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Abstract - In this paper, the factor models (FMs) are 
integrated with the ANN model to produce a new hybrid 
method which we refer to as the Factor Artificial Neural 
Network (FANN) to improve the time series forecasting 
performance of the artificial neural networks. The 
empirical results of the in sample and out of sample 
forecasts indicate that the proposed FANN model is an 
effective way to improve forecasting accuracy over the 
dynamic factor Model (DFM), the ANN and the AR 
benchmark model. When we compare the FANN and ANN 
models the results confirm the usefulness of the factors 
that were extracted from a large set of related. On the 
other hand, as far as estimation is concerned the nonlinear 
FANN model is more suitable to capture nonlinearity and 
structural breaks compared to linear models. The Diebold-
Mariano test results confirm the superiority of the FANN 
model forecasts performance over the AR benchmark 
model and the ANN model forecasts.  
 

Keywords— Artificial neural network; Dynamic factor 
model; Forecast accuracy; Root mean square error. 

 
I. INTRODUCTION 

In recent decades, considerable progress into handling 
large panels of time series data in forecasting using 
factor models has been made. The initial contributions 
in this area were the work of Geweke [18] and Sargent 
and Sims [31], who introduced the dynamic factor 
approach to macroeconomics. They exploited the 
dynamic interrelationships between the variables, and 
then reduced the number of common factors even 
further. However, the approach followed by [18, 31] is 
too restrictive, in that it assume orthogonality on the 
idiosyncratic components, while the work by 
Chamberlain [11] and [12] allow for the possibility of 
weakly cross-sectional correlation of the idiosyncratic 
components. In further improvements these large factor 
models have been improved by accounting for serial 
correlation and weakly cross-sectional correlation of 
idiosyncratic components, through advances in 
estimation techniques proposed [16], [27], [40]. This 
advance, in turn, has generated an increasing amount of 
interest in the usage of these models in academia, 
international organizations, central banks, and 

governments, simply because they can accommodate a 
large panel of time series when forecasting variables.  
However, there is still a considerable degree of 
divergence in opinion as to whether or not factor 
models with large cross-sections of time series tend to 
outperform traditional econometric models with limited 
numbers of variables. On the one hand, [14, 16, 17, 19, 
21, 32, 35-40, 42] found evidence of improvements in 
the forecasting performances of macroeconomic and 
financial variables using factor analysis, while on the 
other hand, other works found only minor or no 
improvements in forecasting ability [3, 20, 33, 34]. 
These conflicting results have led to attracting debate as 
to whether or not the victory claimed by the proponents 
of large models was precocious. Some attribute the 
success of large models to different circumstances 
pertaining to each study. For example, Banerjee et al. 
[8] found that small models forecast macroeconomic 
variables better than factor models. In addition, they 
also find that the performances of factor models differ 
between countries. Factor models are comparatively 
good at forecasting real variables in the US relative to 
the euro area, while the euro area nominal variables are 
easier to predict than the US nominal variables, using 
factor models. Furthermore, Boivin and Ng [10] claim 
that the composition of the data set and the dimensions 
of the cross-section are important in producing better 
forecasts from factor models. 
 Based on the success of the dynamic factor model 
many linear extensions were introduced such as factor 
augmented vector autoregressive (FAVAR) - Bernanke 
et al. [9] - and factor augmented error correction model 
(FECM) - Banerjee and Marcellino [7] - and their 
Bayesian applications. Our factor model extension 
brings together factor model and the nonlinear ANN 
model, the mixture that we believe can accommodate 
the structural breaks. 
Against this backdrop, this paper exploits the 
information contained in the large-dimensional factor 
model framework developed by Forni et al. [16] 
(hereafter FHLR) for forecasting Johannesburg Stock 
Exchange (JSE) share prices and a measure of the short-
term nominal interest rate (Treasury Bill Rate) for South 
Africa, over the out of sample period from 2007:01 to 
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2011:12 1 , with an in-sample estimation period from 
1992:01 to 2006:12. The forecasting performances of 
the Factor Models (FMs), estimated under linear 
dynamic factor model (DFM) and nonlinear Factor – 
Artificial Neural Network (FANN) assumptions with 
regard to the interaction between the factors and the 
variables of interest are investigated. The FMs are 
evaluated and compared with the performances of two 
other alternative models, namely Autoregressive (AR) 
and Artificial Neural Network (ANN) models, on the 
basis of the Root Mean Squared Error (RMSE) of the 
out-of-sample forecasts. In a related project Babikir and 
Mwambi (forthcoming) used the DFM and ANN to 
evaluate their individual and combined forecasts 
performance.  
In this paper we introduce the FANN model, where we 
model the extracted factors using ANN nonlinear 
method to forecast the variables of interest. The 
nonlinear Factor-ANN results compare to the results of 
the DFM and ANN models. To the best of our 
knowledge this is the first attempt to use the FANN 
model to forecast variables in general and in South 
Africa in particular. 
The empirical results show sizable gains in terms of the 
forecasting ability of the FANN compared to both the 
standard ANN and the DFM. Thus the FANN 
represents an improvement with respect to the standard 
ANN and the DFM.   
The remainder of the paper is organized as follows: 
Section 2 describes the FMs and ANN forecasting 
models; Section 3 presents the data; and the results from 
forecasting models are discussed in Section 4. Finally, 
we close with Conclusions in Section 5.  
 

