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Abstract—We live in the flow of time, and the sensor signals
we get not only have a huge amount in space, but also keep
coming without a break in time. As a general method for effective
retrospective learning in neural networks (NNs) in such a world
based on the concept of “subjective time”, “causality trace” is
introduced in this paper. At each connection in each neuron,
a trace is assigned. It takes in the corresponding input signal
according to the temporal change in the neuron’s output, and is
held when the output does not change. This enables to memorize
only past important events, to hold them in its local memory,
and to learn the past processes effectively from the present
reinforcement or training signals without tracing back to the
past. The past events that the traces represent are different in
each neuron, and so autonomous division of roles in the time axis
among neurons is promoted through learning. From the viewpoint
of time passage, there are parallel, non-uniform and subjective
time scales for learning in the NN. Causality traces can be applied
to value learning with a NN, and also applied to supervised
learning of recurrent neural networks even though the way of
application is a bit different. A new simulation result in a value-
learning task shows the outstanding learning ability of causality
traces and autonomous division of roles in the time axis among
neurons through learning. Finally, several useful properties and
concerns are discussed.

I. INTRODUCTION

We live in the flow of time, and the sensor signals we
get not only have a huge amount in space, but also keep
coming without a break in time. We, who live in such a world,
have a great ability of retrospective learning in which the past
processes should be updated appropriately from the present
reward or other signals. Aiming to realize such a great ability
in artificial learning systems, reinforcement learning and/or
supervised learning for a recurrent neural network (RNN) have
been proposed and used widely.

Supervised learning for an RNN, represented by BTPP
(Back Propagation Through Time) [1] and RTRL (Real Time
Recurrent Learning) [2], enables a learning system to memo-
rize important past information or to generate useful dynamics
through retrospective learning from the given training signals.
In BPTT [1], which is the most popular, retrospective learning
is realized by holding all or truncated past inputs and outputs
with a constant interval of time to trace back to the past.
Therefore, it needs a huge amount of memory, and is not
suitable for practical use. In RTRL [2], instead of tracing back
to the past, the contribution of every connection weight to

every neuron is updated, and learning is performed on-line.
However, O(n3) memory capacity and O(n4) computational
cost are necessary where n is the number of neurons, and they
are beyond the order of the number of connections O(n2).
Therefore, it cannot be locally achieved and so is not practical.

Reinforcement learning [3], represented by TD (Temporal
Difference)-Learning, enables a learning system to acquire past
time series of values and actions through retrospective learning
from the present reward or punishment. In reinforcement
learning, TD-learning using eligibility traces TD(λ) [3] is
one of the frameworks for realizing effective retrospective
learning. Bakker et al. introduced the eligibility traces when
an RNN was used in reinforcement learning [4], and at each
local connection, one trace was implemented. However, the λ
parameter that decides the decay of the past information in
the trace is a constant. Therefore, the information is decayed
constantly not depending on how the state is important.

