including Nx inputs from the system states and Nout inputs
from the output nodes in the action network, and Nch is the
total number of the hidden nodes in the critic network.

Similar to critic, the associated equations for the action
neural network (ANN) are:

hi(k) =

Nain∑

j=1

w(1)
aij

(k).xj(k), i = 1, . . . , Nah (6)

gi(k) =
1− e−hi(k)

1 + e−hi(k)
, i = 1, . . . , Nah (7)

vm(k) =

Nah∑

i=1

w(2)
ami

(k).gi(k),m = 1, . . . , Naout (8)

um(k) =
1− e−vm(k)

1 + e−vm(k)
,m = 1, . . . , Naout (9)

Where hi is the ith hidden node input of the action network, gi
is the ith hidden node output of action network, vm is the mth
output node outputs of action network, um is the mth output
node of the action network, Nain is the total number of the
input nodes in the action network, Nah is the total number of
the hidden nodes in the action network, and Naout is the total
number of the output nodes in the action network.

A. Projected gradient temporal difference for action-value
function (PGTDAVF)

We firstly investigate the PGTDAVF, which obtains a fix
point by projecting the bellman error of action value function
(BEVAF). As we know, the action value function moves on
a nonlinear face rather than a hyperplane when a nonlinear
action value function approximator is adopted. However, we
can simplify the projecting onto a nonlinear manifold by
projecting BEAVF on to the tangent plane at the given point
assuming that the parameter changed very little in one step.
In this way, we extend the value function to the action value
function, and obtain a similar solution for minimum square
projected bellman error (MSPBE), which is a natural extension
for PGTDSVF [13]. The intuitive idea lies in that we can
deduce action value function J(x, u) from value function V (x)
and prompt action u = π(x) given that policy π is stationary.

Then we certify it briefly. For any parametrized state-
value function Jw,k = Jw(xk, u

π
k), where w is the adjustable

parameters set regarded as a vector. We can get tangent plane
spanned by the component of gradient

∇Jw,k =
∂Jw,k

∂w
= φk (10)

Since we discuss the action-value function, so w is wc where
CNN is employed. Then we tend to acquire a fixed point
where the projected gradient temporal difference lies in by
minimizing MSPBE as following.

MSPBE(w) � M(w)

= ‖Jw,k −ΠTJw,k‖
2

= E(δkφk)
TE
(
φkφ

T
k

)
−1

E(δkφk)

(11)

where

δk = rk + αJw,k+1 − Jw,k (12)

and T is Bellman operator, Π is projection operator. Usually,
we refer to Jw,k as Jprev and Jw,k+1 as J in time step
k + 1, respectively. In practice, we ordinarily evaluate the
distance of two value functions J1 and J2 based on samples
as (x̄1, x̄2, · · · , x̄s)as follows.

‖J1 − J2‖
2
d =

s∑

i=1

d (x̄i) [J1 (x̄i)− J2 (x̄i)]
2

= [J1 − J2]
T
D [J1 − J2]

(13)

where D=diag [d (x̄1) , d(x̄2), · · · , d(x̄s)] is the weight ma-
trix, Jp=[Jp (x̄p) , J1(x̄p), · · · , Jp(x̄s)]

T
, p = 1, 2.

So (11) can be expressed in application as

MSPBE(w)

= ‖Jw,k −ΠTJw,k‖
2
d

= ‖Π(Jw,k − TJw,k)‖
2
d

=
[
ΦT

kD(TJw,k − Jw,k)
]T(

ΦT
kDΦk

)
−1

·
[
ΦT

kD(TJw,k − Jw,k)
]

(14)

where Φk =
[
φT
k (x̄1) φT

k (x̄2) . . . φT
k (x̄s)

]T is a matrix
which includes all feasible samples x̄i = (xi, ui).

Next we will calculate the gradient of M(w).

