
 
 

 

  

Abstract—Alzheimer’s disease (AD) is becoming one of the 
major diseases of the elderly. Traditionally, patients take 
questionnaires or do some balance tests for clinical evaluation. 
However, results with such evaluation are subjective. For more 
objective quantitative measurement, this paper uses an 
inertial-sensor-based device to measure the gait information 
while participants walking. In the experiment, the participants 
are asked to walk on a 40m strike line and take single-task and 
dual-task tests. In the dual-task test, the participants are asked 
to count down from 100. This paper presents a stride detection 
algorithm to automatically acquire gait information of each gait 
cycle from the acceleration and angular velocity signals. 
Features are calculated from those inertial signals. After feature 
generation, we do feature selection to select the significant 
feature. Then, a probabilistic neural networks (PNNs) is used to 
classify if the participants suffer from AD. In this paper, we 
provide an objective way to evaluate the situation of the 
participants. The experimental results successfully validate the 
effectiveness of the proposed device and the proposed algorithm 
with an overall classification accuracy rates are 63.33% and 
70.00% in women and men group, respectively. 

I. INTRODUCTION 
HE rapidly increasing number of the elderly has 
widespread effect to our public health system. The health 
care and aging-associated services face with the problem 

of shortage of resources. The number of older people over 60 
years will double from about 11% to 22% between 2000 and 
2050. Meanwhile, the number of older people aged 60 years 
and over is expected to become 2 billion from 605 million [1]. 
One of the most important diseases relative to age is 
Alzheimer's disease (AD). Many researches showed that AD 
is an age-associated neurodegenerative disease [2-6]. With 
the increase in the elderly population, the number of AD 
patients will grow. Unfortunately, the growing population of 
AD patients has become a serious problem and results in a 
heavy social burden [7]. In 2006, 26.6 million people were 
afflicted by AD, and the number would quadruple by 2050 
[8]. 

How to detect the disease earlier and have proper treatment 
is very important. The cognitive function of 
neuropsychological can be used to assist clinical diagnosis. 
Mini-Mental State Examination (MMSE) and Cognitive 
Assessment Screening Instrument (CASI) are two common 
neuropsychological tests to evaluate the cognitive 
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dysfunction and memory impairment. 
Balance ability and gait abnormalities are also the 

indicators for cognitive function and AD evaluation. 
Common assessment methods are Berg Balance Scale (BBS), 
Time-Up and Go Test (TUGT), and Short Physical 
Performance Battery (SPPB). Berg Balance Scale [9] has 14 
daily life movements for elderly people’s static and dynamic 
balance ability evaluation. Time-Up and Go Test [10] is a test 
for the functional mobility assessment. In the test, subjects 
need to stand up from an arm chair first, then walk 3 meters, 
turns, walk back and sit down on the arm chair. The SPPB test 
[11] asks subjects to have various standing ways for balance 
evaluation, including standing with the feet together in the 
side-by-side, semi-tandem, and tandem positions. 

Pettersson et al. [12] used BBS, TUGT, Frenchay 
Activities Index (FAI), and “figure 8” walk to estimate the 
balance ability of the elderly with healthy elderly and elderly 
with mild AD. Pettersson et al. [13] also used the BBS, 
TUGT, FAI, TUG manual (diffTUGT), Talking While 
Walking (TWW), and Tinetti balance tests to evaluate the 
activity level and motor function of the subjects, who had no 
cognition impairment, mild cognition impairment (MCI), 
AD, and other dementia. The result showed that the motor 
function was affected in very mild AD. The MCI subjects and 
the AD subjects had difficulties to perform a cognitive task 
while walking. Romdhane et al. [14] used the SPPB to obtain 
the gait and walking parameters in activities for the 
assessment of AD symptoms. The result indicated that the 
AD subjects presented an obvious shorter stride length and 
slower stride speed. 

