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Abstract—Head direction cells are thought to be an integral
part of the neural navigation system. These cells track the
agent’s current head direction irrespective of the host’s location.
In doing so, they process a combination of inputs: angular
velocity and visual inputs are major effectors; to correctly
encode the agent’s current heading. There are close to fifteen
models of head direction cell systems found in literature today.
Very few of these models have been implemented for bio-
mimetic navigation in robots. In this paper, we describe an
implementation of the head direction cell system on the robot
operating system (ROS) robotic platform as a first step towards
a bio-mimetic navigation system for Willow Garage’s personal
robot 2 (PR2) robot.

I. INTRODUCTION

NAVIGATION is a capability animals must necessarily
possess to survive. It is well known that even smaller

animals, such as rats, have sufficiently well developed nav-
igation systems that enable them to perform tasks such as
foraging and finding shelter, which are a necessity. The
biological navigation systems possessed by these animals
are quite different from the navigation systems that are
employed in classical robotics. Classical robotics usually
employs mathematical methods that are based on nautical
navigation. These methods are generally robust, complicated
and maladaptive in that they attempt to track the agent’s exact
spatial parameters at all times. On the other hand, reviews of
biological navigation techniques conducted by Trullier and
colleagues [1] and Franz & Mallot [2] document them to
be highly adaptive, layered and sufficient. As an example, at
simpler levels of biological navigation, an animal does not
need to know its exact location and can successfully navigate
to a goal location with reference to a prominent landmark in
the immediate environment.

In spite of the advantages that biological navigation brings,
bio-mimetic systems are seldom used in robotics. Even when
they are, they are bio-inspired: they pick certain properties
from biological systems, but they do not completely model
them. In the past, a major reason behind this was the lack of
information about the underlying neural processes that make
biological navigation possible. In the past decades, however,
the discovery of neurons that are related to navigation: place
cells [3], head direction cells [4], [5], grid cells [6] and
others have increased our understanding of the subject to
such an extent that a cognitive map theory of biological
navigation has been proposed [7], [8], [9], [10], [11], [12].
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The theory states that via the associations between neurons
with specific behaviours, animals maintain a “cognitive map”
of their environment.

In this paper, we detail an implementation of a model of
the path integrator dynamics of head direction cells proposed
by Stringer et al. [13] on the ROS robotic platform [14]
as a starting point towards a head direction, place and grid
cell based bio-mimetic path integrator navigation system. We
also document minor extensions to the original model that
improve the navigation system.

In section I-A , we provide an introduction to head direc-
tion cells and briefly discuss their computational modelling
in section I-B. We then detail our model in section II.
In section III, we present our results and briefly discuss
challenges and our future work plans in section IV. Finally,
we summarize and conclude in section V.

A. Head direction cells

Since their discovery by Ranck [5], head direction cells
have been subjected to a great amount of research. Head
direction cells are neurons that maintain a firing response that
encodes the agent’s current head direction. Each individual
neuron in a head direction cell system fires maximally when
the agent faces a particular direction. This is referred to
as the preferred direction of the particular neuron. A set
of such neurons, the preferred directions of which together
encompass all 360 degrees, therefore, acts like an internal
compass, tracking the head direction of the animal as it moves
around. For detailed information on the properties of head
direction cells, we refer the reader to Taube’s comprehensive
reviews [15], [16], [17].

Head direction cells possess two navigational capabilities.
First, they exhibit path integrator properties similar to an
inertial navigation system (INS) [18]: head direction cells
integrate angular velocity information to calculate the agent’s
current heading [19], [20]. Second, head direction cells have
been found to anchor to salient landmark cues [21], [22],
[23], [24] which makes it possible for them to contribute to
a landmark based navigation system.

Path integrator systems inherently suffer from drift. Since
the value at each iteration is calculated on the basis of the
result at the previous iteration, the error component in their
outputs is also integrated at each iteration. This implies that
the error in their calculations continuously increases over
time. In order to limit the error such that the computed
value is usable, inertial navigation systems are generally
coupled with other absolute navigation systems: landmark
systems [25] or global positioning systems (GPS) [26], for
example. The landmark or GPS systems serve to reset the
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system to an accurate value at regular intervals, ensuring
that the drift is kept in check. Head direction cells, similarly,
suffer from drift in the absence of visual cues and are reset
when a familiar, previously observed landmark is sighted
again by the agent [17].