Taking partial derivative of M(w) with respect to wi (the
element of w) as

−
1

2

∂M(w)

∂wi
=−

[
∂

∂wi

(
E(δkφk)

)
]

E
(
φkφ

T
k

)
−1
E(δkφk)

+
1

2
E(δkφk)

T ∂

∂wi

[
E
(
φkφ

T
k

)
−1
]
E(δkφk),

(15)

we can obtain gradient as the following:

−
1

2
∇M(w) = E

(
(φk − αφk+1)φ

T
k ξ
)
− h

= E(δkφk)− αE
[
φk+1φ

T
k ξ
]
− h

(16)

where {
ξ = E

(
φkφ

T
k

)
−1

E(δkφk)

h = E
[(
δk − φT

k ξ
)
∇2Jw,kξ

] (17)

The formula is the product of multiple expected values
which cannot be sampled from a single experience because
of correlation. This can be solved by updating an additional
parameter vector ξ . Since in practice

ξ =
(
ΦT

kDΦk

)
−1

ΦT
kD (TJw,k − Jw,k) (18)

is identical to the solution of least-square problem

min ‖Φkξ − (TJw,k − Jw,k)‖
2
d . (19)

The problem can be represented in abstract terms as

min
∥
∥φT

k ξ − (TJw,k − Jw,k)
∥
∥2
d

(20)

3651

So we can obtain ξ via stochastic gradient descent method

ξk+1 = ξk + β
(
δk − φT

k ξk
)
φk. (21)

Next we apply stochastic gradient descent method again to
(11), together with substituting (21) into (16) and embedding
special map Γ. As a result, we finally gain

wk+1 = Γ
(
wk + λ

[
(φk − αφk+1)

(
φT
k ξk
)]
− hk

)
(22)

or

wk+1 = Γ
(
wk + λ

[
δkφk − αφk+1

(
φT
k ξk
)]
− hk

)
(23)

obtain the desired wk+1 satisfying (14). where

hk =
(
δk − φT

kwk

)
∇2Jw,kξ. (24)

Besides Γ denotes the mapping from any domain to a
compact set C and β, λ are coefficients. Here, (22) denotes
OLCPA1 and (23) denotes OLCPA2(a variation).

Actually, we in the paper adopt a piecewise function to
implement Γ as

wk+1 =

⎧
⎪⎨

⎪⎩

wk + λ
[
(φk − αφk+1)

(
φT
kwk

)]

−ξk max
(
|wi|

)
≤T

wk+1

max
(
|wi|

) max
(
|wi|

)
> T

(25)

or

wk+1 =

⎧
⎪⎨

⎪⎩

wk + λ
[
δkφk − αφk+1

(
φT
kwk

)]

−ξk max
(
|wi|

)
≤ T

wk+1

max
(
|wi|

) max
(
|wi|

)
> T

(26)

which realizes the self-learning and avoids the divergence.

Also, we employ CNN to approximate the action-value

function [15], so we have φk =

[(
∂Jwc,k

∂w
(1)
c

)T (
∂Jwc,k

∂w
(2)
c

)T
]T
,

where
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∂Jwc,k

∂w
(1)
cij

=
∂Jwc,k

∂pi

∂pi

∂qi

∂qi

∂w
(1)
cij

= w(2)
ci (k)

[
1

2

(
1− p2i (k)

)
]

xj(k)

∂Jwc,k

∂w
(2)
ci

= pj(k)

(27)

Further, we can calculate ∇2Jwc,k as
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂2J

∂w
c
(1)
ij

∂w
c
(1)
kl

=

⎧
⎪⎨

⎪⎩

−0.5w
(2)
ci (k)xj(k)

(
1−p2i(k)

)

·pi(k)xl(k) i = k

0 i �= k

∂2J

∂w
c
(1)
ij

∂w
c
(2)
k

= 0

(28)

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂2J

∂w
c
(2)
i

∂w
c
(1)
kl

=

{
−0.5

(
1− p2i (k)

)
xl(k) i = k

0 i �= k

∂2J

∂w
c
(2)
i

∂w
c
(2)
j

= 0

(29)

Apparently, ∇2Jwc,k is a sparse matrix and easy to calculate.

In section B, we expand PGTDSVF to PGTDAVF which
is fit for expressing policy evaluation in nonidentical pol-
icy environment. Since action-value function J (x, uπ1) and
J (x, uπ2) can respectively denote the value in the same state
x with different policy π1 and policy π2. However, state-
value function V (x) [13] is difficult to do the same thing.
In addition, we simplify the solving process of PGTDAVF via
special designed piecewise function Γ and approximator(CNN)
for the action-value function.

