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Abstract— The neuron is roughly divided into three parts:
soma, dendrite, and an axon. In this paper, a multi-
compartment neuron model the dynamics of which is described
by an asynchronous cellular automaton is presented. It is shown
that the model can reproduce typical propagations of action
potentials from dendrites to a soma (forward propagation) and
from a soma to dendrites (backward propagation).

I. INTRODUCTION

Many neuron models have been proposed so far [1]–[2].

Among them, Hodgkin-Huxley-type conductance based mod-

els and Izhikevich-type simplified models are typical ones.

Like these models, many neuron models have continuous

states and a continuous time and thus they are described

by ordinary differential equations (ab. ODEs). On the other

hand, recently, several types of asynchronous cellular au-

tomaton neuron models have been proposed [3] [4]. The

asynchronous cellular automaton neuron model has discrete

states and a continuous (state transition) time, and thus it

belongs to a different class of dynamical system from the

traditional ODE neuron models. The advantages of the asyn-

chronous cellular automaton neuron model include low hard-

ware cost and dynamically reconfigurable capability [3] [4].

The neuron is roughly divided into three parts: soma,

dendrites, and an axon. It has been pointed out that the

physical structure of the dendrite (which is sometimes very

complicated like Purkinje cell) plays certain roles in informa-

tion processing of neurons [5]–[7]. A variety of phenomena

can be observed in the dendrite, e.g., propagations and

failures of propagations of action potentials from dendrites

to a soma (i.e., forward propagations and their failures) and

propagations and failures of propagations of action potentials

from a soma to dendrites (i.e., backward propagations and

their failures). In order to analyze such dendritic phenomena,

multi-compartment methods have been utilized [8]–[11].

In this paper, a multi-compartment neuron model based

on the asynchronous cellular automaton is presented. It

is shown that the model can reproduce typical forward

and backward propagations of action potentials and their

failures. It is also shown that the model can be imple-

mented by a smaller number of transistors compared to
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Fig. 1. (a) Whole structure of a multi-compartment neuron model. ⊕
represents the arithmetic sum. (b) Single compartment based on our previous
soma’s membrane model [3].

conventional multi-compartment neuron models. This paper

includes highly generalized analysis results and novel exper-

imental results compared to our short conference manuscript

[12] in which very preliminary and limited results on the

model have been discussed.

II. MULTI-COMPARTMENT NEURON MODEL AND

REPRODUCTIONS OF DENDRITIC ACTION POTENTIAL

PROPAGATIONS

In this section a multi-compartment neuron model, the

nonlinear dynamics of which is described by an asyn-

chronous cellular automaton, is presented. Fig. 1(a) shows

a sketch of the whole structure of the multi-compartment

neuron model, where each compartment is indexed by i ∈

{0, 1, . . . , P − 1}, the i-th compartment is denoted by Ci,

and P is the number of the compartments. As shown in

Fig. 1(b), each compartment Ci accepts a common internal
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clock C(t), where t ∈ [0,∞) is a continuous-time. In this

paper, the following internal clock C(t) with a normalized

period 1 is focused on.

C(t) =

{

1 if t = 0, 1, 2, . . . ,

0 otherwise.

Also, each compartment Ci can accept the following stimu-

lation Si(t).

Si(t) =

{

sin ∈ {1, 2, 3, · · · } if t = tin ∈ R
+,

0 otherwise,

where tin is the n-th spike position of the stimulation Si(t).

A. Dynamics of single compartment

In this subsection, a single compartment is presented based

on our previous soma’s membrane model [3]. As shown

in Fig. 1(b), the single compartment Ci consists of the

following two registers and two memoryless units, where

“≡” represents the “definition” hereafter.

1) A membrane register having an integer state

Vi ∈ Ni ≡ {0, 1, . . . , Ni − 1}

corresponding to a membrane potential of the compart-

ment Ci. Vi is referred to as a membrane potential.

2) A recovery register having an integer state

Ui ∈ Mi ≡ {0, 1, . . . ,Mi − 1}

corresponding to a channel dynamics of the compart-

ment Ci. Ui is referred to as a recovery variable.

