
 
 

 

  

Abstract—We present a design of a majority neuron circuit 
with non-volatile synaptic weights. It is based on an analog 
majority circuit composed of controlled current inverters 
(CCIs). The proposed circuit is immune to device parameter 
fluctuations, and its fan-in is estimated about 1000. Synaptic 
weights are realized on the neuron circuit by adding variable 
resistors. We consider a design of a non-volatile synaptic weight 
by using a three-terminal magnetic domain-wall motion (DWM) 
device. The operation of a fully connected recurrent neural 
network composed of the proposed circuits has been confirmed 
by SPICE simulation. 

I. INTRODUCTION 
ARDWARE implementation of artificial neural networks 
(ANNs) has been demanding neuron and synapse 
circuits with small chip area and low power 

consumption to achieve practical large-scale ANNs. A 
majority neuron circuit based on majority logic, which returns 
1 if more than half of its inputs are 1, realizes uniform 
summation and thresholding of binary inputs as a part of 
neuron function. Although majority logic is simple, it is not 
easy to implement it when the number of inputs increases. In 
digital implementation, the number of logic gates is more 
than ( )

N
N 2/1C + for N inputs, and it results in large chip area. 

Other implementations with counters and comparators are 
also consume large chip area [1], [2]. An analog majority 
circuit, in which 2(N+1) MOS transistors are required for N 
inputs, has been proposed [3]. However, fluctuations of 
device characteristics caused by process parameter variations 
limit the degree of integration seriously. Recently, a spin 
majority gate based on lateral spin valve in which 
spin-polarized current is utilized as well as charge current has 
been proposed. It seems to achieve a low power and compact 
neuron-synapse unit [4], however, its fan-in would be limited 
up to several tens because spin- polarized current decays 
exponentially with the distance along the conducting channel. 

In this study, we propose a compact neuron circuit with 
non-volatile synaptic weights. It is based on an analog 
majority circuit composed of controlled current inverters 
(CCIs) [5] and requires 4(N+2) MOS transistors for N inputs. 
The proposed circuit is immune to device parameter 
fluctuations and has large fan-in more than 1000. The 
synaptic weights are realized by using magnetic tunnel 
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junctions (MTJs) [6] as programmable resistive units.  
The organization of this paper is as follows. Section II 

describes the design of the majority neuron circuit based on 
the CCI without synaptic weight, and the margin of the 
proposed circuit is estimated. Section III shows the design of 
synaptic weights realized on the neuron circuit. SPICE 
simulation results for a fully connected recurrent ANN 
composed of the proposed circuits are shown in Section IV. 
Conclusion is given in Section V.  

II. MAJORITY NEURON CIRCUIT 
The majority logic is expressed as follows:  
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where xi, n, y, and N are the i-th binary input, the number of 
high inputs, the output, and the total number of inputs, 
respectively. The output y is 1 if n is greater than N/2, and 
otherwise 0. The input-output relation expressed in (1) is 
equivalent to that of a McCulloch-Pitts neuron [7], excepting 
that all synaptic weights are 1. We discuss design of a 
majority neuron circuit with given synaptic weights in the 
next section.  

Let us first introduce a previous majority circuit since its 
understanding is helpful for the following discussion. The 
circuit, which has been proposed by C.L. Lee and C.W. Jen 
[3], is shown in Fig. 1. The circuit comprises complementary 
MOS (CMOS) inverters, which we refer as “Output-Wired 
Inverters” (OWIs), and a CMOS inverter as an output buffer. 
Each binary input vi, which takes high or low voltage, 
corresponds to each binary input of the majority logic. The 
output nodes of OWIs are connected together at the node M in 
Fig. 1. MOS transistors in OWIs work as resistors and the 
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Fig. 1.  Majority circuit composed of output-wired inverters. 
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voltage VM changes according to the numbers of high and low 
inputs. The output buffer amplifies the voltage VM as the 
decision of the majority logic.  