B. Advanced heuristic dynamic programming with one step
delay (AHDPOSD)

We investigate the AHDPOSE in this part. It is a frame-
work specially designed to conduct online learning control.
Obviously, it involves policy evaluation based on the samples
generated by a changing policy. Though PGTDAVF described
in partA has laid the foundation for tackling this problem, but
we cannot apply it directly. The main problem we faced is
the nonidentical policy which conflicts with the requirement
of AHDPOSE. However, Based on the perspective in Fig.3,
we can treat policy constant within specific interval(caseA in
Fig.3), though it is nonidentical as a whole. In the case of
B, we can convert three consecutive actual samples generated
by two different policies to four data points in two groups via
sample adjusting. In each group, there are data points produced
under identical policy. Between the group, there are data points
produced under different policies. In this way, we can apply
PGTDAVF under nonidentical policy environment. This is an
intuitive idea of AHDPOSE.

Next, we will describe the AHDPOSE in detail. Specif-
ically, we will discuss the implementation of AHDPOSE in
each key nodes(node A, B and C shown in Fig.2) in the case
of the A or B (shown in Fig.3). Before we start, we introduce
the quintuple (xk, u

π
k , rk, xk+1, u

π
k+1) which is constructed to

load the data point under identical policy between successive
time points. We note that π and π′ in the quintuple indicate
whether current policy has been changed. Also, we adopt
several specific symbols here. Subscript k denotes the index
of the main iteration. Apparently, it is the time step k as
well. J (l) indicate the cost-to-go value in the lth subcycle for
policy evaluation. l = 0 implies the cost-to-go value before
the subcycle for policy evaluation. And l = · implies the cost-
to-go value after the subcycle for policy evaluation. As for
π(l), it is the behavior policy in the lth subcycle for policy
improvement. l = 0 and l = · have similar meaning as well.
Now, we can implement PGTDVAF to estimate the cost-to-go
value based on them.Specifically,

1) Node A – Between applying control and the policy
evaluation: We always have (xk, u

π
k , rk, xk+1, u

π
k+1) in this

node. Apparently, uπ
k = π

(.)
k (xk) and uπ

k+1 = π
(0)
k+1 (xk+1)

are under the identical policy. That means π(.)
k = π

(0)
k+1.

As a result, we have the following data and formulas in
node A:
{
(xk, u

π
k , rk, xk+1, u

π
k+1), u

π
k+1← π

(.)
k (xk+1)

Jprev = J
(0)
k+1(xk, u

π
k), J = J

(0)
k+1(xk+1, u

π
k+1)

(30)

3652

where π
(.)
k denotes policy after policy improvement in time

step k, π(0)
k+1 indicates policy before policy improvement in

time step k+ 1. J (0)
k+1(xk, u

π
k) denotes cost-to-go value called

by action-value function which is before policy evaluation in
time step k + 1.

2) Node B – During the policy evaluation: we have the
following data and formulas in node B.
{
(xk, u

π
k , rk, xk+1, u

π
k+1), u

π
k+1 ← π

(.)
k (xk)

Jprev = J
(l)
k+1(xk, u

π
k), J = J

(l)
k+1(xk+1, u

π
k+1)

(31)

where J
(l)
k+1(xk, u

π
k) denotes action-value function in lth it-

eration during policy evaluation in main iteration with index
k+ 1. Especially, We note that Jprev varies during the policy
evaluation instead of remaining constant in common HDPOSE.

3) Node C – After the policy improvement: The situation in
this node seems a little bit complicate. On condition that there
is no policy improvement subcycle taking place in this main
iteration(case A), data and formulas are the same of (31). In the
case of the policy improvement subcycle having happened(case
B), the current behavior policy is changed to π′ instead of π. So
we cannot keep the two consecutive samples in the quintuple
any more. In other words, we change (xk, u

π
k , rk, xk+1, u

π′

k+1)
into two groups known as sample adjusting. Thus one is
(xk, u

π
k , rk, xk+1, u

π
k+1), the other is (xk+1, u

π′

k+1,∅,∅,∅),
where ∅ indicates null.

we have following data and formulas:
{
(xk+1, u

π′

k+1,∅,∅,∅), uπ′

k+1 ← π
(.)
k+1(xk+1)

Jprev = J
(.)
k+1(xk+1, u

π
′

k+1), J = ∅
(32)

where J
(.)
k+1(xk+1, u

π′

k+1) denotes cost-to-go value called by
action-value function after policy evaluation in time step k+1.