3) A memoryless vector field unit consisting of logic

gates and reconfigurable wires, which determines a sub-

threshold vector field of the compartment Ci.

4) A memoryless reset value unit consisting of logic gates

and reconfigurable wires, which is used to realize a

super-threshold firing reset of the compartment Ci.

As shown in Fig. 1(b), the vector field unit accepts the

membrane potential Vi ∈ Ni and the recovery variable

Ui ∈ Mi. Also, the vector field unit outputs signals δVi
∈

{−1, 0, 1} and δUi
∈ {−1, 0, 1}. Hence the vector field unit

works as the following functions DVi
and DUi

.

δVi
= DVi

(Vi, Ui), DVi
: Ni ×Mi → {−1, 0, 1},

δUi
= DUi

(Vi, Ui), DUi
: Ni ×Mi → {−1, 0, 1}.

In order to realize proper neuron-like behaviors of the multi-

compartment neuron model, in this paper the following

design procedure of the vector field unit is used. First, the

entire phase plane Ni×Mi is divided into the following five

disjoint subspaces {S
++

i ,S+−

i ,S−+

i ,S−−

i ,S0

i }.

S
++

i ≡ {(Vi, Ui) | Ui < fVi
(Vi), Ui ≤ fUi

(Vi)} ,

S
−+

i ≡ {(Vi, Ui) | Ui ≥ fVi
(Vi), Ui < fUi

(Vi)} ,

S
+−

i ≡ {(Vi, Ui) | Ui ≤ fVi
(Vi), Ui > fUi

(Vi)} ,

S
−−

i ≡ {(Vi, Ui) | Ui > fVi
(Vi), Ui ≥ fUi

(Vi)} ,

S
0

i ≡

{

(Vi, Ui) |(Vi, Ui) 6∈ S
++

i ∪ S
+−

i ∪ S
−+

i ∪ S
−−

i

}

,

where the functions fVi
: Ni → {−1, 0, . . . , Mi} and fUi

:
Ni → {−1, 0, . . . , Mi} work as borders of the subspaces

{S
++

i ,S+−

i ,S−+

i ,S−−

i ,S0

i } and are defined by

fVi
(Vi) = αi(

⌊

ki1V
2

i + ki2Vi + ki3
⌋

),

fUi
(Vi) = αi(⌊ki4Vi + ki5⌋),

ki1 = fi1Mi

N2

i

, ki2 = −2ki1 ⌊fi2Ni⌋ ,

ki3 = ki1(⌊fi2Ni⌋)
2 + ⌊fi3Mi⌋ ,

ki4 = fi4Mi

Ni

, ki5 = ⌊fi5Mi⌋ ,

αi(x) =











−1 if x < −1,

x if − 1 ≤ x ≤ Mi,

Mi otherwise,

where “⌊·⌋” is the floor function. Typical examples of the

border functions (fVi
(Vi), fUi

(Vi)) and resulting subspaces

{S
++

i ,S+−

i ,S−+

i ,S−−

i ,S0

i } are shown in Fig. 2. Second,

using the subspaces {S
++

i ,S+−

i ,S−+

i ,S−−

i ,S0

i }, the vector

field unit is designed to be a state-dependent one as follows.

δVi
= DVi

(Vi, Ui)

=











1 if (Vi, Ui) ∈ S
++

i ∪ S
+−

i , Vi 6= Ni − 1,

−1 if (Vi, Ui) ∈ S
−+

i ∪ S
−−

i , Vi 6= 0,

0 if (Vi, Ui) ∈ S
0

i ,

δUi
= DUi

(Vi, Ui)

=











1 if (Vi, Ui) ∈ S
++

i ∪ S
−+

i , Ui 6= Mi − 1,

−1 if (Vi, Ui) ∈ S
+−

i ∪ S
−−

i , Ui 6= 0,

0 if (Vi, Ui) ∈ S
0

i .