B. Computational modelling of head direction cells

Various computational models of the head direction cell
system have been proposed in literature. These models are
identical in that they all attempt to replicate the biological
data that is known about head direction cells: firing rate
profiles, neural processing, underlying architecture.

With the discovery of more and more information on
head direction cells, computational models have also become
more detailed. Early models only concentrated on how the
path integrator mechanism might process angular velocity
information to calculate the current heading. McNaughton et
al. proposed a look up table based method as the underlying
mechanism [27]. Skaggs et al. replaced the look up table with
a ring attractor where correctly set up synaptic connections
between neuron sets would permit a single packet of activity
to encode head direction [28]. The discovery of predictive
head direction cells in the anterior thalamic nucleus first
led Blair and Sharp to model these neurons on the NEU-
RON [29] simulator [20]. In their model, they demonstrated
how the predictive head direction neurons lead current head
direction neurons as had been observed. Similarly, Redish
et al. proposed a coupled attractor model that also featured
both predictive and current head direction neurons [30]. Their
model employed more than one set of synaptic connections
between neurons sets. Zhang also put forward an analytical
model that used multiple synaptic connections between neu-
rons sets [31]. The implication, that quick synaptic changes
are required for the functioning of the neuron sets deems
both these models less biologically plausible.

All of the above mentioned models used synaptic weights
that were predefined. Stringer et al. proposed a system based
on Hebbian learning to explain how the synapses may be set
up by self organization [13]. They only applied the method
to model a path integrator system. Kyriacou extended the
model to include kinesthetic inputs [32]: he implemented
the model on a robot and used an omnidirectional camera
to simulate visual inputs in the system. In another work,
Kyriacou documents how an evolutionary algorithm [33]
may be used to ascertain the parameters that controlled the
dynamics of such a network [34].

Other models include but are not limited to: Arleo &
Gerstner’s implementation on the mobile Khepera robot [35];
Song & Wang’s implementation that used a lower level
spiking neuron architecture [36]; Degris and colleagues’
implementation of Song & Wang’s work on to the Pekee
robot as part of the Psikharpax project [37]; Goodridge &
Touretzky’s model of the anticipatory characteristics of head
direction cells that did not use an attractor network following
observations that GABA containing interneurons that are
necessary for attractor formation were absent in the anterior
dorsal nucleus [38]; and Zeidman & Bullinaria’s extension
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Fig. 1: The head direction cell set schematic.

to Goodridge & Touretzky’s model to include optic flow
information [39].

II. METHODS: THE MODEL

A. Structure

Our model is based on the self organizing model proposed
by Stringer et al. [13]. Their original model presented a
biologically plausible method of setting up synaptic weights
in the head direction cell system, via Hebbian learning [40]. It
only applied the method to the path integrator system of head
direction cells and did not discuss visual inputs and landmark
navigation. We’ve incorporated vision cells into their model
in an attempt to extend it to project both vestibular and visual
inputs on the head direction cell set as has been found.

The head direction cell system here makes use of three sets
of neurons as shown in the Figure 1. The head direction cell
set is a fully connected recurrent network, i.e., each neuron
HDi is connected to every other neuron HDj via synapses,
the weights of which are denoted as wHDij . Here, HDi and
HDj are the pre-synaptic and post-synaptic neurons with
firing rates rHDi and rHDj respectively. The head direction
cells, therefore, form a one dimensional circular array. While
cells with adjacent preferred directions appear next to each
other in our implementation (and most models), this is not
how head direction cells are found in the brain. In fact, as
long as the synaptic connections are set up appropriately, the
location of neurons is irrelevant to the functioning of the
system.

Rotation cells ROTk, with firing rates rROTk , are also
connected to each head direction cell via synapses denoted
wHD ROT
ijk . Here, these synapses are not simply synapses

between a singular head direction cell and a rotation cell.
Rather, they’re effective synapses between the pre-synaptic
neuron HDi, the post-synaptic neuron HDj and the rotation
cell ROTk. The two rotation cells in Figure 1 fire depending
upon clockwise and anti-clockwise rotation inputs respec-
tively as shown in Figure 6.