II. THE MODELS 
This paper uses the FM to extract common components 
from a large set of variables, after which these common 
components are used to forecast the variables of interest 
using the linear DFM and the nonlinear ANN methods. 
 

A. Estimation Of The Factors And The Dynamic Factor 
Model 

Let the panel of observations   X୲  be the N stationary 
time series variables with observations at times t = 
1,......., T, where it is assumed that the series have zero 
mean. The idea behind the factor model is that most of 
the variance of the data set can be explained by a small 
number ݍ ا ܰ  of factors contained in the vector  ௧݂. In 
general the dynamic factor model representation is 
given by ܺ௧ ൌ  ߯௧ ൅ ߦ௧ ൌ ሻᇱܮሺߣ  ௧݂ ൅  ௧                 ሺ1ሻߦ
where  χ୲  are the common components driven by 
factors f୲, and ξ୲ are idiosyncratic components for each 
of the variables. In particular  ξ୲  is that part of   X୲  that 
cannot be explained by the common components. The 

                                                           
1 The choice of the out-of-sample span comes from the aim to 
investigate the performance of forecasting models during the period of 
financial crisis.  

common component is a function of the  q ൈ 1  vectors 
of dynamic factors which are common to all variables in 
the set    f୲ ൌ ሺfଵ୲ ..... f୯୲ሻԢ , the operator  λሺLሻ ൌ 1 ൅λଵL ൅ ڮ ൅ λୱLୱ   is a lag polynomial with positive 
powers on the lag operator L with  Lf୲ ൌ f୲ିଵ. This way 
the lags of the factors are allowed to affect the current 
movement of the variables. The model can be re-written 
in static representation as;  ܺ௧ ൌ  Λᇱܨ௧ ൅  ௧                                  ሺ2ሻߦ
where F୲ is a vector of r ൒ q static factors that comprise 
of the dynamic factors  f୲  and all lags of the factors. 
Basically there are three methods of estimating the 
factors in F୲ from a large data set. These methods were 
developed by Forni et al. [16] (hereafter FHLR2), Stock 
and Watson [39] (hereafter SW) and [27]. In the current 
paper we employ the estimation method developed by 
FHLR. Below, we give a brief description of SW and 
FHLR methods and how they differ. 
First we start with the SW model where the authors 
proposed estimating F୲ with static principal component 
analysis (PCA) applied to  X୲ . The factor estimates are 
simply the first r  principal components of   X୲  which 
according to SW are   F୲ ൌ Λ෡ᇱX୲ , where  Λ෡  is the N ൈr  matrix of the eigenvectors corresponding to the ݎ largest eigenvalues of the sample covariance matrix Σ෠. 
On the other hand, FHLR propose a weighted version of 
the principal components estimator suggested by SW, 
where the series are weighted according to their signal-