The resulting vector field unit is characterized by the pa-

rameters (Mi, Ni, fi1, fi2, fi3, fi4, fi5). The vector field unit

determines the sub-threshold vector field of the compartment

Ci as follows. Let us introduce the following subset Li of

the entire phase plane Ni ×Mi.

Li ≡ {(Vi, Ui) | Vi = Ni − 1, Ui ∈ Mi} ⊂ Ni ×Mi,

where a point on Li is represented by its Ui-coordinate. The

subset Li corresponds to a firing threshold (or spike cutoff

level) of a spiking neuron model and thus is referred to as a

firing threshold. Now assume the state vector (Vi, Ui) is not

in the firing threshold Li. In this case, the vector field unit

determines transitions of the state vector (Vi, Ui) as follows.

Sub-threshold dynamics induced by internal clock:
{

Vi := Vi + δVi
,

Ui := Ui + δUi
,

if (Vi, Ui) /∈ Li and C(t) = 1, (1)

where “:=” represents the “instantaneous transition” here-

after. Fig. 2(a) shows an example of the autonomous sub-

threshold dynamics of the compartment Ci.

As shown in Fig. 1(b), the reset value unit accepts the

recovery variable Ui ∈ Mi and outputs a signal Ai(Ui) ∈

Ni. Hence the reset value unit works as the following

function Ai.

Ai : Mi → Ni.

The function Ai is characterized by the parameters

(Ai(0), Ai(1), . . . , Ai(Mi − 1)). In order to describe the
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(a)

(b)

Fig. 2. Time waveforms (left) and phase plane trajectories (right) of the compartment Ci.

Ni = Mi = 16, fi = (4.5, 0.55, 0.15, 1.5,−0.35), Ai(Ui) = 12, Bi = 4, di = 0.7. (a) Autonomous single compartment. (b) Non-autonomous single

compartment. Si = 1 if t = 1.4 + 2.7(n− 1) and (n = 1, 2, 3, . . .), and Si(t) = 0 otherwise.

super-threshold dynamics, let us introduce the following

notation.

θi ≡ the moment when the state vector (Vi, Ui)
reaches the firing threshold Li.

Now assume the state vector (Vi, Ui) reaches the firing

threshold Li at t = θi. In this case, the firing unit determines

transitions of the state vector (Vi, Ui) as follows.

Super-threshold dynamics
{

Vi := Ai(Ui) if (Vi, Ui) ∈ Li and t = θi + lidi,

Ui := Ui + δUi
if (Vi, Ui) ∈ Li and C(t) = 1,

(2)

where di > 0 is a real parameter and li > 0 is an integer

parameter. Fig. 2(a) shows an example of the super-threshold

dynamics of the compartment Ci. It can be seen that if the

state vector (Vi, Ui) reaches the firing threshold Li at t = θi,

then it stays in the firing threshold Li for the time duration

θi ≤ t ≤ θi + lidi. During this stay, the compartment Ci

outputs the following spike-train Yi.

Output spike-train

Yi(t) =

{

1 if t = θi, θi + di, · · · , θi + lidi,

0 otherwise.
(3)

Fig. 2(a) shows an example of the output spike-train Yi(t)
of the compartment Ci.

As shown in Fig. 1(b), the membrane register accepts the

stimulation Si(t). The stimulation Si(t) induces transitions

of the state vector (Vi, Ui) as follows.

Stimulation induced sub-threshold dynamics:

Vi := Vi + Si if (Vi, Ui) /∈ Li and Si(t) 6= 0. (4)

Fig. 2(b) shows an example of the stimulation-induced sub-

threshold dynamics of the compartment Ci.

Remark 1 (asynchronous dynamics of single compart-

ment) : The state transition induced by the internal clock

C(t) in Equation (1) and the state transition induced by the

stimulation Si(t) in Equation (4) can occur asynchronously.

So, the single compartment has the discrete states (Vi, Ui)
and the continuous transition time t. Hence, from a dy-

namical system viewpoint, the single compartment is an

asynchronous cellular automaton.
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(a) (b)

Fig. 3. Examples of multi-compartment neuron model. (a) P = 4 [8]. (b)
P = 47 [9].