Here, one big concern pops up when contrasting the learn-
ing in artificial systems with ours. Retrospective learning needs
some sort of memory to hold some information about the past
state. In the artificial ones, there seems to be a preconception
that the time should pass uniformly also in the memory; the
step-size is a constant in the discrete-time domain, while the
time constant is a constant in the continuous-time domain. On
the other hand, thinking about ourselves, we are not conscious
of all the past states but conscious of only important states
or events, which seems to enable effective learning. When
someone goes abroad by plane taking one day, for most of the
time, he/she sits in a seat on the plane, but can pay attention
to a mistake made in a moment at the airport before the
long flight. He/she does not remember all the states (sensor
signals) at every second of the day, but can remember and learn
his/her behaviors at the airport retrospectively. Considering the
above for years, the author has wanted to develop a flexible
and effective learning system with memories with a non-
uniform internal time scale in which time passes slowly around
important events, but passes fast otherwise. However, if we
provide the knowledge about what the important events are
to the system in advance, it loses flexibility. Therefore, it is
aimed to develop a learning system in which both flexible
time scales and the extraction of important events are learned
together in parallel. Since the measure of importance is set up
by the learner itself, the time scale is called “subjective”.
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Many works have focused on the “time” in learning. In
many of them, basic mechanisms for measuring time, such
as pacemaker clock or decaying memory, have been directly
discussed, and the Weber’s law in the time domain often has
been a target to be explained [5]-[7]. In the work by Nakahara
et al. [8], internal time is introduced in the TD model, and
an explanation is attempted for the choice reversal in the
intertemporal choice tasks. However, most of the effort is put
on the conversion of value learning between two different time
systems, and it has not been mentioned how the internal time
system is formed. Daw et al. proposed a model of dopamine
response using a TD algorithm for a partially observable semi-
Markov process [9]. Semi-Markov process provides us with
the framework to deal with an event-driven process chain with
non-constant intervals. However, the index of importance is
just binary: event or not, and no way is given for how the
events are discovered by learners. Yamashita et al. proposed the
learning system named MTRNN (Multiple Timescale Recur-
rent Neural Network) which consists of two sub-networks with
a different time constant, and a dynamics representing more
abstract state is formed in the sub-network with the larger time
constant [10]. However, since the time constant is a constant
in each neuron, the states change slowly in the sub-network
with the large time constant, and it is difficult to deal with
both a long-lasting event and a short event effectively.

The author proposed a novel method to solve the above
problem in supervised learning of RNNs [11], [12], and also
proposed separately a similar but different method in value
learning using a layered neural network (NN) already [13].
Both use an NN, and have a common basic mechanism for
memorizing the past important events effectively. In this paper,
the mechanism is named “causality traces”, and is introduced
as a general way for effective retrospective learning of NNs.
It is generally formulated both in discrete- and continuous-
time domains, and the essential difference in usage between
supervised learning of RNNs and value learning using layered
NNs is clarified. A simple and new simulation result in a value
learning shows the excellence of the proposed approach much
more clearly than ever, and is the first to show that the causality
traces promotes the division of roles in the time axis among
neurons through learning compared with the case of eligibility
trace. Finally, several useful properties and concerns for the
novel approach are generally discussed.

II. CAUSALITY TRACES

A. Concept of causality traces

As shown in the lower portion of Fig. 1, even though
the author comes to his office almost everyday, he doesn’t
remember all the sensor signals at all the time, but remembers
only important events such as “turn right at the intersection”
or “go over the bridge”. Such efficient memories seem to make
us learning easy and effective. The problem is to define what
the important events are. It is easy to think that ‘state change’
is defined as an important event. However, when replacing
‘state’ with ‘sensor signals’, the number of sensor signals is
huge and each signal changes very often. Only by moving
our head, the visual sensor signals change drastically. Then,
as shown in the upper portion of Fig. 1, the ‘state change’
is defined as the output change in each neuron. A memory
called “causality trace” is assigned at each connection. It takes
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Fig. 1. Sensor signal space and internal representation space in an NN with
the time axis. Important events for each neuron are defined from the change
of its output. Causality traces take in the inputs according to the temporal
change in the neuron’s output.
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Fig. 2. A causality trace cj,i assigned at the i-th connection in the j-th
neuron.

in the corresponding input signal according to the change
of the neuron output, and holds its value when the output
does not change. When a reinforcement or training signal is
given, learning is performed retrospectively using the traces
without tracing back to the past. As learning progresses, each
neuron is expected to represent important events without being
greatly influenced by trivial events. Therefore, two effects,
that learning enables the causality traces to hold distant past
events and that the traces enable learning for more distant past
processes, work synergistically. The division of roles for events
at different times is also expected among neurons as learning
progresses.