to-noise ratio, which is estimated in the frequency 
domain. The estimation of common and idiosyncratic 
components is conducted using two steps. First, the 
covariance matrices of the common and idiosyncratic 
components of   X୲  are estimated via dynamic PCA. 
This involves estimating the spectral density matrix 
of  X୲, ߑሺ߱ሻ, which has rank ݍ. For each frequency  ߱, 
the largest ݍ  eigenvalues and the corresponding 
eigenvectors of  ߑሺ߱ሻ  are computed, and the spectral 
density matrix of the common components   ∑ ሺ߱ሻఞ  is 
estimated. Then it follows that the spectral density 
matrix of the idiosyncratic components is given 
by Σ෠ஞሺωሻ ൌ Σ෠ሺωሻ െ Σ෠஧ሺωሻ.  Inverse Fourier transform 
provides the time-domain autocovariances of the 
common and the idiosyncratic components given 
by   Γ෠஧ሺkሻ  and  Γ෠ஞሺkሻ  for lag   k . Since dynamic PCA 
corresponds to a two-sided filter of the time series, this 
approach alone is not suited for forecasting. Second, a 
search is undertaken for the ݎ linear combinations of  X୲ 
that maximize the contemporaneous covariance 
explained by the common factors  Ζ෠୧ԢΓ෠஧ሺ0ሻΖ෠୧ ,  ݅ ൌ1, … . , .ݎ  This optimization problem is subject to the 
normalization  Ζ෠୧ᇱΓ෠ஞሺ0ሻΖ෠୨ ൌ 1  for ݅ ൌ ݆  and zero 
otherwise. This representation can be reformulated as 
the generalized eigenvalue problem such that  Γ෠஧ሺ0ሻΖ෠୧ ൌµො୧Γ෠ஞሺ0ሻΖ෠୧ , where  µො୧ denotes the i-th generalized 
eigenvalue and  Ζ෠୧  its  N ൈ 1  corresponding eigenvector 

                                                           
2 For further technical details on this type of factor models, see 
Schumacher [33]. 
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in their non-null spaces. The factor estimates according 
to FHLR are then obtained as ܨ෠௧ ൌ Ζ෠ԢX୲  with   Ζ෠ ൌሾΖ෠ଵ … Ζ෠୰ሿ. 
 

B. Dynamic Factor Model 
The estimated factors will be used to forecast the 
variables of interest. The forecasting model is specified 
and estimated as a linear projection of an h-step ahead 
transformed variable ݕ௧ା௛ into t-dated dynamic factors. 
The forecasting model follows the setup in [16, 39] 
which take the form: ݕ௧ା௛ ൌ ሻܮሺߚ መ݂௧ ൅ ௧ݕሻܮሺߛ ൅  ௧ା௛                 ሺ3ሻݑ
where  fመ୲  are dynamic factors estimated using the 
method by FHLR while  βሺLሻ and γሺLሻ  are the lag 
polynomials, which are determined by the Akaike 
Information Criterion (AIC) and the Schwarz 
Information Criterion (SIC). The  ݑ௧ା௛  is an error term. 
The coefficient matrix for factors and autoregressive 
terms are estimated by ordinary least square (OLS) for 
each forecasting horizon h. To generate the estimate and 
forecast of the Autoregressive (AR) benchmark we 
impose a restriction to Eq. (3), where, we set  ߚሺܮሻ ൌ03.  
  