However, based on the above literature survey, the 
assessments need to be recorded manually and might cause 
measurement deviation. To be more accurate, some 
instruments were developed to record the information while 
the patients were doing examines. For example, Nadkarni et 
al. [15] compared gait parameters between early AD patients 
and health control group by using footswitches. The results 
show that the AD patients have slower velocity, slower 
cadence and shorter stride length than HCs. Nakamura et al. 
[16] videotape ten consecutive walking patterns of the 
patients to study the relationship between falls and stride 
length variability in senile dementia of the Alzheimer type 
(SDAT). Webster et al. [17] used the GAITRite walkway 
system® (CIR Systems, Inc., 60 Garlor Drive Havertown, PA 
19083) to record subjects’ spatial and temporal gait 
information. The system is an electronic mat consisting of 
pressure-activated sensors arranged in grid formation. Gillain 
et al. [18] combined the electrical photocells and the 
Locometrix® triaxial accelerometer to measure walking 
speed, stride frequency, stride length, symmetry, and 
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regularity in elderly people with MCI and A
In this paper we develop inertial sensors
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get better classification result and to redu
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The remainder of this paper is organize
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II. Wearable Inertial Sensor M
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III. AUTOMATIC COGNITIVE ASSESS
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A. Signal Preprocessing 
The high-frequency noise and ha

cause error; therefore, the signal p
reduce the problem. In this paper, 
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a) Calibration of Inertial Sensors 
Non-unit scale factor and the non-
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of gravity and with the opposite direc
respectively. SFacc is in g per volts (g/V) w
where g is the gravitational acceleration. V
voltage in each axis of the accelerometer. 

To calibrate gyroscopes, the equation (4)
to (3), is used. Nevertheless, the scale facto
in each axis of the gyroscopes can be ob
datasheet. In ideal situation, the output of 
gyroscopes should be zero when the dev
Therefore, the bias (Bgyro) (°/s) of each axis
is calculated as the mean of the angular velo
The calibration equation of the gyroscope is
 ܹ ൌ ௬ܨܵ  ൈ ܸ௬   ,௬ܤ
 
where Wc is the calibrated angular velocity a
is the output voltage in each axis of the gyro

b) Low-pass Filter 
In this paper, a moving average filter is u

high-frequency noise. The filter is expressed
ሾ݊ሿݕ  ൌ  ଵே  ∑ ሾ݊ݔ െ ݅ሿேୀଵ , 
 
where x[n] is the calibrated data and y[n] is
The N is the number of points, we selec
moving average in this study. 

B. Stride Detection 
In this paper, a stride detection algorithm

automatically acquire gait information of eac
the filtered acceleration and angular veloci
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single-task and dual-task walking. The 
detection algorithm based on a threshold me
of 1) gait forward detection; 2) finding sw
finding stance-point. The procedure of the
algorithm is shown in Fig. 3. The steps of th
detection algorithm are illustrated as follow
 
Step 1 Detecting gait forward: Because of
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signal to detect the forward motion. First, w

Fig. 3.  The procedure of the stride detection 
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Fig. 5 shows the result after the st
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ܴܣܸ  ൌ  ∑ ሺ௫ି௫ҧሻమಿసభேିଵ , (10) 
 
where xi is the acceleration or angular velocity signals, ݔҧ is 
the mean value of xi, and N is the data number in each 
dynamic interval in (8)-(10). 
4) Interquartile range (IQR): IQR is the difference between 
the 75th percentile value and the 25th percentiles value. 
5) Mean absolute deviation (MAD): 
ܦܣܯ  ൌ  ∑ |௫ି௫ҧ|ಿసభே . (11) 
 
6) Root mean square (RMS): 
ܵܯܴ  ൌ  ට∑ ௫మಿసభே . (12) 
 
7) Skewness: Skewness is the symmetry of the acceleration 
and angular velocity signals. 
ݏݏ݁݊ݓ݁݇ݏ  ൌ  ாሺ௫ି௫ҧሻయఙయ . (13) 
 