The visual cell set represents an abstraction of the visual
processing system and each visual cell V ISl, with firing rate
rV ISl , is connected to every head direction cell HDi via
synapses wHD V IS

il .
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B. Dynamics

Our model is a firing rate based model, which provides a
level of detail that is sufficient for our system. The activation,
hHDi , of each head direction cell HDi is given at time t by:

τ
dhHD

i (t)

dt
= −hHD

i (t) +
φ0

CHD

∑
j

((wHD
ij − wINH)rHD

j (t))

+
φ1

CHD×ROT

∑
jk

(wHD ROT
ijk rHD

j (t)rROT
k (t))

+
φ2

CHD×V IS

∑
jl

(wHD V IS
jl rV IS

l (t))

(1)

Here, τ is the time constant while φ0, φ1, φ2, CHD,
CHD×ROT , CHD×V IS and wINH are tunable parameters.
These parameters control the effect the respective inputs have
on the head direction cell attractor. wINH represents global
inhibition that the GABAergic interneurons exert on the
system. The combination of local excitation of head direction
cells and the global inhibition gives the system continuous
attractor characteristics [41]. We use a Euler stepper method
to integrate equation (1).

The firing rate of each head direction neuron is a sigmoid
function of its activation:

rHDi (t) = f(hHDi (t)) =
1

1 + e−2β(hHD
i (t)−α) (2)

where α and β are constants. Figure 5 shows firing rate pro-
files exhibited by the head direction cell set during a test run.
Due to the regular learning employed in this implementation,
the firing rates of all head direction cells are similar. This isn’t
the case in biology, where the firing rates of head direction
cells vary from one to another.

The synapses between all neuron sets are set up using
Hebbian learning:

∆w = k × (rpost × rpre) (3)

Here, ∆w is the change in synaptic weight. k is the learning
rate of the synapse. rpre and rpost are the firing rates of
the pre-synaptic and post-synaptic neurons respectively. This
learning rule does not, however, include synaptic depression,
or bounding of synaptic weights. We use a competition based
normalization rule to bound our synapses:

Ŵ =
W

|W |
(4)

Here, W is a matrix containing the individual synaptic
weights between neurons of the form:

W =


w0,0 w0, 1 · · · w0,n

w1,0 w1,1 · · · w1,n

...
...

. . .
...

wn,0 wn,1 · · · wn,n


|W | is the norm of the W matrix and Ŵ is the nor-

malized synaptic weight. It is worth noting that the above
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Fig. 2: wHDij values after training.

normalization departs from the Hebbian learning require-
ment of locality [42] - when a normalization method such
as (4) is used, the final values of the individual synaptic
connections between the neuron pairs become dependent
on all the synaptic strengths in the complete neuron set.
However, the classical Hebbian rule states that the synaptic
weights between two neurons should only be affected by the
activity of the two concerned neurons. We briefly discuss
other formulations of Hebbian learning in section IV.

III. EXPERIMENTAL PROCEDURE AND RESULTS

We implemented the model based on the ROS [14]
platform which provides support for a number of robots,
including the PR2. ROS provides underlying tools that enable
us to develop offline simulations and then move the code as-
is on to the robot. For development and testing, we collected
data bags from the inertial measurement unit (IMU) sensors
of the PR2 robot to run our simulations. We used a hundred
head direction cells to cover the 360° direction space. We
used two rotation cells, one each for clockwise and anti
clockwise rotation, and a single visual cell (Figure 1). The
values of constants used in our implementation are given in
table I.

The system runs in three phases:

A. Setting up of synaptic weights to appropriate values

During this first phase, we set up the synaptic weights
in the network to their appropriate values. The network
is initialized with all synaptic weights as zero, implying
that no learning or association has taken place between
the sets of neurons. In order to set up both the internal
head direction cell synapses wHDij and the effective rotation
synapses wHD ROT

ijk , we simulate rotation in the system
in both clockwise and anti-clockwise directions. Each head
direction cell is assigned a preferred direction such that the
set encompasses the complete 360° range: 0°, 3.6°, . . . ,
356.4°. As done previously in literature, we model the head
direction cell firing profile as a Gaussian:
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rHDi = exp(−1 + ∆S2

2σHD
2 ) (5)

∆S is the angular distance between the current head
direction and the head direction cell’s preferred direction:

∆S = min(|x|, |360− x|) (6)

where, for each neuron HDi with preferred direction
xpreferredi , for a head direction θ

x = θ − xpreferredi (7)

σHD is a constant that controls the width of the Gaussian
profile, and consequently, controls the angular width that a
head direction cell is active in. Note that equation (5) is
only used to calibrate the synapses to their correct values.
Equation (2) is used thereafter.