C. The Artificial Neural Network (ANN) 
A neural network model can be described as a type of 
multiple regression in that it accepts inputs and 
processes them to predict some output. ANN can offer a 
valid approximation to the generating mechanism of a 
vast class of non-linear processes; see for example [24, 
28, 41] for their use as forecasting tools. There are a 
number of properties that make the ANN model an 
attractive alternative to traditional forecasting models4. 
Most importantly ANN models control or are resistant 
to the limitations of traditional forecasting methods, 
including misspecification, biased outliers and 
assumption of linearity [23]. The most significant 
advantages of the ANN models over other classes of 
nonlinear models is that ANNs are universal 
approximators that can approximate a large class of 
functions with a high degree of accuracy, see [12, 43]. 
The network used in this paper is a single hidden layer 
feed-forward network with  ݊  nodes in the hidden layer 
and linear jump connection or linear neuron activation 
function (see Fig 1) specified as follows: 
௧ା௛ݕ        ൌ ଴ߙ ൅ ∑ ௝௡௝ୀଵݓ ݃൫ߙ଴,௝ ൅ ∑ ௜,௝௣௜ୀଵݓ ௧ି௜൯ݕ ൅                        ∑ ௜௣௜ୀଵߚ ௧ି௜ݕ ൅  ௧ା௛                               (4)ߝ  
where inputs  y୲ି୧  represent the lagged values of the 
variable of interest and the output  y୲ା୦ is the variable 
being forecast, h indicates the forecast horizon, where  w୧,୨ሺi ൌ 1,2, … . , p, j ൌ 1,2, … . . , nሻ  and w୨ሺ j ൌ1,2, … . . , nሻare the weights that connect the inputs to the 
hidden layer and the hidden layer to output 
respectively,  α଴  is the bias. The function  g is a logistic 
                                                           
3We use the autoregressive model as our benchmark.  
4 For more details about the strengths and drawbacks of ANN, see 
Ramlall [25]. 

function given by  gሺxሻ ൌ ଵଵ ା ୣష౮ .  The ߝ௧ା௛  is an error 
term. The third summation in Equation (4) shows the 
jump connection or skip-layer network that directly 
links the inputs ௧ି௜  to the outputݕ   ௧ା௛ݕ    through ߚ 
coefficients. The most important feature about this 
model is the combination of the pure linear model and 
feed-forward neural network. Therefore, if the 
relationship between inputs and output is pure linear, 
then only the skip-layer given by coefficient set  ߚ  
should be significant, and if the relationship is nonlinear 
one expects the coefficients set  w  and α to be highly 
significant, while the jump connections coefficient  ߚ  will be relatively insignificant. Finally however, if 
the underlying relationship between input and output is 
mixed, then we expect all types of coefficient sets to be 
significant. The model is estimated by recursive least 
square using the Broyden, Fletcher, Goldfarb and 
Shanno (BFGS) algorithm [26]. The selection of the lag 
lengths and the number of nodes in the hidden layer are 
chosen on the basis of the training set or the in-sample 
RMSE, where n=5.  
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1: Structure of the best fitted network, N(3,5,1) 

D. Proposed Factor – Artificial Neural Network 
(FANN) Model 

Previous researches argued that combined models 
improve the predictive performance of time series 
forecasting. The combined models reduce the risk of 
using an inappropriate model as the underlying process 
cannot easily be determined; thus the hybrid model can 
reduce this risk failure and obtain more accurate results. 
In this paper we propose a hybrid model of artificial 
neural network and factor model in order to yield an 
enhanced predictive and forecast performance. The 
factor model (FM) extract components that are common 
between the 228 time series variables. The factor model 
expresses individual time series as the sum of two 
unobserved components, a common component, which 
is driven by a small number of common factors, and an 
idiosyncratic component which is specific to each 
variable. The FM is able to extract a few factors that 
explain the co-movement of all variables. Our proposed 
model used the FHLR approach explained above to 
extract these factors at the first step.    
In the second step, a neural network is used in order to 
model the nonlinear and linear relationships existing in 
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the factors  ௧݂   and  ݕ௧  the variable we need to forecast 
(see Fig 2), as follows: ݕ௧ା௛ ൌ ଴ߙ ൅ ∑ ௝௡௝ୀଵݓ ݃൫ߙ଴,௝ ൅ ∑ ௜,௝௣௜ୀଵݓ ௧݂,௜൯ ൅                             ∑ ௜௣௜ୀଵߚ ௧݂,௜ ൅  ௧ା௛                          (5)ߝ  
where w୧,୨ሺi ൌ 1,2, … . , p, j ൌ 1,2, … . . , nሻ  and w୨ሺ j ൌ1,2,…..,n  are the weights that connect the inputs to the 
hidden layer and the hidden layer to output respectively,  p  is the number of factors. In our application we arrive 
at  ݌ ൌ 5 as determined by Bai and Ng [5] approach and 
also supported by Onatski  [29, 30] test,   ݊  is the 
number of nodes in the hidden layer,   α଴  is the bias. 
The function  g  is a logistic function, where gሺuሻ ൌଵଵ ା ୣష౫ .  The coefficients β represent the linear part of 
the equation (5) which directly links the inputs  ௜݂  to the 
output  ݕ୲ା୦ . The  ߝ௧ା௛ is an error term. The number of 
nodes in the hidden layer are determined on the basis of 
the training set or in-sample RMSE, where n=3. 

