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Abstract— Context is essential to evaluate an atomic piece
of information composing an articulated structured sample.
A particular context captures different structural information
with respect to an alternative context. The paper introduces
a generative kernel that easily and effectively combines the
structural information captured by generative tree models
characterized by different contextual capabilities. The proposed
approach exploits the idea of hidden states multisets to realize
a tree encoding that takes into account both the summarized
information on the path leading to a node (i.e. a top-down
context) as well as the information on how substructures are
composed to create a subtree rooted on a node (bottom-
up context). An thorough experimental analysis is provided,
showing that the bi-directional approach incorporating top-
down and bottom-up contexts yields to superior performances
with respect to the unidirectional contexts alone, achieving state
of the art results on challenging tree classification benchmarks.

I. INTRODUCTION

S
TRUCTURED data models compound information such

that a relevant part of the informative content is captured

by the structural relationships between the atomic entities

composing the sample. Such structural relationships, in a

sense, provide a context in which the piece of informa-

tion needs to be evaluated; different classes of structures

(sequences, trees or more general graphs) entail different

complexities and richness of such context. Dealing with such

information becomes a matter of being able to effectively and

efficiently capture the correlation between atomic pieces of

data and their context, but also a matter of choosing what is

the most appropriate and effective context. For instance, an

element (node) of a sequence, that is the simplest structure

type, can be evaluated in the context of either its predecessor

or successor node. Similarly, a node label in a tree-structured

piece of information may be evaluated in the context of either

its surrounding descendants or ancestors.

The choice of the context ultimately determines how the

structured sample is parsed and processed by a machine

learning model for structured data. In this paper, we address

the question of whether the choice a particular context entails

the capability of capturing different structural information

with respect to an alternative context and, in particular, how

such different representational capability can be combined
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and exploited to yield more discriminative learning models

for structured data.

The intuition that knowledge from different structural

contexts can be integrated to increase the accuracy of a

learning system has been discussed in [1] for sequential data.

In [1], it is observed that information from both the past and

the future portions of a finite sequence can be very useful for

analysis and predictions at a given position (or time) t. This is

the case, for instance, of DNA sequences where the function

of a sequence region may strongly depend on observations

located both upstream and downstream of the region. To this

end, the authors in [1] propose a bi-directional generative

approach such that the sequence is parsed both from left-to-

right (i.e. predecessor context) as well as from right-to-left

(i.e. successor context).

In this work, we address the integration of bi-directional

contexts in a more complex class of structures, that is tree-

structured data. Moving from the sequential to the tree

domain introduces differences in the expressive power of

the computational models which depend on the direction in

which the structure is being parsed, i.e. the context in which

its constituents are processed. From automata theory it is well

known, for instance, that processing of a sequence left-to-

right or right-to-left is equivalent, whereas the tree language

recognizable by a deterministic top-down automaton (i.e.

processing the tree from root to the leaves) is a strict subset of

that recognized by the bottom-up counterpart (i.e. processing

the tree from the leaves to the root) [2]. Such differences have

a considerable impact on probabilistic learning models for

structured data, where the choice of the context determines

the direction of the probabilistic generative process and may

change the associated probabilistic assumptions. Consider a

hidden Markov model (HMM) [3] in the sequential domain:

the inversion of the sequence parsing direction changes the

orientation of the causal relationships in the model but the

two dynamic Bayesian Networks (DBNs) originated by the

two different contexts are equivalent from the point of view

of the Markov properties [4]. A similar generative model

for trees, on the other hand, is more deeply influenced by

a change in the context, such that bottom-up [5], [6] and

top-down [7], [8] approaches are characterized by different

causal relationships that produce two different DBNs from

a Markov-equivalence point of view [6]. This creates dif-

ferences in the local Markov properties of the two models

which influence the way the nodes exchange information

during inference and learning [4], and ultimately determine

what structural information is captured by the hidden states

associated to the tree nodes. These hidden states essentially
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summarize the information on the substructure that has been

generated until the node they are associated to. In other

words, the hidden state space of a bottom-up model provides

a summarized view of the subtrees occurring in the data,

where each hidden state identifies a cluster of similar struc-

tures. On the other hand, the top-down approach provides a

summarized view where each hidden state clusters similar

root-to-node paths. It has been shown that the introduction

of a context including both predecessors and successors

information for each node, when moving to structured do-

mains, entails an increase in computational capabilities of the

neural network models, see [9] for a theoretical analysis on

contextual models for structures within recursive incremental

neural networks approaches [10].

Motivated by this, we investigate an approach that allows

combining the summarized information provided by the

bottom-up and top-down directional contexts. Rather that for-

malizing a bi-directional generative process characterized by

an high-dimensional parameterization and by a considerable

computational complexity, we focus on a computationally

effective, incremental approach that is capable of combining

the information captured by the two independent generative

models. We know this information to be summarized by the

hidden Markov states: recently, [11] has proposed an adaptive

kernel for generative tree models that exploits the information

captured by multisets of their Markov hidden states. We

exploit the same intuition to derive a bi-directional kernel

which incorporates multiset information from the hidden

states of an independent bottom-up and top-down model.

An adaptive kernel defines a data-induced similarity measure

upon which learners, e.g. support vector machines, are built

to solve classification/regression problems.

The introduction of contextual information within kernels

for trees have been explored, so far, through forms of posi-

tional matching between subtrees. The underlying intuition

is that an effective tree similarity should weigh more those

substructures presenting similar features in the same position

of the tree. The Route kernel [12], for instance, is a non-

adaptive kernel building on the concept of route, that is the

shortest path linking two nodes in a tree, and that measures

tree similarity in terms of number of common routes. In [13],

it is presented a general approach, Position Aware Kernel

(PAK), that allows extending non-adaptive convolutional

kernels with positional features using the route approach. A

similar method is applied in [14] to add route information to

an adaptive kernel built on the top of a topographic mapping

model for trees. The approach put forward in this paper is

different, as it introduces the possibility of fusing the context

from multiple adaptive models characterized by different

capabilities in terms of structural information summarization.