In order to calibrate the network’s synapses, one of the
rotation cells is activated, simulating either clockwise or anti-
clockwise rotation. Simultaneously, the firing rate profile, as
obtained by equation (5), is simulated such that each head
direction cell fires maximally, i.e., the system is simulated to
face the preferred direction of each head direction neuron in
the set, one neuron after the other. The firing rate profile
of the head direction neuron set shifts according to (5).
The simultaneous firing of the neuron sets modifies the
synapses between them according to the Hebbian learning
rule discussed in section II.

Since we permit each neuron to fire maximally only once
during both the clockwise and anti-clockwise iterations, our
training method is uniform. The uniformity can be seen
in Figure 2, which shows the recurrent synaptic weights
between head direction cells, wHDij , before normalization.
Observe that normalization will not modify the nature of the
graph. Also note that as a result of Hebbian learning from the
simulated Gaussian firing rate profiles, cells with preferred
directions near each other have stronger synaptic connections
than cells that are far apart, as is expected.

B. Initializing the network to an initial direction

Once the synaptic weights are set up appropriately, a
packet of activity must be stimulated in the attractor. This
packet of activity is the initial or reference heading of the
agent. An initial packet of activity is forced on the system
by projecting the required profile on to the head direction
cell attractor from the visual input for a short period of time.
The firing of the single vision cell can be simulated by simply
setting its firing rate to the maximum value, 1, in equation (1):

rV IS1 = 1 (8)

Further, to set the initial direction to the preferred direction
of head direction cell i, we simply set the synapses between
the vision cell and head direction cells, wHD V IS

1,j , to the
synaptic weight between head direction cell i and every other
head direction cell j, wHDij . This is equivalent to setting up
the association between the visual feature cell and the head
direction cell set using equation (3).
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Fig. 3: Stabilization of initial activity packet
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Fig. 4: Sub-optimal parameters do not result in a stable
activity packet

wHD V IS
1,j = wHDij (9)

Since wHDij has already been set up in a way that will
cause the set of head direction neurons to form a packet of
activity peaking at head direction neuron i during the training
step, the assignment plainly ensures that projections from the
visual cell will form a similar activity packet that also peaks
at the chosen head direction neuron. The particular neuron
is associated to the visual feature cell in this way. Note that
this method cannot be extended to a set of multiple visual
feature cells that will project a firing rate profile instead of
a single projection. In such a case, an association will have
to be made by simulating the set of visual feature cells and
head direction cells similar to the method described in the
previous section.

During our experiments, we observed that forcing an initial
packet of activity did not guarantee a functional system. The
attractor should maintain the packet of activity in the absence
of external inputs. The parameters φ0 and wINH that effect
the recurrent behaviour of the network must be fine tuned to
ensure that the activity packet stabilizes as shown in Figure 3,
the other outcome being the activity packet flattening out as
shown in Figure 4.1

1We are most grateful to Dr. Simon Stringer for his input on this subject.
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Fig. 5: Firing rates, rHDi , obtained from equations 1 and 2
during test run.

The continuous attractor, if set up properly, permits the
packet of activity to lie in a state of neutral equilibrium, like
a ball lying on a perfectly horizontal table surface.

C. Running the system with angular velocity data

Figure 6 shows the behaviour of the network when tested
with angular velocity data. The firing rates of the two
rotation cells are a sigmoid function of the angular velocity
inputs similar to equation (2). The figure shows that the
head direction indeed responds to angular velocity inputs.
Of special interest is the graph’s behaviour at time=1300
which shows circular attractor nature of the network - since
synaptic weights between head direction neurons with pre-
ferred directions 356.4° and 0° have been trained such that
these two neurons are adjacent, the firing profile translates
seamlessly off the “end” of our one dimensional attractor
to its “beginning”. This is a consequence of equation (6)
which ensures that the head direction neuron with preferred
direction 356.4° has the same synaptic connection with its
two adjacent cells that have 352.8° and 0° as their preferred
directions respectively. This confirms the continuous attractor
nature of the network. Figure 4 also illustrates the ring nature
of the one dimensional attractor network - it shows an initial
packet of activity where the firing rate peaks at head direction
neuron 0 and symmetrically reduces in both directions. We
tested the system with several bags of data and observed
encouraging results.