Next, we will explain why we design AHDPOSD in
above pattern from theoretical prospective. As we known,
the expected total discount reward in infinite horizon under
stationary policy has the form as

J(xk, u
π
k) =

∞∑

l=0

αlrl+k =

∞∑

l=0

αlr(xl+k, u
π
l+k) (33)

given that the system is deterministic. And it is obvious that

J(xl,u
π
l)=r(xl,u

π
l)+αJ(xl+1,u

π
l+1), ∀x∈D,l≥k (34)

where D is trajectory from start point x(k).

If there is a policy evaluation taking place in time step k
with J changed to J ′, we have total discount reward in infinite
horizon under stationary policy as

J ′(xk, u
π
k) =

∞∑

l=0

αlrl+k =

∞∑

l=0

αl(xl+k, u
π
l+k) (35)

similarly, we have

J ′(xl,u
π
l)=r(xl,u

π
l)+αJ ′(xl+1,u

π
l+1), ∀x∈D,l≥k (36)

where D is trajectory from start point x(k). Please note that
Jprev = J(xl, u

π
l) in (34) is not equal to Jprev = J ′(xl, u

π
l)

in (36). So we cannot simply store the value of Jprev , we

need store the (xl, u
π
l) instead. Then we calculate the Jprev

based on current action-value function J as AHDPOSD does.
It seems more reasonable.

However, in HDPOSD, We store the previous Jprev at first.
One step later, we conduct the temporal difference calculation
in training together with current J value as:

Jprev = r(xl, u
π
l) + αJ,∀x ∈ D, l ≥ k (37)

It almost has the same result as (34) or (36), unless, during
the policy evaluation, it doesn’t coincide with (34) or (36) any
more. Since

J(xk,u
π
k) �=r(xk,u

π
k)+αJ ′(xk+1,u

π
k+1), ∀x∈D (38)

where D is corresponding trajectory. However, our proposed
calculation covering all three stages is always in accord with
(34) or (36).

Besides, we conduct stochastic gradient decent in the stan-
dard pattern of temporal difference. I.e. for parametrized action
value function Jw(xk, u

π
k) , we take derivative of temporal

difference error

Ec(xk)=
1

2
δ2k=

1

2
(rk+αJw(xk+1,u

π
k+1)−Jw(xk,u

π
k)) (39)

with respect to w as

∂Ec

∂w
= −1.

∂Jw(xk, u
π
k)

∂w
.δk (40)

instead of
∂Ec

∂w
= α.

∂Jw(xk+1, u
π
k+1)

∂w
.δk (41)

or
∂Ec

∂w
=

(

α.
∂Jw(xk+1, u

π
k+1)

∂w
− 1.

∂Jw(xk, u
π
k)

∂w

)

.δk (42)

We note that the TD performs prediction via bootstrapping.
Alternatively, we regard rk+αJw(xk+1, u

π
k+1) as a stochastic

approximation for J(xk, u
π
k) that does not depend on w. So

neither moving αJw(xk+1, u
π
k+1) closer to Jw(xk, u

π
k) − rk

as (41)(HDPOSE) nor moving two items in both directions as
(42) (Residual Algorithms) seem reasonable. Adapting the pa-
rameters to move Jw(xk, u

π
k) closer to rk +αJw(xk+1, u

π
k+1)

as (40) appears rational.

III. ALGORITHMS IMPLEMENTATION OF OLCPA

In this section, we describe in detail how to integrate PGT-
DAVF into AHDPOSD framework to achieve online learning
control – OLCPA. Above all, we introduce a special queue
(denoted as B) with elements (triples) in two consecutive time
points (k, k + 1) shown in Fig.4. Usually, we access to a
specific position of B via the combination of row index and
column index. For example, B[t, B] indicates uπ

t . And B[t, ·]
indicates the row with the index of t.