 
 
 
 
 
 
 
 
 
 
 

 
 
 

Fig. 2: The best fitted network structure, N(5,3,1) 

 

III. DATA 
The data set contains 2285 monthly series, 203 from 
South Africa, covering the financial, real and nominal 
sectors, two global variables and 23 series of major 
trading partners and global financial markets. Thus 
besides the national variables, the paper uses a set of 
global variables such as gold and crude oil prices. In 
addition the data also includes series from financial 
markets of major trading partners namely the United 
Kingdom, the United States, China and Japan. The in-
sample period contains data from 1992:01 to 2006:12, 
while the out-of-sample set spans from 2007:01 to 
2011:12. The Augmented Dickey-Fuller (ADF) test is 
used to assess the degree of integration of all series. All 
non-stationary series are made stationary through 
differencing. The Schwarz information criterion (SIC) 
is used in selecting the appropriate lag length in such a 
way that no serial correlation is left in the stochastic 
error term. All series are standardized to have a mean of 
zero and a constant variance.  

                                                           
5 The data sources are South Africa Reserve Bank, ABSA Bank, Stats 
South Africa, National Association of Automobile Manufacturers of 
South Africa (NAAMSA), South African Revenue Service (SARS), 
Quantec and World Bank. 
 

Recently the determination of the number of the factors 
has been developed for both the case of the static factor 
model [1] and [5] and for the dynamic factor model [2, 
6, 22, 29, 30]. To specify the number of static factors, 
[1] and [5] use information criterion, based on AIC and 
BIC, to help guide the selection of the optimal number 
of factors  ݎ  in a large data set. We apply the Bai and 
Ng [5] approach which proposes five static factors. 
Onatski [29] developed a statistical test to test and 
determine the number of dynamic factors under the null 
hypothesis that the number of factors is equal to  ݇଴  
against the alternative  ݇ଵ ൐ ݇଴  (for details see [29]). In 
our case the test suggests two dynamic factors, which 
both explain more than 87% of variation of the entire 
data panel.   
 

IV. RESULTS 
A. In-Sample Results 
In this subsection we evaluate the in-sample predictive 
power of the fitted models. We estimate the forecasting 
models using the full sample, in order to check the 
robustness of our in-sample results. In-sample 
forecasting is most useful when it comes to examining 
the true relationship between the set of predictors and 
the future predictions of the variable of interest. Table 1 
below reports the RMSE6 of the in-sample forecasting 
results. The table reports the RMSE statistics for the AR 
benchmark model and the ratio of the RMSE for the 
other models to the RMSE for the AR benchmark 
model. Thus, the ratio that is higher than one indicates 
that the method under analysis is worse than the 
benchmark, so the model with a lowest RMSE ratio is 
deemed to perform better than the other models. Our 
proposed FANN model out preformed all other models 
with a large reduction in RMSE relative to the AR 
benchmark model for both variables. The reason is 
potentially because we merge the factors that efficiently 
handle large amounts of information that include 
external variables that influence South African economy 
with ANN nonlinear estimation model. The ANN model 
also provides fairly better in-sample forecasts compared 
to the AR benchmark model and DFM model. In 
general the FANN and ANN nonlinear models preform 
much better than DFM and AR linear models.  
 
TABLE 1: THE RMSE OF THE IN-SAMPLE FORECASTS 

Forecasting model Treasury Bill 
Rate  

JSE all Share 
prices 

AR (benchmark model)  0.8860 0.9747 
DFM 0.9369 0.9511 
FANN 0.6868 0.6536 
ANN 0.7731 0.8431 

Note: the first row reports the RMSE for the AR benchmark model; the 
remaining rows represent the ratio of the RMSE for the forecasting model to the 
RMSE for the AR. Bold entries indicate the forecasting model with the lowest 
RMSE. 
 