The rate at which the head direction firing profile moves
depends on the strength of the rotation neurons’ projections
on it. In the current configuration, the system has not been
optimised to correctly map the rotations of the agent, i.e.,
the movement of the head direction activity profile does not
reflect the true rotation of the agent in the world frame. This
isn’t because it cannot be done: the accuracy can be improved
fine tuning the value of φ1 which controls the strength of the
rotation neurons’ projections on to the head direction cells.
However, as we briefly discuss in the next sub section, our
current work focusses on associating head direction cells to
salient features in the environment for landmark navigation,
and since this will function as a drift correction mechanism
in itself, we’ve permitted the system to drift and have put off

TABLE I: Constants used in the implementation

Number of head direction cells 100

Number of rotation cells 2

Number of vision cells 1

α 1.5

β 3

φ0 1000

φ1 2000

φ2 1000

CHD 100

CHD×ROT 200

CHD×V IS 100

k 1

wINH 0.02

σHD 10

optimization of these constants.

D. Correcting drift using salient visual cues: preliminary
tests

Figure 7 shows the results of a simulation where the head
direction cell set is assumed to incur drift and, a projection
from the visual feature cell, which would be caused by the
agent observing a familiar feature, is used to correct this drift.
The mechanism behind this is similar to the mechanism used
to initialize the network as described in section III-B. In order
for the visual inputs to override the activity packet maintained
by path integration, the projections must be strong enough.
We discuss our ideas on using multiple visual features in the
next section.

IV. DISCUSSION

Researchers have attempted to implement bio-inspired nav-
igation systems in the past, although the level of inspiration
and the extent of implementation has varied. The Psikharpax
project [43], [44], for example, attempted to create an artifi-
cial rat and implemented head direction and place cells as its
basis for navigation. RatSLAM [45], on the other hand, uses
similar “pose cells” to propose a solution to the simultaneous
localization and mapping (SLAM) [46] problem. (For more
examples, see Franz & Mallot’s review [2].)

Bio-mimetic navigation provides two closely related re-
search areas. The first is to improve our understanding of
biological navigation. This is done at different levels, for
example, via behavioural studies or neuron recordings. The
second, computational modelling, serves as a tool to verify
collected information and proposed theories, while providing
alternative navigation systems that can, in the future, be used
in robotics. Even though bio-mimetic systems are not yet con-
sidered mature enough for use in task oriented robotics ahead
of classical navigation techniques, it is accepted that even
smaller animals such as ants and rats possess navigational
capabilities that are superior to classical robotic navigation
techniques. To be able to reliably mimic these biological
methods would be a great stride in the field of autonomous
navigation.
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Fig. 6: Test runs with angular velocity data from the PR2 robot

In spite of the complexity of the underlying neural sys-
tems that makes bio-mimetic systems difficult to implement,
systems that achieve a high level of similarity can and
have be designed. The model of the head direction system
implemented here, for example, deviates from known infor-
mation on head direction cells in certain aspects but does still
sufficiently carry out its intended navigational function.

Challenges and future work

The implementation of the path integrator half of the head
direction cell system is the starting point in our attempt to
develop a bio-mimetic navigation system for the PR2 robot
using the ROS platform. The information this provides is not
yet sufficient to carry out actual navigation. In the absence
of a set of salient visual cues, the system will continue to
drift as it runs, like any other INS [25]. An INS is generally
coupled with other input sources, such as GPS [26], that reset
the accumulated drift at regular intervals. The head direction
system can similarly correct drift by detecting familiar visual
features in the environment as was briefly demonstrated in
section III-D. Our next goal, is therefore, to associate the
head direction cell system to environmental cues that will
reset the head direction system to its associated direction
whenever they are observed. Since the system will associate
with a set of cues, it will be capable of approaching these
cues. The agent will be able to carry out the local navigation
strategies: search, direction-following, aiming and guidance,
as enumerated by Franz & Mallot [2].

A further goal of ours is to include other known neuron sets
that are related to navigation: grid cells [6], place cells [3] and
boundary cells [47]. Grid cells form a regular triangular grid
which acts as a spatial map to encode the agents location.
The neuron set uses path integrator mechanisms similar to

head direction cells2. Place cells too encode the agent’s
location and have been found to associate with visual features
similar to head direction cells. However, they form place
fields instead of a regular grid like map that is exhibited by
grid cells. The last, boundary cells, respond to environmental
boundaries. Implementing a system that includes all these
neuron sets will provide obstacle, location and heading
information to the agent along with some information on
visual features that they associate with. This information is
enough for a simple landmark based system.