B. Multi-compartment neuron model

The compartments { C0, · · · , CP−1 } are connected via

the output spike-trains {Y0(t), · · · , Y0(P − 1)} as follows.

Connections of compartments:

Zi(t) =

P−1
∑

j=0

wi,jYj(t),

where wi,j ∈ {0, 1} is a parameter, which forms the

following connection matrix W .

W =







w0,0 · · · w0,P−1

...
...

wP−1,0 · · · wP−1,P−1







For example, the multi-compartment neuron model in

Fig. 3(a) is characterized by the following connection matrix

W .

W =









0 1 0 0
1 0 1 0
0 1 0 1
0 0 1 0









In addition to the spike-train Zi(t), each compartment

Ci can accept (not necessarily) the following external

stimulation spike-train Ii(t).

Ii(t) =

{

1 if t ∈ {qi
1
, qi

2
, · · · },

0 otherwise,

where qin is the n-th spike position of the external stimulation

spike-train Ii(t). As shown in Fig. 1(a), each compartment

Ci accepts the spike-train Zi(t) from the other compartments

and the external stimulation spike-train Ii(t) as follows.

Stimulation to compartment:

Si(t) = Zi(t) + Ii(t) =

P−1
∑

j=0

wijYj(t) + Ii(t). (5)

As a result, the dynamics of the multi-compartment neuron

model is described by Equations (1), (2), (3), (4), and (5).

Fig. 4 shows typical effects of the connection from the i-th

compartment Ci to the j-th compartment Cj . In Fig. 4(a), the

compartment Ci has a short spike period di = 0.35, which

corresponds to a strong connection to other compartments.

In this case, the output spike-train Yi(t) of the compartment

Ci leads to generation of the output spike-train Yj(t) of the

compartment Cj . In Fig. 4(b), the compartment Ci has a

long spike period di = 0.7, which corresponds to a weak

connection to other compartments. In this case, the output

spike-train Yi(t) of the compartment Ci weakly affects

the behavior of the compartment Cj and the compartment

Cj does not output a spike-train Yj(t). In Fig. 4(c), the

compartment Ci has the same weak connection as the case

of Fig. 4(b). In addition, both compartments accept low

frequency external stimulation spike-trains ni(t) and nj(t),
i.e.,

Si(t) = Zi(t) + Ii(t) + ni(t),
Sj(t) = Zj(t) + nj(t).

These external stimulation spike-trains ni(t) and nj(t) cor-

respond to weak background noises around a neuron. In this

case, the output spike-train Yi(t) of the compartment Ci

leads to generation of the output spike-train Yj(t) of the

compartment Cj .

Remark 2 (asynchronous dynamics of multi-

compartment model) : As mentioned in Remark 1,

the single compartment is an asynchronous cellular

automaton. Hence the presented multi-compartment neuron

model can be regarded as a network of asynchronous

cellular automata, which is especially designed to reproduce

dendritic phenomena.

C. Reproductions of dendritic phenomena

In this subsection, the multi-compartment neuron model

in Fig. 5(a) is focused on, where its connection matrix is

W =













0 1 0 0 0
1 0 1 0 0
0 1 0 1 1
0 0 1 0 0
0 0 1 0 0













.

Let us introduce the following words for convenience of

explanations.

Somatic compartment. For simplicity, the 0-th compartment

C0 is used as a somatic compartment (i.e., a cell body

compartment) as shown in Fig. 5(a).

Terminal compartment. In Fig. 5(a), the compartment C3 is

connected to exactly one compartment C2. Such a compart-

ment is referred to as a terminal compartment. In Fig. 5(a),

the compartment C4 is also a terminal compartment.

Relay compartment. In Fig. 5(a), the compartment C1 is

connected to more than one compartment. Such a compart-

ment is referred to as a relay compartment. In Fig. 5(a), the

compartment C2 is also a relay compartment.