 

                                                           
6 The RMSE statistic can be defined as  ටଵே ∑ሺ ௧ܻା௡ െ௧ ෠ܻ௧ା௡ሻଶ, 

where   ܻݐ ൅ ݊  denotes the actual value of a specific variable in 
period ݐ ൅ ݊  ܽ݊݀  ௧ ෠ܻ௧ା௡is the forecast made in period   ݐ  for  ݐ ൅ ݊  
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B. Out-Of-Sample Forecasting Results 
In this subsection, we evaluate out of sample forecasts 
of the Treasury Bill Rate and JSE all share prices over 
the period 2007:01 to 2011:12. This period includes the 
global financial crisis that impacted the South African 
economy at the end of 2008 and 2009. We consider 
short forecast horizon of 3 months and long forecast 
horizon of 12 months. Table 2 below reports the RMSE 
statistics for the AR benchmark model in the first row 
and the ratio of the RMSE of other models to the RMSE 
for the AR benchmark model. The result of the AR 
benchmark model shows that the RMSE increases as 
horizon increases, and indicates that more accurate 
forecasts for the AR are available at shorter horizons. 
Note; in this paper we choose iterated forecast instead 
of direct forecast, on the other hand, the forecasts 
constructed recursively, using all available data to 
estimate parameters. The results of the two variables 
can be summarized as follows: 
 Treasury Bill Rate: the proposed FANN model 
outperforms all other models for short horizon 
producing the lowest RMSE followed by the AR 
benchmark model. For the long horizon, the ANN 
outperforms all other models followed by the FANN 
model. The FANN result shows that the RMSE 
increases as the forecast horizon increases. Compared to 
the DFM7 model the FANN model performs better, thus 
the estimation method used to model the factors 
matters.   
JSE all Share prices: the FANN model stands out in 
forecasting the JSE all share prices for both short and 
long horizons with a sizable reduction in RMSE relative 
to the AR benchmark model of 8 percent to 19 percent. 
The DFM outperforms the ANN and AR benchmark 
model, thus the derived factor models FANN and the 
DFM outperform univariate linear and nonlinear models 
AR and ANN respectively. These results clearly 
indicate the importance of the information contained in 
the common factors, which in turn, are derived from 
228 monthly series. The performance of the FANN 
model over the DFM model indicates the role of the 
estimation method that captures the nonlinearity 
associated to the variables of interest. Babikir et al. [4] 
found evidence of structural breaks in the JSE share 
return index in the end of 2008 and mid of 2009. These 
events are included in our out-of-sample period, thus it 
shows that the FANN model captures well the structural 
breaks compared to the DFM and the other models.  
We attribute the forecast performance of derived factor 
models the FANN and the DFM for the JSE all Share 
prices over the Treasury Bill Rate to the data set used to 
extract the factors which contains more financial than 
macroeconomic variables. 
 
 
 

                                                           
7 Gupta R. and Kabundi A. [21] found that the DFM model 
outperforms the other models they used to forecast Treasury Bill Rate 
for South Africa.  

TABLE 2: THE RMSE OF OUT-OF-SAMPLE (2007:01 – 2011:12) FOR 3 
AND 12 MONTH HORIZONS 

Forecasting model h = 3 h = 12 
Treasury Bill Rate 

AR benchmark  0.5208 0.6919 
DFM 1.1334 0.9829 
FANN 0.9453 0.9364 
ANN 1.0620 0.7524 

JSE all Share prices 
AR benchmark  1.7743 1.8187 
DFM 0.9655 0.9532 
FANN 0.8150 0.9273 
ANN 1.0325 1.0947 

Note: the first row reports the RMSE for the AR benchmark model; the 
remaining rows represent the ratio of the RMSE for the forecasting model to the 
RMSE for the AR. Bold entries indicate the forecasting model with the lowest 
RMSE. 
 