An important part of the model is the Hebbian learning
rule mentioned in equation (3). The formula that we’ve
used currently is the simplest mathematical formulation of
a Hebbian synaptic modification rule. As is visible, this rule
does not provide for synaptic saturation. As long as the pre-
synaptic and post-synaptic neurons fire simultaneously, the
synapse between them will continue to strengthen. While this
formulation covers strengthening of synapses by long term
potentiation (LTP) [48], [49], it does not implement the flip
side: long term depression (LTD) [50]. Just as LTP causes
strengthening of synapses when presynaptic and postsynaptic
neurons fire nearly simultaneously, LTD causes weakening
of synapses if such simultaneous firing does not occur. The
inability of the learning rule to provide for synaptic saturation
and weakening makes it less biologically plausible. It also
makes the implementation more difficult: if the synapses do
not saturate at a known value, it is difficult to ascertain
constant values for parameters that control the projection
of inputs on to head direction cells: φ0, φ1, φ2. During

2Our paper detailing the addition of grid cells to this head direction cell
model has been accepted at ICANN 2014 to be presented at the conference
in Hamburg, Germany from September 15 - 19, 2014.
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Fig. 7: Correcting drift using a single visual cue. (Note that
the graphs for t=40 and t=50 overlap)

our simulations, we discovered that unbounded synapses
constitute one of the cases where the projections on the head
direction cells increase to such an extent that all neurons
begin to fire maximally. Since the maximum firing rate in our
model is the same for all head direction cells, this also causes
the firing rate profile to flatten out and the system ceases to
provide a peak that denotes the current head direction.

A number of formulations of the Hebbian rule have been
proposed in literature [51], [52]. Such rules incorporate
modifications to provide for LTD and synaptic saturation.
One such modification is to normalize the synaptic weights,
as shown in equation (4). Normalization is a competition
based method: if synaptic efficacy increases, it must be
at the expense of other synapses [42]. Other formulations
include gating of the synaptic changes by either presynaptic
or postsynaptic activity. While we did attempt to use gated
rules with saturation in our model, we were unable to find a
set of parameters that provided the required dynamics. Since
the recurrent synapses between the head direction cells and
the synapses between rotation cells and head direction cells
remain largely unchanged during the running of the system,
we decided to use the normalization rule and fix the synaptic
weights after initial calibration of the system. For association
with visual features, however, the formulation that is used to
modify synapses between the head direction and visual cells
will need to incorporate weakening of synapses via LTD so
that the system can disassociate with (forget) features that
are no longer present in the environment over a period of
time.

The inclusion of multiple visual features presents a chal-
lenge also. In order for the system to associate with more
than one feature, our implementation of visual cells should
be able to differentiate between features so that they can each
be encoded uniquely by our population of vision cells. We
are yet to decide on a method to obtain this since modelling
the biological visual system may be too complex for our
purposes.

V. SUMMARY AND CONCLUSION

An implementation of a model of the head direction cell
system on the ROS platform was detailed in this paper.

The implementation integrates angular velocity inputs using
neural mechanisms to track the orientation of the robot.
Certain extensions to the original model required to enable
integration of visual inputs were also discussed. Visual inputs
provide sensory information that is used to correct drift in the
path integrator mechanism. The anchoring of head direction
cells to visual landmarks makes it possible for the system
to also provide a feature based navigation method. While
a landmark navigation system will be limited to navigating
between locations that are visible to the agent, they can be
coupled with more complex map based methods to provide
a layered navigation system. Various challenges and their
tentative solutions were discussed as work to be done in the
future to follow up the path integrator system.

Biological navigation follows a layered approach. The
navigation technique employed depends on the task to be
completed by the organism. For example, it is inefficient
to use metric mapped navigation to approach a goal state
that is visible to an agent. In such cases, simple navigation
techniques such as piloting or landmark navigation would be
quicker and more efficient. With this implementation of the
path integrator dynamics of a head direction cell ensemble,
we move closer to developing a landmark based navigation
system as the simplest component of a layered bio-mimetic
system for the PR2 robot.
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