I would like to note that uπ
k and uπ

k+1 are actions under
identical policy π. It is crucial for the following algorithm.
In previous AHDPOSD, we have discussed the methods to
guarantee the data between successive time points are under
identical policy though policy improvement is in operation.
Besides, owing to applying AHDPOSD here, so the current

3653

Fig. 4. Diagram of special queue(buffer)

time point is k + 1 instead of k generally. We preset detail
algorithms of OLCPA as following:

Algorithm: OLCPA

/*uk = ANN(wa,k, xk) is a neural network for action
output calculation in time step k and πk(xk) is a shorthand
notation of it;
xk = x(k): state vector;
wa,k = wa(k): weight of ANN;
uk = u(k): control output of ANN;
uπ
k : an alternative express of value for ANN(wa,k, xk) ;

Jk = CNN(wc,k, xk, uk) is a neural network for calculate
cost-to-go approximately in time step k and Jk(wc,k, u

π
k) is a

shorthand notation of it;
wc,k = wc(k) weight of CNN;

MaxStepNum: maximum elapsed step times for each
trial ;
Tξ, Tc and Ta: threshold for ξ estimation, policy evaluation
and policy improvement respectively;
Nerit, Ncrit and Nact: maximum loops for ξ estimation,
policy evaluation and policy improvement respectively;
Tw: threshold of wc

For other notations, please see description in section
III.*/;

1: initiate x0, initiate B ⇐ null
2: initiate wc,0 = wc(0) and wa,0 = wa(0) randomly
3: uπ

0 ← ANN(wa,0, x0), π ← (wa,0, ANN)
4: J0(x0, u

π
0)← CNN(wc,0, x0, u

π
0)

5: store x0 ⇒ B[t, A], uπ0
0 ⇒ B[t, B]

6: k = 1 ;
7: while k ≤ MaxStepNum do
8: if B[t+ 1, ·] �= null then
9: move B[t, ·]⇐ B[t+ 1, ·]
10: clear B[t+ 1, ·]
11: end if
12: fetch xk−1 ⇐ B[t, A], uπ

k−1 ⇐ B[t, B]
13: apply control xk ← (xk−1, u

π
k−1)via system

14: immediate reward rk−1 ← (xk)via environment
15: store rk−1 ⇒ B[t, C],
16: uπ

k ← π(xk), π ← (wa,k, ANN);
17: store xk ⇒ B[t+ 1, A], uπ

k ⇒ B[t+ 1, B]
18: Jk ← (wc,k, CNN)
19: Jprev ← Jk(B[t, A], B[t, B])
20: J ← Jk(B[t+ 1, A], B[t+ 1, B])

21: fetch r ⇐ B[t, C]
22: calculate φk−1 = ∇Jprev
23: δk−1 = aJ − Jprev + r
24: initiate ξ randomly
25: Eξ = 0.5(δk − φT

k−1ξ)φk−1

26: cyc = 0
27: while (Eξ > Tξ)&(cyc ≤ Nerit) do
28: ξ = ξ + β(δk − φT

k−1ξ)φ
T
k−1

29: Eξ = 0.5(δk − φT
k−1ξ)φ

T
k−1

30: cyc = cyc+ 1
31: end while
32: Ec = 0.5δ2k−1
33: l = 0
34: while (Ec > Tc)&(l ≤ Ncrit) do
35: calculate φk−1=∇Jprev,∇

2Jprev and φk=∇J
36: h = (δk−1 − φT

k−1ξ)∇
2Jprevξ

37: wt ← wc,k + λ[(φk−1 − aφk)(φ
T
k−1ξ)]− h

or
wt ← wc,k + λ

[
δk−1φk−1−αφk

(
φT
k−1ξ

)]
−h

38: if max(|wti,j |) > Tw then
39: wt ← wt

/
max

(∣
∣wti,j

∣
∣
)

40: end if
41: J

(l)
k ← (wc,k = wt, CNN)

42: J = J
(l)
k (B[t+ 1, A], B[t+ 1, B])

43: Jprev = J
(l)
k (B[t, A], B[t, B])

44: Ec ← (δk−1 = aJ − Jprev + r)
45: l = l + 1
46: end while
47: Jk ← (wc,k = wt, CNN)
48: J = Jk(B[t+ 1, A], B[t+ 1, B])
49: Ea = 0.5J2

50: πk−1 = π
51: m = 0
52: while (Ea > Ta)&(m ≤ Nact) do
53: wa,k ← Ea via back-propagation
54: π′ ← π

(m)
k ← (wa,k, ANN)