8) Kurtosis: Kurtosis is to measure whether the acceleration 
or angular velocity signals are peaked or flat relative to a 
normal distribution. 
ݏ݅ݏݐݎݑ݇  ൌ  ாሺ௫ି௫ҧሻరఙర , (14) 
 
where E(．) is the expected value, ݔҧ is the mean value of the 
acceleration or angular velocity signals, and σ is the standard 
deviation of the acceleration or angular velocity signals in 
(13) and (14). 
9) Energy: Energy is calculated as the sum of the magnitudes 
of squared discrete fast Fourier transform (FFT) components 
of the signals. 
ݕ݃ݎ݁݊ܧ  ൌ ∑ ||మసభ , (15) 
 
where ݂  is the ݅௧  FFT component of the acceleration or 
angular velocity signals.  | ݂| is the magnitude of ݂. 
10) Gait symmetry: Calculate the cross-correlation between 
right foot’s interpolated data and left foot’s interpolated data 
in the same gait cycle. In this paper, we interpolated the 
acceleration and angular velocity signals in each gait segment 
to 200 data points. 
௦௬௧௬ܥܥ   ൌ ∑ ሺሻݔ ሺሻݔ  ேୀଵ , (16) 
 
where ܰ  is total number of points in gait, ݔሺሻ  is the 
accerleration or angular velocity signals of the nth data point 
in ith gait cycle from right foot, ܽሺሻ  is the accerleration or 
angular velocity signals of the nth data point in ith gait cycle 
from left foot. 

11) Gait regularity: Calculate the cross-correlation between 
one and the following gait. 
௨௧௬ܥܥ   ൌ ∑ ሺሻݔ ሺሻାଵݔ  ,ேୀଵ  (17) 
 
where ܰ is the total number of data points in gait, x୰ሺ୬ሻ୧  is the 
accerleration or angular velocity signals of the nth data point 
in ith gait cylce from right foot, x୰ሺ୬ሻ୧ାଵ  is the accerleration or 
angular velocity signals of the nth data point in the following 
gait cycle from right foot. 
 

 
D. Feature Normalization 
The difference of the value ranges of the abovementioned 

66 features may influence the performance of the 
classification. In order to eliminate the effects of the ranges, 
we normalize each feature individually by using z-score. The 
equation of the normalization is shown as follows. 
 
ݕ  ൌ ௫ିఓఙ , (18) 
 

where x and y are the original value and normalized value 
of each feature, respectively. ߤ is the mean of the original 
values and the ߪ  is the standard deviation of the original 
values. 

E. Feature Selection 
A feature selection method is employed to select a subset 

of significant features for reducing computational load and 
improving classification accuracy. A representative feature 
selection method is utilized in this paper: the sequential 
forward selection (SFS) which is a bottom-up feature 
selection. Suppose that we want to choose an m-dimensions 
feature subset from original feature set. SFS starts from the 
empty feature set, sequentially add one feature from original 
feature set which results in the best classification rate. Finally, 
we can obtain an optimal m-dimensions feature subset. 

F. Classifier Construction 
In this paper, we use the probabilistic neural networks 

(PNNs) to differentiate the participants with and without AD 
via the gait features. The PNN proposed by Specht is based on 
Bayes’ strategy and designed for dealing with classification 
problems. The PNN is composed of four layers including an 
input layer, a pattern layer, a summation layer, and an output 
layer. Fig. 6 shows the structure of the PNN. Now, we 

TABLE I 
GAIT FEATURES USED IN THIS STUDY 

Signal type Axis Feature name 

Acceleration 
signals 

x- 
y- 
z- 

1) Mean 
2) SD 
3) VAR 
4) IQR 
5) MAD 
6) RMS 
7) Skewness 

Angular 
velocity 
signals 

8) Kurtosis 
9) Energy 
10) CCsymmetry 
11) CCregularity 
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introduce the training and testing stages in detail, 
respectively. 
Training Stage: Training sample ܆ ൌ ሼ ଵܺ, ܺଶ, ڮ , ܺேሽ is used 
to train the PNN, where N is the number of the training 
sample. Each sample includes a selected feature subset Xj = Sj 
= ሾݏଵሺሻ, ,ଶሺሻݏ … ,  ሺሻሿT with n dimensions, which is extractedݏ
from jth dynamic interval of jth stride and can be taken as the 
training input features of the network, where ݆ א ሼ1, 2, ڮ , ܰሽ. 
The number of the neurons in the input and pattern layers are 
equal to n and N, respectively. The synaptic weight wj,i