In order to assess the FANN model forecast accuracy, 
we perform the cross model test of the FANN against 
other models, namely AR, DFM and ANN. The cross-
model test is based on the statistic proposed by Diebold 
and Mariano [15], which is given by; ܵ ൌ ௗതඥ௏෡ሺௗതሻ where ҧ݀ ൌ ଵ்  ∑ ሺ݁ଵ௧ଶ െ ݁ଶ௧ଶ ሻ௧்ୀଵ  is the mean difference of the 
squared prediction error, and ෠ܸ ሺ ҧ݀ሻ  is the estimated 
variance. Here  ݁ଵ௧ଶ  denotes the forecast errors from the 
FANN model and ݁ଶ௧ଶ  denotes the forecast errors from 
the AR benchmark model, the DFM and ANN. The  ܵ 
statistic follows a standard normal distribution 
asymptotically. Note, a negative and significant value of ܵ indicate that the FANN model outperforms the other 
model in out-of-sample forecasting. Table 3 below 
shows the test results. In general the FANN model 
outperforms the AR and ANN in predicting the two 
variables of interest and for each of the short and long 
horizon forecasts. In other words, based on RMSE and 
on the Diebold and Mariano test statistics, we have 
relatively strong evidence that there is a significant 
statistical gain from using the FANN model over other 
models. We note that there is no significant statistical 
difference between the forecasts of factors derived 
models namely the FANN and the DFM in most cases. 
For the JSE all share prices variable the forecast of the 
FANN model out performs linear and nonlinear 
univariate models for 12 month horizons with at least 
5% level of significant, and outperforms all other 
models for the 3 month horizons in particular.  
 
TABLE 3: DIEBOLD – MARIANO TEST (2006:01 – 2011:12) 

Model Forecasting Horizons  
3 month 12 month 

Treasury Bill Rate  
FANN vs. AR 
FANN vs. DFM 
FANN vs. ANN 

 
-3.3174 *** 
-1.2825 
-0.5206 

 
-2.5733** 
0.0503 
3.040** 

JSE all share prices  
FANN vs. AR 
FANN vs. DFM 
FANN vs. ANN 

 
-3.0829** 
-3.7276*** 
-2.7126** 

 
-2.0972** 
0.7960 
-2.3940** 

Note: ***, ** and * indicate significant at the 1%, 5% and 10% levels 
respectively.  
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V. CONCLUSION 
In this paper, the Factor Models (FMs) are applied to 
introduce a new hybrid method for improving the time 
series forecasting performance of the artificial neural 
networks. The model used the factors that were 
extracted from 228 monthly series. Five static factors 
and two dynamic factors were extracted which explain 
more than 87% of the variation in the data panel. These 
factors are then used as independent variables or inputs 
to the ANN in a model we call the factor ANN model 
(FANN) and to estimate the common linear DFM. 
Besides the FANN and the DFM, we estimate standard 
ANN and AR benchmark model. The four models were 
then used to forecast the Johannesburg Stock Exchange 
(JSE) share prices and the Treasury Bill Rate over the 
estimation period 1992:01 to 2006:12. The models were 
evaluated based on the RMSE for 3 and 12 month ahead 
forecasts over an out-of-sample horizon of 2007:01 to 
2011:12. 
 The in-sample results showed the superiority of the 
FANN over the other models. The FANN outperformed 
the AR benchmark model with a large reduction in 
RMSE of around 31 percent to 35 percent. The model 
outperformed the standard ANN model but the ANN 
model outperformed the DFM, which in turn, performed 
better than AR benchmark model. 
In general the out-of-sample results revealed that the 
best performed model appears to be our proposed 
FANN model, followed by the DFM model. These 
results confirmed the usefulness of the factors that were 
extracted from large related variables. On the other 
hand, as far as estimation is concerned the nonlinear 
FANN model was suitable to capture nonlinearity and 
structural breaks compared to linear models. Thus the 
structural breaks associated to the financial crisis that 
affected the economy can explain the failure of the 
linear DFM compared to the nonlinear FANN model. 
The results of Diebold-Mariano test suggested that the 
FANN model produced forecasts that were significantly 
better than the AR benchmark model forecasts, and the 
standard ANN model forecasts.  
Further research can evaluate the FANN forecasting 
performance in small and large simulated samples and 
compare it to FAVAR model. 
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