55: uπ′

k ← ANN(wa,k, xk)
56: store uπ′

k ⇒ B[t+ 1, B]
57: J = Jk(B[t+ 1, A], B[t+ 1, B])
58: calculate Ea

59: m = m+ 1
60: end while
61: πk = π ← (wa,k, ANN)
62: if πk �= πk−1 then
63: uπ

k ← π(xk)
64: update uπ

k ⇒ B[t+ 1, B]
65: move B[t, ·]⇐ B[t+ 1, ·]
66: clear B[t+ 1, ·]
67: end if
68: end while

Generally speaking, the proposed method looks like the
combination of SARSA and greedy policy seeking. PGTDVAF
expedite SARSA learning with convergence guarantee because
there are always on-policy learning periods alternated with
the policy improvement periods in OLCPA. And AHDPOSD
makes the algorithms practical and unbiased. We would like to
note that special queue (B) is a data structure which is used to
store and manipulate sample tuples (xk, u

π
k , rk, xk+1, u

π
k+1)

effectively and efficiently, which link PGTDVAF and AHD-

3654

POSD seamlessly.

IV. ANALYTICAL CHARACTERISTIC OF OLCPA
This section is dedicated to expositions of analytical prop-

erties of the OLCPA approach. Generally speaking, the online
learning control framework AHDPOSD could be considered
as a generalized policy iteration approach with sequential
updating of CNN (policy evaluation) and ANN (policy im-
provement). In the stage of policy evaluation, it solves the
Hamiltonian through iterative PGTDAVF with current policy.
Meanwhile it achieves the policy which minimizes the current
function in the stage of policy improvement stage.
Firstly, we assume the system under control is determin-

istic. Standard policy iteration algorithms [17] can converge
to the optimal control policy π∗ with corresponding cost V ∗

under condition that the demand of initial admissible policy
π(0) is met. In the case of approximation for value function,
specifically, we use MLP NN to solve the cost function V π

k (·),
and there exists a complete independent basis set {ϕi (x)}
such that cost functional V (·) and its gradient are uniformly
approximated by the Weierstrass higher-order approximate
theorem. So it is justified to assume there exist CNN weights
W1 such that the value function V (x) is approximated as

V (x) = WT
1 φ (x) + ε (x) =

N∑

i=1

w1iϕi (x) + ε (x) (43)

where N is the number of neurons in the hidden layer, and
ε (x) is the NN approximation error. Adam [18] showed that
V1 (x) = WT

1 φ (x) converges uniformly in Sobolev norm
W 1,∞ to the exact solution V (x) as N → ∞. As for ANN,
there is a similar conclusion [19].
Next, we assume the system under control is stochastic. In

this situation, we attempt to find zeroes or extrema of functions
which only estimated via noisy observations. Base the relevant
analysis, we learn that ANN is actually converging to a (local)
minimum in a statistical average sense by means of Robbins-
Monro stochastic approximation theorem [14], [15]. However,
the theorem is valid on condition that regression function is
fixed though we even do not know it, such as the case of
supervised learning. TD performs prediction via bootstrapping,
that results in convergence problem when nonlinear function
approximator is adopted.
As for our proposed PGTDAVF, we conduct convergence

analysis similar to the work based on two-timescale conver-
gence analysis. Consider the ODE

ω̇ = Γ̂

(

−
1

2
∇J

)

(ω) (44)

where ˆΓ (j (ω, π (ω))) is the projection of j (ω, π (ω)) to the
tange space of ∂

∂wi

C at Γ(w) . Let K be the set of all
asymptotically stable fixed points of (44). Apparently, we have
U ∩ C ⊂ K, where

U = {w|δ (ω)∇Jω (x, π(x)) = 0} (45)

is the set of TD(0) solution. Thus if ω is a TD(0)-solution
that lies in C, then it is an asymptotically stable fixed point of
(44). Furthermore, the iterates produced by nonlinear OLCPA
converge to K with probability one under some technical
conditions. More detail analysis can be referenced in [13].