B. Basic formulation of causality traces

As shown in Fig. 2, in order to take in and hold the causal
inputs according to the state change in each neuron, a causality
trace c is assigned at each connection, which can be a feedback
connection in an RNN. Its time evolution is formulated in the
continuous-time domain as

dcj,i

dt
=

|doj |
dt

(ini − cj,i) (1)

where cj,i is the causality trace assigned for the i-th input in
the j-th neuron, oj is the output of the neuron and ini is the
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i-th input. By omitting dt from both sides, it is rewritten as

dcj,i = |doj |(ini − cj,i). (2)

This means that the trace change is independent from the
external time coordinate system. In other words, in a situation
where state changes slowly, the trace also changes slowly,
and in a situation where state changes rapidly, the trace also
changes rapidly without adjustment of any parameter such as
a time constant. When it is formulated in the discrete-time
domain, it is written as

cj,i,step = (1 − |∆oj,step|)cj,i,step−1

+|∆oj,step|ini,step (3)

where ∆oj,step = oj,step−oj,step−1. It can be also known that
the equation does not depend on the step-size ∆t.

On the other hand, the eligibility traces are usually used in
reinforcement learning [3], but they are easily extended to a
general method to hold the past information for retrospective
learning in neural networks. The eligibility trace e takes an
input signal constantly as a first-order lag and its time evolution
is represented as follows for each of the continuous- and
discrete-time domains.

τ
dej,i

dt
= ini − ej,i (4)

ej,i,step = (1 − ∆t

τ
)ej,i,step−1 +

∆t

τ
ini,step

= λej,i,step−1 + (1 − λ)ini,step (5)

where ∆t is the duration of one step, τ is a time constant and
λ(0 ≤ λ < 1) is a constant representing the decay of the trace
in the discrete-time domain. The second term in the right-hand
side of the Eq. (5) is usually just ini,step, but so as that the
trace approaches the input itself when it is a constant, (1−λ)
is put before ini,step in Eq. (5). Comparing Eq. (1) and Eq.
(4), in the causality trace, dt

|doj|
= 1/

|doj|
dt in Eq. (1) works

as a ‘time constant’ though it is not a constant anymore. It
means that the time passes fast when the output changes a lot
and passes slowly when the output does not change so much.
The neuron output o is not given from outside of the NN,
but generated with the connection weights in the NN from the
external inputs, and the weights are updated through learning.
Therefore, it can be said that the time scale is “subjective”.

Fig. 3 shows an example of temporal change in the
causality trace compared with the case of eligibility trace.
They are computed from an input and an output generated
for demonstration. It is seen that when the neuron output (b)
changes a lot at t = T2 or t = T3, the causality trace (c) also
changes a lot towards the neuron input (a). On the other hand,
the eligibility trace with a large λ (d) always moves slowly
towards the input (a) not depending on the output (b), while
the eligibility trace with a small λ (e) moves a lot to the input
(a) when the input changes a lot. A typical difference between
causality trace and eligibility trace can be seen in the effect of
the input between T3 and T4. At t = T5, the eligibility trace is
large not depending on the value λ, while the causality trace
is small. That is because the duration between T3 and T4 is
short, but the output changes significantly.
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Fig. 3. Comparison of the temporal change between causality trace and
eligibility trace.

C. Causality traces in value learning

In value learning using a layered neural network (NN)
whose output represents state or action value, the causality
traces can be used on behalf of the eligibility traces. Here, for
simplicity, discrete-time domain and the step size ∆t = 1 are
assumed, and also the static neuron model is used as

o
(l)
j,t = f(u(l)

j,t), u
(l)
j,t =

∑
i

w
(l)
j,io

(l−1)
i,t (6)

where o
(l)
j,t and u

(l)
j,t are the output and internal state of the j-th

neuron in the l-th layer at time t, and o
(1)
i,t means i-th external

input signal. f() indicates an output function, and a sigmoid
function is used in this paper. As shown in Fig. 4(a), retrospec-
tive learning is necessary to learn not only the present output
(value) o

(out)
1,t , but also the past outputs o

(out)
1,t′ (t′ = 0, 1, .., t−1)

simultaneously with the discounted TD-error γt−t′ r̂t where γ
is a discount factor (0 ≤ γ < 1) and r̂t is the TD-error. The
TD-error is represented as r̂t = rt+1 + γo

(out)
1,t+1 − o

(out)
1,t where

r is the given reward. To learn the past output o
(out)
1,t′ at the

present time t, the sensitivity of the internal state u
(l)
j to the
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(a) Value learning in a feedfoward neural network