(P) 
between the ith neuron in the input layer and the jth neuron in 
the pattern layer is defined as follows: 
,ሺሻݓ  ൌ  ሺሻ. (21)ݏ 
 
This is, ݓ,ሺሻ is immediately assigned the value of ith feature 
extracted from jth training sample, where ݅ א ሼ1, 2, ڮ , ݊ሽ. The 
number of neurons in the summation layer is equal to the 
number of the classes (Nc), which equals to 2 in this paper. 
The synaptic weight wk,j

(S) between the jth neuron in the 
pattern layer and the kth neuron in the summation layer is 
defined as follows: 
,ሺௌሻݓ  ൌ  ൜1   ݂݅ ܺ א  ,݁ݏ݅ݓݎ݄݁ݐ   ,0ܥ   (22) 

 
where Ck means the kth class. The value of wk,j

(S) is equal to 1 
only when the input sample belongs to class k. The number of 
neurons in the competitive output layer equals to 1. The 
synaptic weight w1,k

(O) between the kth neuron in the 
summation layer and the neuron in the output layer is defined 
as follows: 
ଵ,ሺሻݓ  ൌ 1. (23) 
 
In general, the PNN is created with zero error by using the 
training sample. 
Testing Stage: Once the PNN is trained, a testing sample ܆ഥ  ൌ ത܁   ൌ  ሾݏҧଵ, ,ҧଶݏ … ,  ҧሿT  with n dimensions is used to testݏ
the trained PNN, which is taken as the testing input features 
of the network. The definitions and activation functions of 
each layer of the PNN used in this paper are described in the 
following. 
1) Input layer: The input features ሼݏҧଵ, ,ҧଶݏ … , ҧሽݏ  are 
conveyed to the neurons in the pattern layer directly. 
2) Pattern layer: The distance between the testing sample ܁ത  ൌ  ሾݏҧଵ, ,ҧଶݏ … ,  ҧሿT and the training sample is calculated inݏ
this layer. The exponential activation function is described as 
follows: 
 

ܲ ൌ exp ሺെ ∑ ሺ௪ೕ,ሺುሻି ௦ҧሻమసభ ଶఙೕమ ሻ, (24) 

 
where σj is the smoothing parameter. 
3) Summation layer: The neurons in this layer calculate the 
maximum likelihood of the input sample ܁ത  ൌ  ሾݏҧଵ, ,ҧଶݏ … ,  ҧሿTݏ

belonging to the class k. The output value of the kth neuron in 
the summation layer is defined as Sk. 
 ܵ ൌ  ∑ ௪ೖ,ೕሺೄሻ ൈ ೕೕಿసభ∑ ௪ೖ,ೕሺೄሻೕಿసభ ,   (25) 

 
where Pj is the jth neuron output in the pattern layer. 
4) Summation layer: The neuron in this layer compares all 
the outputs of the summation layer and estimates the 
numerical label according to the maximum probability value. 
ܥ  ൌ  arg max אሼଵ,ଶ,….,ேሽ ܵ,   (26) 
 
where C denotes the estimated class of the testing sample ܆ഥ. 
In this paper, the output of the PNN is shown as the label of 
the two kinds of participants (i.e., healthy control and AD 
patients are labeled as ‘1’ and ‘2’, respectively.) 

 

IV. EXPERIMENTAL RESULTS 
The effectiveness of the proposed algorithm of the physical 

activity classification is validated by using 10-fold, 5-fold, 
2-fold, and LOSO (Leave one subject out). Acceleration 
signals are collected from 60 subjects. Participant 
demographic information and experimental results will be 
shown in Sections IV.A and IV.B. 