V. CASE STUDY WITH CART POLE BALANCING

The proposed OLCPA has been implemented on a single
cart-pole problem. The objective is to balance a single pole
mounted on a cart, which can move either to the right or to the
left on a bounded, horizontal track. The goal for the controller
is to provide a force (applied to the cart) of a fixed force in
either the right or the left direction so that the pole stands
balanced and avoids hitting the track boundaries. This kind
of pendulum is generally used to evaluate the performance of
practical control strategies. Here we consider the same system
model as

The cart-pole system used in the current study is described
as

d2θ

dt2
=

g sin θ+cos θ[−F−m(θ̇2 sin θ+μcsgn(ẋ))
mc+m]−

μpθ̇
ml

l(43 −
m cos2 θ
mc+m)

(46)

d2x

dt2
=

F +ml[θ̇2 sin θ − θ̈ cos θ]− μcsgn
˙(x)

mc +m
(47)

TABLE I. THE PARAMETERS OF CART-POLE SYSTEM

Parameter Value Description
g 9.8kg/s2 acceleration due to gravity
mc 1.0kg mass of cart
m 0.1kg mass of pole
l 0.5m half-pole length
μc 0.0005m coefficient of friction of cart on track
μp 0.000002m coefficient of friction of pole on cart

F ± 10 Newtons force applied to carts center of mass

This model provides four state variables:1) position of the
cart on the track; 2) angle of the pole with respect to the verti-
cal position;3) cart velocity;4) angular velocity. In our current
study, a run consists of a maximum of 1000 consecutive trials.
It is considered successful if the last trial(trial number less
than 1000) of the run has lasted 6000 time steps. Otherwise, if
the controller is unable to learn to balance the cart-pole within
1000 trials (i.e., none of the 1000 trials has lasted over 600
000 time steps), then the run is considered unsuccessful. In our
simulations, we have used 0.02 s for each time step, and a trial
is a complete process from start to fall. A pole is considered
fallen when the pole is outside the range of [12 12]◦or the cart
is beyond the range of [2.4 2.4]m in reference to the central
position on the track.

Specifically, 50 runs were performed to obtain the results
reported as Table II. “Success of rate” indicates the number of
successful runs divided by the total number of runs. “No of
trials” means how many trials was experienced before it can
run successfully. Here, it is an average value based on the data
from 50 runs. Apparently, the good algorithms is the one with
a high percentage of successful runs as well as a low average
number of trials to learn. “Standard deviation” implies how
far the data of “No of trials” spread out from their mean. The
adjustable parameters of OLCPA have been listed in Table III,
by which the above results come out.

VI. CONCLUSION

In this paper, we propose an online learning control
based on projected gradient temporal difference and ad-
vanced heuristic dynamic programming (OLCPA). Detailed

3655

TABLE II. PERFORMANCE EVALUATION OF HDPOSD, OLCPA1 AND OLCPA2 METHOD

HDPOSD OLCPA1 OLCPA2
Success rate No of trail Standard deviation Success rate No of trial Standard deviation Success rate No of trial Standard Deviation
100% 7.4 11.5 100% 6.5 5.7 100% 4.3 4.2

TABLE III. SUMMARY OF THE PARAMETERS

Parameter lc(0) la(0) lc(f) la(f) Tw β∗ λ ∗

Value 0.3 0.3 0.005 0.005 0.025 0.34 0.21

Parameter Nc(0) Na(0) Tc Ta Nh β† λ†

Value 50 100 0.05 0.005 6 0.04 0.2
∗ : OLCPA1
† : OLCPA2

architecture components PGTDAVF and AHDPOSD are de-
picted. PGTDAVF can guarantee the convergence of temporal
difference(TD)-based policy learning with smooth action-value
function approximators, such as neural networks. Meanwhile,
AHDPOSD is a specially designed framework for embedding
PGTDAVF in to conduct online learning control. It not only
coincides with the intention of temporal difference but also
enables PGTDAVF to be effective under nonidentical policy
environment, which results in more practicality. Later we
investigate the algorithms of OLCPA which integrated the
former components seamlessly. To demonstrate the efficiency
and practical control capability of our approach, we evaluated
the performance of the proposed approach based on a cart pole
balance benchmark. Simulation of online learning control on a
cart pole benchmark demonstrates practical control capability
and efficiency of the presented method.

There are a few interesting future research directions along
this topic. First, in this paper, we considered only multi-layer
perception as smooth nonlinear approximator. It will be a nat-
ural extension to apply neural network in other forms. Second,
our current approach in this paper investigate the application
in the noise free environment. The related application in noise
environment is an interesting and challenging topic.

ACKNOWLEDGMENT

The authors would like to thank the support in part
from the Self-determined and Innovation Research Fund of
WHUT(Grant No.2011-IV-129) and National Natural Science
Foundation of China(Grant No.51177114).