Although the OWI circuit has simple structure and seems 
to be easy to implement, it has serious defect associated with 
the offset of the threshold voltage. When the number of high 
inputs n is exactly half of the total number of inputs N, i.e. n = 
N/2, VM should be identical to the threshold voltage of the 
output buffer. But it is very difficult to exclude some offset 
due to the difference of the threshold voltages of nMOS and 
pMOS. Therefore, the conductance of MOS transistors 
should be adjusted by choosing the device dimension. This 
requirement is critical for larger N, however, some 
fluctuations are inevitable depending on LSI fabrication 
process.  

A majority circuit we utilize as a neuron circuit is shown in 
Fig. 2. Instead of CMOS inverters, modified inverters which 
we refer as “Controlled-Current Inverters” (CCIs) are used. In 
comparison with an OWI, two additional MOS transistors, 
pMOSbs and nMOSbs, are added for adjusting current. The 
gates of the pMOSbs and nMOSbs are biased with the same 
voltage Vref which is generated by the reference voltage 
generator. The resulting effects are given in two points. First, 
the offset voltage is canceled out, which means the difference 
between the voltage of the node M VM when n = N/2 and the 
threshold voltage of the output buffer becomes zero. This is 
because offset does not occur as long as CCIs and the output 
buffer are composed of the transistors with the same 
dimension. This assumption is valid with the help of 
symmetric design such as common-centroid layout [8]. 
Therefore, the CCI circuit has high robustness and is easy to 
design. The second advantage is that the gain of the CCI 
circuit is very large compared with the OWI circuit. Fig. 3 
shows SPICE simulation results for N = 101. Large gain 
means the node voltage VM changes largely near n = N/2 
resulting in large margin. We define margin as follows: 
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where “min” takes the smallest value in its arguments. As 
shown in Fig. 3, the margin of the CCI circuit is larger than 
that of the OWI circuit. The large margin is suitable for 
majority logic operation in which the number of high and low 
inputs is almost even. This large margin originates from the 
nonlinear characteristic of a MOS transistor. The MOS 
transistors connected VM in the CCIs operate in saturation 
region near n = N/2 whereas those in the OWIs operate in 
linear region. A MOS transistor operating in saturation region 
has larger source-drain resistance than that of in linear region 
and causes larger voltage drop.  

Next, we show the analytical results of the margin for the 
CCI circuit. If N is relatively small, VM is given as a function 
of n by 
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where Vtn and Vtp are the threshold voltage of nMOS and 
pMOS, respectively. Then, the margins expressed in (2) are 
calculated as follows: 
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In the case of large N, VM and margins are given 
approximately by following equations: 

 
 
Fig. 2.  Majority circuit composed of controlled-current inverters. 

 
 
Fig. 3. Simulation results of OWI and CCI circuits for N = 101. 
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where Δn and Δp are parameters depending on nMOS and 
pMOS characteristics, respectively. Fig. 4 shows the margin 
of the CCI circuit relative to VDD as a function of N. The 
simulation result agrees with the ideal curves obtained by 
using above equations. We assume Δn = −Δp = 7.1×10−3 V−1 
with the MOS parameters of Vtn = −Vtp =0.7 V, body effect 
coefficient γ = 0.5 V1/2, and channel length modulation 
coefficient λ = 0.01 V−1. As shown in Fig. 4, up to about 1000 
inputs can be achieved with a few percent margin. 

III. SYNAPTIC WEIGHTS REALIZED ON CCI MAJORITY 
NEURON CIRCUIT 

As mentioned earlier, a majority circuit works as a neuron 
circuit whose synaptic weights are 1. In this section, we 
discuss synaptic weights realized on the CCI majority circuit. 
In the CCI majority circuit, each high and low input turns on 
the nMOSsw and pMOSsw, respectively (see Fig. 2). If we 
consider those MOS transistors as switches, which have finite 

on-resistance Rn-on and Rp-on, and the nMOSbs and pMOSbs as 
resisters, whose resistance Rn-bs and Rp-bs varies as to their 
bias condition, an equivalent circuit of the CCI circuit is given 
as shown in Fig. 5 (a). The equivalent circuit is simplified as a 
series of parallel combined resistance RL = Rp-on/(N−n), RL-bs 
= (∑i