(b) Supervised learning in a recurrent neural network (RNN)
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output o
(out)
1 at time t′ represented as s

(l)
j,t′ =

∂o
(out)
1,t′

∂u
(l)
j,t′

, has to

be included in the trace and so the eligibility trace is updated
at time t as

e
(l)
j,i,t = γλe

(l)
j,i,t−1 + (1 − λ)s(l)

j,to
(l−1)
i,t (7)

referring to [4]. The sensitivity s
(l)
j,t is computed by back

propagation by expanding it as

s
(l)
j,t =

∂o
(out)
1,t

∂u
(l)
j,t

=
do

(out)
1,t

du
(out)
1,t

∂u
(out)
1,t

∂o
(l)
j,t

do
(l)
j,t

du
(l)
j,t

. (8)

By replacing λ with 1− |∆o
(l)
j,t|, the causality trace is updated

as

c
(l)
j,i,t = γ(1 − |∆o

(l)
j,t|)c

(l)
j,i,t−1 + |∆o

(l)
j,t|s

(l)
j,to

(l−1)
i,t . (9)

The weight is updated at time t for each case of eligibility
trace and causality trace as

∆w
(l)
j,i,t = ηr̂t(e

(l)
j,i,t or c

(l)
j,i,t) (10)

where η is a learning rate [13].

D. Causality traces in supervised learning of recurrent neural
networks (RNNs)

Here, it is explained how the causality traces are used for
supervised learning in an RNN. As an example for explana-
tion, an Elman-type RNN is considered in which neurons in
the hidden layer have feedback connections with each other.
Unlike RTRL that also enables on-line learning in RNNs, the
eligibility trace or causality trace holds only local influence of
each connection weight to the neuron where the connection
exists, and so either the memory capacity or computational
cost falls in the order of the number of connection weights. As
shown in Fig. 4(b), in RNNs, the past input signals influence
the present hidden neurons’ outputs through the feedback
connections, and the output of the RNN is derived as a
static mapping of them. Accordingly, only the hidden neurons
employ the causality traces, and the output neuron updates its
connection weights as well as the regular BP. In contrast to the
case of value learning mentioned in the previous sub-section,
the past output is not learned from the present training signal.
Therefore, each causality trace in each hidden neuron takes in
and holds just the product of the input signal and the derivative
of the neuron as

c
(l)
j,i,t = (1 − |∆o

(l)
j,t|)c

(l)
j,i,t−1 + |∆o

(l)
j,t|f

′(u(l)
j,t)o

(l−1)
i,t . (11)

N is assumed to be the number of external input signals, and
also it is assumed that the suffix i indicates an external inputs
when i ≤ N , and indicates a feedback input signals from a
hidden neuron at the previous time step when i > N . Then, for
the feedback input signals, the time evolution of each causality
trace is written as

c
(l)
j,i,t = (1 − |∆o

(l)
j,t|)c

(l)
j,i,t−1 + |∆o

(l)
j,t|f

′(u(l)
j,t)o

(l)
i−N,t−1. (12)

Each weight in each hidden neuron is updated using propa-
gated error signal δ as follows [12].

∆w
(l)
j,i,t = ηδ

(l)
j,tc

(l)
j,i,t. (13)

In BPTT, the error signal for the past time t′ computed from
the square error Et = 1

2 (trt − o
(out)
1,t )2 at the present time t

where trt is the given training signal is represented as

δ
(l)
j,t′←t = − ∂Et

∂u
(l)
j,t′

= (trt − o
(out)
1,t )

∂o
(out)
1,t

∂u
(l)
j,t′

, (14)

and is propagated backward from t to t′. However, the prop-
agated error signal δ here [11] is computed as

δ
(l)
j,t = (trt − o

(out)
1,t )f ′(u(out)

1,t )w(out)
1,j +

∑
k

v
(l)
k,j,t−1δ

(l)
k,t−1.