A. Participants 
In this paper, all of the participants are referred to the 

Department of Neurology at National Cheng Kung University 
Hospital, according to the professional diagnosis by Dr. Pai. 
Table II shows the demographics information in which the 
participants are divided into two groups: AD and HC. There 
are 30 participants (15 males and 15 females) in the AD group 
and 30 participants (15 males and 15 females) in the HC 
group. In the AD group, the mean age is 60.20 and 55.47 in 
men and women, respectively. In the HC group, the mean age 
is 63.40 and 64.80 in men and women, respectively. The Mini 

Fig. 6. Structure of PNN. 
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Mental State Examination (MMSE) and Cognitive 
Assessment Screening Instrument (CASI) are two common 
neuropsychological tests, which we use to evaluate the 
cognitive dysfunction and memory impairment in all 
participants. The score range of MMSE is from 0 to 30, score 
lower than 24 is considered as memory impairment. The 
CASI score is from 0 to 100, score under 80 is considered as 
cognitive impairment. In this paper, the CASI scores in the 
HC group are 95.27±2.79 and 94.87±2.83 in men and women, 
respectively. And the scores in the AD group are 79.13±10.15 
and 80.20±11.53 in men and women, respectively. On the 
other hand, the MMSE scores in the HC group are 28.40±1.59 
and 28.40±1.24 in men and women, respectively. And the 
MMSE scores in the AD group are 22.40±3.38 and 
23.73±3.65 in men and women, respectively. 

 
TABLE II 

DEMOGRAPHIC INFORMATION OF PARTICIPANTS 
  HC AD 

Men 

n 15 15 
Age, y 60.20±6.87 63.40±9.28 
Height, cm 167.97±7.41 164.77±7.95 
MMSE 28.40±1.59 22.40±3.38 
CASI 95.27±2.79 79.13±10.15 

Women 

n 15 15 
Age, y 55.47±5.11 64.80±5.03 
Height, cm 160.33±4.17 154.83±6.24 
MMSE 28.40±1.24 23.73±3.65 
CASI 94.87±2.83 80.20±11.53 

B. Results 
In this paper, we separate the group by gender because of 

the biological difference. In each group, we use feature 
selection to find out the significant features and the results are 
shown in Table III. 

TABLE III 
THE RESULTS OF FEATURE SELECTION 

 Selected feature 

 Feature 
name Axis Signal Test 

Women 

MAD Y Gyro Single 
Regularity Y Gyro Dual 
Regularity Y Acceleration Dual 
Regularity X Acceleration Dual 

IQR X Gyro Single 
Skewness X Acceleration Dual 
Kurtosis X Acceleration Dual 
Kurtosis Z Gyro Dual 

Symmetry Y Gyro Single 

Men 
Kurtosis X Gyro Dual 
Kurtosis Y Gyro Dual 

IQR Z Gyro Dual 
 

After the feature selection, the PNN is used for the 
differentiation finding in the participants with and without 
AD. In this paper, we use 10-fold, 5-fold, 2-fold, and LOSO 
(Leave one subject out) to get the PNN results. The results are 
shown below in Table IV. 

 
TABLE IV 

THE RECOGNITION RATE, SENSITIVITY, AND SPECIFICITY IN THE WOMEN 
AND MEN GROUP 

  Recognition 
rate (%) Sensitivity Specificity 

Women 

10-fold 56.67 0.67 0.47 
5-fold 63.33 0.65 0.68 
2-fold 60.00 0.50 0.75 
LOSO 63.33 0.67 0.60 

Men 

10-fold 70.00 0.69 0.72 
5-fold 66.67 0.65 0.65 
2-fold 70.00 0.62 0.81 
LOSO 70.00 0.67 0.73 

V. CONCLUSION 
An algorithm for the stride detection and classification by 

using inertial signals is presented in this paper. During the 
experiment, inertial signals are collected from the device we 
developed. The device is mounted on the participants’ foot. 
The proposed stride detection algorithm is used to detect each 
stride and calculate the features from the signals. Consider the 
physiological difference between women and men, the 
participants are divided into two groups by gender. SFS is 
used to do feature selection in each group. After the feature 
selection, those features are tested by the PNN in 2-fold, 
5-fold, 10-fold, and LOSO. The results show that the 
recognition rate is 63.33% and 70.00% in women and men 
group, respectively. 
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