1/Rp-bs i)−1, RH-bs = (∑i
1/Rn-bs i)−1 and RH = Rn-on/n 

as shown in Fig. 5 (b). The ratio of (RL+ RL-bs) to (RH-bs+ RH) 
determines VM; VM is pulled to VDD or GND if the upper or 
lower path relative to node M has lower resistance than the 
other. The CCI majority neuron circuit “fires” if VM decreases 
below some threshold voltage. In the CCI majority circuit, 
each high and low input equally changes RH and RL by Rn-on 
and Rp-on, respectively. To achieve synaptic weight, a 
weighted input should change RH or RL according to the 
polarity and absolute value of its synaptic weight. For an 
excitatory weight, high and low inputs decrease RH and RL in 
proportion to its weight value, respectively. An inhibitory 
weight acts inversely.  

The synapse function mentioned above can be achieved by 
using a neuron-synapse sub-circuit shown in Fig. 6. Two 
weight resistors Rwp, Rwn, two cutoff switches and a weight 
polarity selector are required for each synapse, and one output 
buffer for the inverted input from other neuron.  We set Vpol = 
high or low for an excitatory or inhibitory weight, 
respectively. The two weight resistors have the same 
resistance in inversely proportional to the weight value. The 
inset table in Fig. 6 shows enabled weight resistors 
determined by the combination of Vpol and Vin. For example, 
the combination of Vin = low and Vpol = high, which means an 
inhibitory input weighted by an excitatory synapse, turns on 
the pMOSsw below Rwp and current flows through Rwp 
resulting in increasing of VM. The cutoff switches are required 

 
 
Fig. 4. Margin of the CCI circuit.  

 
Fig. 5. (a) Equivalent circuit of the CCI majority circuit for N = 5, n = 2 
(omitted reference voltage generator). (b) Simplified circuit of (a). 

 
 
Fig. 6. Neuron-synapse sub-circuit. 

4268



 
 

 

to achieve the weight value of zero unless the resistance of the 
weight resistors takes large value enough to be considered as 
open.  

To achieve variable synaptic weight, some variable 
resistive device is required. Non-volatile memory devices 
such as MRAM [9], PRAM [10], and ReRAM [11] are 
suitable for low power operation. Let us try to utilize a 
three-terminal magnetic domain-wall motion (DWM) device 
[6], and consider a structure as shown in Fig. 7 for example. 
The free layer consists of DWM region, whose length is LDW, 
and two fixed regions located at the both ends. The tunnel 
barrier and reference layer are stacked on the free layer, and a 
magnetic tunnel junction (MTJ) is formed. Unlike the original 
device proposed in [6], the MTJ region expands over the 
length of LDW. The spin direction of the two fixed regions are 
fixed antiparallel by magnetic coupling with the spin in the 
adjacent pinning layers. The DW in the DWM region can be 
moved by injection of spin-polarized current from the write 
bit line 1 to 2, and vice versa. The spin-polarized current from 
left to right moves the DW to the right side and the up spin 
part in the DWM region increases; the number of spin aligned 
parallel with respect to the spin in the reference layer 
becomes larger than that of anti-parallel. The resulting effect 
is that the resistance of MTJ RMTJ decreases by tunnel 
magnetoresistance (TMR) effect. The spin-polarized current 
in opposite direction increases RMTJ conversely. RMTJ takes 
the minimum RMTJ-min and maximum RMTJ-max at which the 
DW is located to the left and right edges of the DWM region, 
respectively. The ratio of RMTJ-max to RMTJ-min defines TMR 
ratio: 

.(%)100ratioTMR
minMTJ

minMTJmaxMTJ ×−≡
−

−−

R
RR  (6) 

As a binary memory, TMR ratio more than 600 % has been 
achieved [12]. Multilevel RMTJ can be achieved by 
incorporation of submicron notches in the DWM region to 
stabilize the location of the DW [13]. 