REFERENCES
[1] S. G. Khan, G. Herrmann, F. L. Lewis, T. Pipe, and C. Melhuish,

“Reinforcement learning and optimal adaptive control: An overview and
implementation examples,” Annual Reviews in Control, vol. 36, no. 1,
pp. 42–59, 2012.

[2] X. Xu, L. Zuo, and Z. Huang, “Reinforcement learning algorithms with
function approximation: Recent advances and applications,” Information
Sciences, vol. 261, pp. 1–31, 2014.

[3] H. He, Self-adaptive systems for machine intelligence. John Wiley &
Sons, 2011.

[4] Z. Ni, H. He, and J. Wen, “Adaptive learning in tracking control
based on the dual critic network design,” IEEE Transactions on Neural
Networks and Learning Systems, vol. 24, no. 6, pp. 913–928, 2013.

[5] W. B. Powell and J. Ma, “A review of stochastic algorithms with
continuous value function approximation and some new approximate
policy iteration algorithms for multidimensional continuous applica-
tions,” Journal of Control Theory and Applications, vol. 9, no. 3, pp.
336–352, 2011.

[6] Q. Wei and D. Liu, “Adaptive dynamic programming for optimal
tracking control of unknown nonlinear systems with application to coal
gasification,” Automation Science and Engineering, IEEE Transactions
on, vol. PP, no. 99, pp. 1–17, 2013.

[7] S. Hu, Y.-D. Yao, and Z. Yang, “Mac protocol identification approach
for implement smart cognitive radio,” in Communications (ICC), 2012
IEEE International Conference on. IEEE, 2012, pp. 5608–5612.

[8] Z. Huang, X. Xu, L. Ye, and L. Zuo, Kernel-Based Representation
Policy Iteration with Applications to Optimal Path Tracking of Wheeled
Mobile Robots. Springer, 2013, pp. 722–730.

[9] F.-Y. Wang, H. Zhang, and D. Liu, “Adaptive dynamic programming:
an introduction,” Computational Intelligence Magazine, IEEE, vol. 4,
no. 2, pp. 39–47, 2009.

[10] F. L. L. Vrabie and D., “Reinforcement learning and adaptive dy-
namic programming for feedback control,” Circuits and Systems Mag-
azine,IEEE, vol. 9, pp. 32–50, 2009.

[11] J. N. Tsitsiklis and B. Van Roy, “An analysis of temporal-difference
learning with function approximation,” IEEE Transactions on Automatic
Control, vol. 42, no. 5, pp. 674–690, 1997.

[12] L. Baird, “Residual algorithms: Reinforcement learning with function
approximation,” in ICML, 1995, Conference Proceedings, pp. 30–37.

[13] H. R. Maei, C. Szepesvri, S. Bhatnagar, D. Precup, D. Silver, and R. S.
Sutton, “Convergent temporal-difference learning with arbitrary smooth
function approximation,” in Advances in Neural Information Processing
Systems, 2011, Conference Proceedings, pp. 1204–1212.

[14] J. Si and Y.-T. Wang, “Online learning control by association and
reinforcement,” IEEE Transactions on Neural Networks, vol. 12, no. 2,
pp. 264–276, 2001.

[15] J. Fu, H. He, and X. Zhou, “Adaptive learning and control for mimo
system based on adaptive dynamic programming,” Neural Networks,
IEEE Transactions on, vol. 22, no. 7, pp. 1133–1148, 2011.

[16] H. He, Z. Ni, and J. Fu, “A three-network architecture for on-line
learning and optimization based on adaptive dynamic programming,”
Neurocomputing, vol. 78, no. 1, pp. 3–13, 2012.

[17] M. Abu-Khalaf and F. L. Lewis, “Nearly optimal control laws for
nonlinear systems with saturating actuators using a neural network hjb
approach,” Automatica, vol. 41, no. 5, pp. 779–791, 2005.

[18] R. A. Adams and J. J. Fournier, Sobolev spaces. Academic press,
2003, vol. 140.

[19] K. G. Vamvoudakis and F. L. Lewis, “Online actor-critic algorithm to
solve the continuous-time infinite horizon optimal control problem,”
Automatica, vol. 46, no. 5, pp. 878–888, May 2010.

3656