(15)
v
(l)
k,j holds the product of connection weight w

(l)
k,j and the past

f ′(u(l)
k ) when the output change was large. Therefore, the way

of updating v is similar to that for the causality trace c, and
v
(l)
k,j is computed as

v
(l)
k,j,t = (1− |∆o

(l)
k,t|)v

(l)
k,j,t−1 + |∆o

(l)
k,t|w

(l)
k,j+Nf ′(u(l)

k,t). (16)

The error signal δ is similar to that in BPTT, but there
are two major differences. At first, it does not include the
derivative f ′(u(l)

j,t) of the neuron because the causality trace
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includes it as in Eq. (11) to hold the derivative when the
neuron’s output changed.

The second big difference is that the time does not turn
back, but goes on by the propagation through the feedback
connections. Let us consider the update of the weight w

(l)
j,i

based on its contribution at t−1 to the present network output
o
(out)
1,t through the k-th hidden neuron at time t as shown in

Fig. 5(a). In BPTT, as shown in Fig. 5(b-1), δt−1 is computed
from the present δt, and the weight is updated according to
the product of the δ

(l)
j,t−1 and the past input signal o

(l−1)
i,t−1 .

The learning is not on-line in the meaning that updates of the
weights for the times t−1, t−2, ... are done individually at time
t. However, in the learning using the traces, as shown in Fig.
5(b-2), even though the error signals trace backward through
the same feedback connections, the time goes on and δt+1 is
computed from δt. After that, the weight is updated according
to the product of the δ

(l)
j,t+1 and c

(l)
j,i,t+1 at time t+1 expecting

that the causality traces hold the information about the past
important events. Accordingly, the retrospective learning can
be done on-line such that Eq. (13) has only suffix t for time.
The algorithm is still being explored and is not exactly the
same as in [11], [12], and should be further examined in the
future. When eligibility traces are used, |∆O

(l)
j,t | is replaced

with (1 − λ).

III. SIMULATION

In this section, a simulation where state value (critic) is
learned with a layered NN is introduced to show the effective
learning ability by using the causality traces clearly. As shown
in Fig. 6, there is a special one-dimensional field that is divided
into 100 regions. An agent takes 200 steps to go through an
odd-numbered region, and takes just 2 steps to go through an
even-numbered region. There are 300 input signals, and each
of them has a non-zero value only in one of the 100 regions.
There are three types of input signals. One of them takes a
constant value in the corresponding region. In the other two
types, the value is increased from 0.0 to 1.0 or decreased from
1.0 to 0.0 with a constant slope in the region. The number
of hidden neurons is 30. In the output layer, there is only
one neuron that learns to represent the state value. Here, no
exploration is done, and the agent always just moves one step
to the right. At the 10,100th step, the agent reaches the goal,
which is the right end of the field, and gets a reward of 1.0.
The discount factor γ is set so as that the ideal state value
at the first step is 0.2. The purpose of this task is to form
the correct state value (critic), and the convervence speed is
compared among the cases of one-step learning (no trace or it
can be said as eligibility trace with λ = 0.0), eligibility trace
with various λs, and causality trace.

The task is similar to that in [13], but the sizes of all the
regions are not uniform to show the effectiveness of causality
traces much more clearly. Furthermore, after exploring the
initial input-hidden connection weights, it was found that small
initial weights are better for learning. Therefore, all of them
are set to 0.0 instead of random numbers from -1.0 to 1.0 for
the case of eligibility trace. However, in the case of causality
trace, when the weight is set to 0.0, the output of each hidden
neuron does not change and so the causality traces do not
change at all. Then small random values from -0.1 to 0.1 are
used for the initial weights. Nevertheless, the output changes
in hidden neurons are still small, and then the change of each
output ∆O in Eq. (9) is normalized by the value range that
the neuron experienced in the past. The initial hidden-output
connection weights are set to a random number from -1.0 to
1.0 as in [13]. To optimize the combination of the learning rate
for hidden layer and that for output layer, they were increased
separately and gradually by being double from 1.0, and the
optimal one was found with which the mean product of global
and local errors described later at the 50th episode over 10
simulation runs is the minimum under the condition that no
hidden output oscillates. The following graphs are shown for
the closest case to the average for each case.