IV. NETWORK SIMULATION 
By using SPICE, we simulated the proposed circuit in the 

associative memory operation by constructing a fully 
connected recurrent ANN. This ANN can memorize bit 
patterns and recall them from incomplete key patterns. In our 
simulation, a binary bit which takes −1 and 1 corresponds to 
low and high outputs of the CCI neuron, respectively. The 
ANN consists of N = 50 neurons and the 50× 50 matrix of 
synaptic weight wij, which weighs the input from the j-th 
neuron to the i-th neuron, are calculated by auto-associative 

learning [14]. The resistance of a weight resistor rwij is 
determined so that the conductance gwij = rwij

−1 is proportional 
to a synaptic weight wij except for wij = 0, and expressed as 
following equation; 

( ) ,
maxminMTJminMTJmaxMTJ

maxmaxMTJminMTJ

wRwRR
wRRr

ij
ijw

−−−

−−

+−
=  (7) 

where wmax is the maximum of wij. RMTJ-max and RMTJ-min were 
assumed to be 70 kΩ and 10 kΩ, respectively. Fig. 8 shows 
rwij and gwij determined by (7). The number of memorized 
pattern m = 5, which means a “load parameter” l = m / N = 0.1, 
and wij takes different 7 values, 0, ±1, ±3, and ±5. We 
evaluated the network operation by directional cosine a 
calculated from a memorized and recalled pattern vectors ξ, 
η as follows, 

{ } .1,1,1
1

−∈= ∑
=

ii

N

i
iiN

a ηξηξ  (8) 

a = 1.0 if a recalled pattern agrees with the corresponding 
memorized pattern. Fig. 9 shows a with varying the number 
of flipped bits Nf in the key patterns. Each a is the average of 
5 key patterns in which different Nf bits are flipped with 
respect to one memorized pattern selected at random.  

The transient responses (t < 50 μs) of VM and Vout in each 
CCI neuron for Nf = 10 are represented in Fig. 10. The solid 
and dashed lines show VM and Vout, respectively, and inset 
numbers show the memorized pattern bit. The graphs 
enclosed by thick line show the transient responses at which a 

 
 
Fig. 7. Structure of three-terminal domain-wall motion device. 

 
 
Fig. 8. Weight resistance and conductance determined from synaptic 
weight. 

 
 
Fig. 9. Directional cosine with varying the number of flipped bit in key 
pattern. 
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bit is flipped with respect to the memorized pattern. As shown 
in Fig. 10, the output voltages starting with wrong values are 
recovered to correct values. 

The values of directional cosine a are plotted in Fig. 11 
with varying load parameter l. The a values are calculated by 
averaging 5 ensemble of key patterns in which different 1 bit 
is flipped with respect to m memorized patterns. Although 
starting with the key patterns almost the same as the 
memorized patterns, a keeps near 1.0 over the theoretical 
estimation of l = 0.14 [15] by which the ANN can recall the 
memorized pattern correctly. 

V. CONCLUSION 
We have proposed a neuron circuit based on the CCI 

majority circuit. It has large fan-in with small chip area by 
utilizing nonlinear characteristics of MOS transistors. The 
tolerable number of inputs is estimated about 1000 by 
theoretical analysis and SPICE simulation. Synaptic weights 
are realized on the neuron circuit by adding two weight 
resistors and eight MOS transistors, composing two cutoff 
switches and a weight polarity selector, to each CCI in the 
neuron circuit, and four MOS transistors for an additional 
output buffer. We assume to utilize a three-terminal DWM 
device as a non-volatile variable resistor. The network 
operation of the recurrent ANN composed of the proposed 
circuits has been confirmed by SPICE simulation. 

The proposed circuit is suitable for large fan-in 
applications, however, its power consumption seems to be 
relatively high because current always flows from VDD to 
GND through the MOS transistors in the CCIs.  Power gating 
technique using the cutoff switches will be necessary for low 

power operation. The estimation of power consumption is 
future work. 
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