Action potential. If the compartment Ci outputs a spike, the

corresponding wave of the membrane potential Vi(t) is said

to form an action potential. For example, the membrane

potential Vi(t) in Fig. 4(a) forms an action potential.
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(a)

(b)

(c)

Fig. 4. Time waveforms (left) and phase plane trajectories (right) of the multi-compartment neuron model.

P = 2, w0,0 = w1,1 = 0, w0,1 = w1,0 = 1. (Mk , Nk, fk1, fk2, fk3, fk4, fk5) = (16, 16, 7.0, 0.65, 0.2, 0.5, 0.2), Ak(Uk) = ⌊−0.5Uk⌋+ ⌊0.6Nk⌋,
q
i

m
= 1.6 + 0.3(m − 1), 1.6 ≤ q

i

m
< 5, and m = 1, 2, 3 . . . for k = i, j. (a) Strong connection. lk = 10, dk = 0.35, and lkdk = 3.5 for k = i, j.

(b) Weak connection. lk = 5, dk = 0.7, and lkdk = 3.5 for k = i, j. (c) Weak connection plus weak background noise. lk = 5, dk = 0.7, lkdk = 3.5,
and nk(t) = 1 if t = 0.9 + 0.9(m− 1), m = 1, 2, 3, . . ., and nk(t) = 0 otherwise, for k = i, j.
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（a）

（b） （c）

（d）
（e） （f）

Fig. 5. (a) An example of the multi-compartment neuron model. P = 5, wij = 1 if (i, j) = (0, 1), (1, 0), (1, 2), (2, 1), (2, 3), (2, 4), (3, 2), and
(4, 2), and wij = 0 if otherwise. Soma C0: (M0, N0, f01, f02, f03, f04, f05) = (64, 64, 3.5, 0.45,−0.05, 1.5,−0.43), A0(U0) = 15, l0 = 40, d0 =

0.2. Dendrites Ci, (i= 1, . . . , 4): (Mi, Ni, fi1, fi2, fi3, fi4, fi5) = (64, 64, 3.5, 0.45,−0.05, 1.5,−0.43), Ai(Ui) =

⌊

−0.9
(

Ui−⌊0.1Mi⌋

M

)

2

Ni

⌋

+

⌊0.95Ni⌋, li = 40, di = 0.4. (b) Failure of forward propagation of potential. q3
m

= q
4
m

= 71+0.44(m−1), 71 ≤ q
3
m
, q

4
m

< 87, and (m = 1, 2, 3, . . .).
Density ρ3 = ρ4 = 1/d3 = 1/d4 = 2.28. (c) Failure of forward propagation of potential. q3

m
= 71+0.22(m−1), 71 ≤ q

3
m

< 87, and (m = 1, 2, 3, . . .).
Density ρ3 + ρ4 = 4.56. (d) Forward propagation of potential. q

3
m

= 71 + 0.22(m − 1), 71 ≤ q
3
m

< 87, and (m = 1, 2, 3, . . .). ni(t) = 1 if
t = 30 + 3(m − 1) and (m = 1, 2, 3, . . .), and ni(t) = 0 otherwise. Density ρ3 + ρ4 = 4.56. (e) Failure of backward-propagation of potential.
q
0
m

= 71 + 0.22(m− 1), 71 ≤ q
0
m

< 87, and (m = 1, 2, 3, . . .). (f) Backward-propagation of potential. q0
m

= 71 + 0.22(m− 1), 71 ≤ q
0
m

< 87, and
(m = 1, 2, 3, . . .). ni(t) = 1 if t = 30 + 3(m − 1) and (m = 1, 2, 3, . . .), and ni(t) = 0 otherwise for i = 0, . . . , 4.

Forward propagation. If an action potential in a terminal

compartment propagates to the somatic compartment C0

directly or through relay compartments, then the propagation

is referred to as a forward propagation.