Fig. 7 shows learning curves for the two types of errors.
Part (a) shows the mean absolute difference from the ideal
value over all the 10,100 steps, and shows how fast the
output can be close to the ideal value globally. Part (b) shows
the mean absolute TD-error over all the 10,100 steps, and
that mainly shows the smoothness between the values of the
neighbor regions. Fig. 8 shows the state value (critic) curves
in one episode for 4 cases after 30 episodes of learning. In the
case of one-step learning (a) or eligibility trace with a small
λ (b), it is easily seen that the propagation of the value from
the goal state is slow and in Fig. 7(a), the difference from the
ideal value was not reduced so fast. However, since the curve
of the value is not so fluctuated, the TD-error did not become
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Fig. 7. Learning curves. (a) Mean error from the ideal value that shows
global property, and (b) mean absolute TD-error that shows local property.

so large as shown in Fig. 7(b). On the other hand, when Fig.
8(c) is seen, which shows the case of the eligibility trace with
a large λ, the rough shape of the value is close to the ideal
one, but the periodical pulse train can be seen. That happens
because in each odd-numbered state, the agent spent for as
a short duration as only two steps, and so the traces do not
take in the inputs so much compared with the even-numbered
states. As the result, in Fig. 7(a), the output approaches the
ideal value immediately, but the TD-error becomes large soon
after learning began. Before learning, since the input-hidden
connection weights are all 0.0, the output is a constant and so
the TD-error is small. In the case of causality trace, as shown

in Fig. 8(d), the value is very smooth and almost the same as
the ideal curve. Before learning, the TD-error is larger than the
other cases because the input-hidden weights have a non-zero
value, but is decreased soon as shown in Fig. 7(b), and in Fig.
7(a), it is seen that the global shape of the value approaches
the ideal rapidly even though the approach is faster at first in
the case of eligibility trace with λ = 0.999.

Next, to examine whether or not each neuron represents
different past events, the correlation of the input-hidden weight
vectors between hidden neurons is observed. The eight hidden
neurons that have a larger absolute weight to the output neuron
are picked up, and the mean correlation coefficient between
any two of the eight neurons is observed during learning. For
a fair comparison, initial input-hidden connection weights are
decided randomly from -0.1 to 0.1 in the eligibility trace case
as well, and the same initial connection weights were set in all
the cases. When the sign of the weight to the output neuron
is different between the two hidden neurons, the sign of the
correlation coefficient is inverted. Fig. 9 shows the change
in the mean correlation coefficient for some cases. Since
the hidden neurons try to represent important information to
reduce the TD error, the correlation increases during learning
in any cases. However, the correlation in the case of causality
trace is significantly smaller than the other cases. The result
did not change so much due to the initial connection weights
that are decided randomly.

The eligibility traces take in the inputs constantly with λ,
though only the sensitivity s to the network output is different
in Eq. (7) among the hidden neurons. On the other hand, the
causality traces in one neuron is more likely to take different
events at different times from the other hidden neurons because
∆O is different among hidden neurons in Eq. (9), and that
must help to promote the division of roles in the time axis.

IV. DISCUSSION

A. Validity of time scale

It is also a big advantage in causality trace that we are
no longer bothered by choosing an appropriate time constant
manually. The time scale is determined by the output change
in each neuron. The important thing is the validity of the time
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Fig. 8. Comparison of the shape of state value change after 30 episodes of
learning.

scale. The underlying concept is that if the output changes
from one end to the other in the value range, there is no need
to hold the information before the change from the viewpoint
of the cause-and-effect relation. This concept is the origin of
the time-scale-independent learning. It is natural and matches
the fact that when a big event happens, we are likely to forget
the past events.

When a multi-layer neural network is employed, the higher
hidden neurons, which are closer to the output layer, become
to represent more abstract information through learning. The
abstract information is expected not to be influenced so much
by the frequent changes in the sensor signals as inputs to the
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Fig. 9. Change of the mean correlation coefficient of input-hidden weight
vectors between any two of the eight hidden neurons that have a large
connection weight to the output neuron.

network. Therefore, they can hold abstract information in the
distant past, while the lower hidden neurons, which are closer
to the input layer, cannot hold their inputs due to the influence
of the frequent changes in the sensor signals.

It also seems to match the property of the causality traces
that when we have not yet learned to distinguish important
events from trivial changes in our sensor signals, we can hardly
notice the relation between a distant past cause and its effect
at present, but after learning of important events, we can easily
notice it.

B. Causality between neurons

In the simulation in this paper, a static neuron model, in
which the output is computed only from the present inputs
including feedback inputs, was used. In a layered NN, the
signal flow between neurons is one way from lower to higher,
and then lower neurons are always ’cause’ and are not ’effect’.
In an RNN, the delay for passing a feedback connection
enables to detect the cause and effect between neurons by the
causality traces.

When using a dynamical neuron model, the input signals
cause the increase or decrease of its output according to its dif-
ferential equation of the first-order lag. Since causality traces
can extract the causes for effects directly, it is expected that
cause and effect relations between two neurons are detected
more efficiently by the traces than the case of using a static
neuron.

Furthermore, STDP [14], which is a learning mechanism
observed in biological organs, seems to extract the cause-and-
effect relation between two neurons from the relative timing
of their spikes, and it is interesting to think the relation to the
causality traces.

C. Parallelism and autonomous division of roles

Even though there are many neurons in an NN, it is not
useful if all of them work similarly. Therefore, autonomous
division of roles is very important so as that the parallelism of
an NN shows its excellent inherent ability. An NN that learns
according to the steepest-descent type learning has originally
has the ability of autonomous division of roles in space among
hidden neurons. In each neuron, the representation that is
useful to generate appropriate network outputs but has not
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grown so much in the other neurons grows through learning.
That enables a variety of functions to emerge in an NN through
reinforcement learning [15]. It is a significant result in this
paper that the difference of the causality traces among hidden
neurons promotes the representation of past events that the
other neurons do not represent, and the division of roles in the
time axis is achieved.

D. Influence of noises

If high frequency noises are added to the input signals, the
output of each hidden neuron also must change frequently.
That results in unnecessary intake of input signals to the
causality traces, and reduces the effectiveness drastically. It
seems to be a serious problem especially in the early phase
of learning. However, it is expected that noise influence is
reduced through learning in higher layers that is closer to
the output neurons because the NN learns to reduce the
noise effect in the network output. In reinforcement learning,
noises as exploration factors are added to the motion (actor)
outputs, and the fluctuations in the sensor signals caused by
the exploration is concerned. It should be investigated how
serious the influence of the exploration is.

E. Adjustment of discount factor

It is considered that when the time scale is flexibly adjusted
for a long-duration or short-duration task, the discount factor
in value learning should be also adjusted because the discount
factor can be considered to represent the decay of the value due
to the passage of time. In the simulation of value learning in
this paper, the discount factor was given in advance. It remains
as a future problem.

F. Causality traces for reinforcement learning with an RNN

As shown in this paper, the basic idea is the same between
value learning with a layered neural network and supervised
learning with an RNN. Another future work is to develop
a way of utilizing causality traces that works efficiently in
reinforcement learning using an RNN.

G. Unification of memory for output generation and that for
learning

The traces are used only in the backward computation
for learning. On the other hand, the memory in the forward
computation for output generation is stored as the outputs of
neurons. Both are the memory to store the past important
information. Therefore, the author thinks that the memory for
forward computation and that for backward computation might
be unified.

V. CONCLUSION

In this paper, a general idea for retrospective learning
named ”Causality Trace” was introduced to make learning in
time-axis more effective in neural networks. It was shown that
the traces are updated without being influenced by an external
time scale, but are updated subjectively and in parallel in each
neuron in a neural network. In the learning of state value
(critic) in a task where an agent can pass through in a short
time in one type of regions and takes a long time to pass

through in the other type of regions, ”causality traces” showed
outstanding learning ability. It was also shown that division of
roles in time axis among neurons is promoted through learning.

Two major future works are to examine the ability of
”causality trace” in reinforcement learning where actions are
learned with trials and errors and to integrate the trace for
value learning and that for learning of an RNN to work in
reinforcement learning with an RNN effectively.
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