Backward propagation. If an action potential in the somatic

compartment C0 propagates to a terminal compartment di-

rectly or through relay compartments, then the propagation

is referred to as a backward propagation.
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(a) (b)

Fig. 6. (a)Forward propagation. (b)Oscilloscope snapshot of the forward propagation. Horizontal axis is 4ms/div. Vertical axes are Vi: 500mV/div. and
I0, I3, I4, and ni : 5V/div..

Figs. 5(b) – (f) show typical numerical simulation results.

In Fig. 5(b), weak external stimulation spike-trains I3(t)
and I4(t) are applied to the terminal compartments C3

and C4, respectively. In this case, no action potential is

generated. In Fig. 5(c), a strong external stimulation spike-

train I3(t) is applied to the terminal compartment C3, where

the strength of this strong external stimulation spike-train

is same as the sum of the strengths of the weak stimulation

external stimulation spike-trains in Fig. 5(b). In this case, the

compartment C3 generates an action potential but it fails to

propagate to the somatic compartment C0. So, this is a failure

of forward propagation. In Fig. 5(d), the same strong external

stimulation spike-train I3(t) as Fig. 5(c) is applied to the

terminal compartment C3. In addition, a weak background

spike-train n3(t) is additionally added to each compartment

Ci, i.e.,

S3(t) = Z3(t) + I3(t) + n3(t),
Si(t) = Zi(t) + ni(t) for i 6= 3.

In this case, the compartment C3 generates an action po-

tential and it propagates to the somatic compartment C0.

So, this is a forward propagation. In Fig. 5(e), a weak

external stimulation spike-train I0(t) is applied to the somatic

compartment C0. In this case, an action potential is generated

but it fails to propagate to a terminal compartment. So, this

is a failure of backward propagation. In Fig. 5(f), a strong

external stimulation spike-train I0(t) is applied to the somatic

compartment C0. In addition, a weak background spike-train

n3(t) is additionally added to each compartment Ci. In this

case, the compartment C0 generates an action potential and

it propagates to the terminal compartments C3 and C4. So,

this is a backward propagation.

III. FPGA IMPLEMENTATION

The presented multi-compartment neuron model is imple-

mented in a field programmable gate array (ab. FPGA). The

dynamics of the model is described by Equations (1), (2),
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TABLE I

COMPARISON OF HARDWARE COSTS. OCCUPIED COMPONENTS IN

XILINX’S FPGA XC7Z020-1CLG484.

Presented
model

Multi-compartment
Izhikevich model

Number of slice registers 157 302

Number of slice LUTs 698 6,874

Number of occupied slices 249 1,898

(3), (4), and (5), which are written in a VHDL source code.

A bitstream file for the FPGA configuration is generated by

Xilinx’s design software environment ISE 14.4. Parameters

of the model and specifications of the resulting FPGA are

summarized in Table 1, where binary coding is automatically

used to represent the discrete states by the ISE. The clock

C(t) is generated by an on-board 100[MHz] clock and a

frequency divider. Since the FPGA and the design software

we used do not support for asynchronous triggering, the

external stimulation spike-train Ii(t) is sampled at the on-

board clock frequency. Note that the sampling of Ii(t) is

not necessary if a target FPGA supports for asynchronous

triggering. Fig. 6(b) show an oscilloscope snapshots of

forward propagation, which corresponds to Fig. 5(d).

In addition, comparisons to a multi-compartment model

of Izhikevich’s simple neuron model [9] is summarized in

Table 1. It should be emphasized that the presented model

consumes less hardware resources (almost 1/7) compared to

the multi-compartment model of Izhikevich’s simple neuron

model, where both models are fairly optimized.

IV. CONCLUSIONS

In this paper, we have presented the novel multi-

compartment neuron model based on the asynchronous cel-

lular automaton neuron model. We have shown the model

can reproduce the typical propagations of action potentials

observed in representative multi-compartment ODE neuron

models. We have also shown the model occupies much less

hardware resources than the multi-compartment Izhikevich’s

model. Future problems are including the following ones: (a)

generalization of the presented multi-compartment model, (b)

development to a synaptic compartment, and (c) reproduction

of other complicated properties in dendrites.
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