Through an experimental assessment on real-word tree

classification benchmarks, we study if and under which

conditions the proposed bi-directional kernel yields to an

increase in the classification performance with respect to the

unidirectional top-down and bottom-up kernels, suggesting

that the two generative models effectively capture different

forms of structural information.

II. EXPLOITING BI-DIRECTIONAL CONTEXT IN

GENERATIVE KERNELS

The section introduces a bi-directional adaptive kernel

founding on the use of two probabilistic learning models

for trees. Section II-A introduces the top-down and bottom-

up approaches to generative modeling of trees which are

later used in Section II-B to devise the bi-directional context

kernel founding on Jaccard multisets similarity.

A. Generative Models for Trees: Top-down and Bottom-up

Approaches

Generative approaches for trees allow modeling probabil-

ity distributions over spaces of trees. This is achieved by

generalizing the HMM approach for the sequential domain,

through learning of an hidden generative process for labeled

trees, that is regulated by hidden state variables modeling the

structural context of a node and determining the emission

of its label. By borrowing the nomenclature from HMM,

these models are typically referred to as Hidden Tree Markov

Models (HTMMs).

To formalize the notation used throughout the paper, we

consider a dataset D = {x1, . . . ,xN
} of N labeled rooted

tree where xn is a connected acyclic graph consisting of a

set of nodes Un = {1, . . . , Un} such that a single vertex

is denoted as the root and any two nodes are connected by

exactly one simple path. The index n is used to denote the

n-th tree in a dataset of N structures and will be omitted

for notational simplicity when the context is clear. In the

following, the term u ∈ Un is used to denote a generic nodes

of xn. The direct ancestor of a node u, i.e. the node which

is directly connected to u, is called its parent. By definition,

each node u has at maximum one parent, however it can have

a variable number of direct descendants (children), such that

the l-th child of node u is denoted as chl(u). For the purpose

of this paper, we assume trees to have a finite maximum

outdegree L, i.e. the maximum number of children of a node.

Finally, each vertex u in the tree is associated with a label

xu which is a d-dimensional vector.

As anticipated in Section I, the direction of the generative

process determines the context in which a node is evaluated

and influences the features of the probabilistic model, as it

affects its underlying probabilistic assumptions. We consider

two generative processes associated to top-down and bottom-

up parsing directions. The top-down HTMM [7], [8] (TD, in

the following), for instance, implements a generative process

for all paths from the root to leaves of the trees. This is

realized by a set of hidden state variables associated with

a state transition dynamics that follows the direction of the

generative process, i.e. from a node u towards its children

chl(u). Specifically, an observed tree xn is modeled by a

set of hidden state variables {Q1, . . . , Qu, . . . } following the

same indexing as the observed nodes u ∈ Un and assuming

values on the discrete set of hidden states {1, . . . , C}. The

direction of the generative process is then modeled by the
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state transition probability

P (Qu = j|Qpa(u) = i) (1)

entailing that the hidden state of a node is conditionally

independent of the rest of the tree once that its parent state

is observed. To complete the specification of the model, it is

assumed that the label xu (continuous or discrete) of a node

u is completely specified by its hidden state Qu through

the emission distribution P (xu|Qu = j). Following such

conditional independence relations, we can factorize the joint

distribution of an observed tree xn with the hidden states

assignment Q1, . . . , QUn
as

P (xn, Q1, . . . , QUn
) =P (Q1)P (x1|Q1)

Un
∏

u=2

P (xu|Qu)P (Qu|Qpa(u)),
(2)

where P (Q1) is the prior state distribution for the root node

(u = 1), given that it has no parent. The likelihood for the TD

is obtained from (2) by marginalizing the unknown hidden

state assignment and summing across all dataset (see [8] for

details).

The bottom-up HTMM (BU) [5], [6] defines a generative

process propagating from the leaves to the root of the tree,

which allows nodes to collect dependency information from

each child subtree. The BU implements a generative process

that composes the child subtrees of each node in the tree in a

recursive fashion. Similarly to (1), this is modeled by a joint

state transition probability

P (Qu = i|Qch1(u) = j1, . . . , QchL(u) = jL) (3)

assuming that each node u is conditionally independent of

the rest of the tree when the joint hidden state of its direct

descendants Qchl(u) = jl is observed. The problem with

the formulation in (3) is that it becomes computationally

impractical for trees other than binary, since the size of the

joint conditional transition distribution is order of CL+1,

where L is the node outdegree. In [6], this has been addressed

by introducing a scalable switching parent approximation

that factorizes (3) as a mixture of L pairwise child-parent

transitions. The resulting BU joint distribution is

P (xn, Q1, . . . , QUn
) =

∏

u′
∈LFn

P (Qu′)P (xu′ |Qu′)

∏

u∈Un\LFn

P (xu|Qu)

L
∑

l=1

P (Su = l)P (Qu|Qchl(u))

(4)

where we recall that LFn denotes the set of leaves in tree

xn and the summation term corresponds to the factorization

of (3) using the switching parent Su ∈ {1, . . . , L}. This

is a latent variable, independent from Qchl(u), and whose

distribution P (Su = l) measures the influence of the l-th

children on a state transition to node u.

Learning the parameters of the TD and BU generative

models is addressed as an Expectation-Maximization (EM)

[15] problem applied to the log-likelihood of the models,

completed with latent indicator variables that model the

unknown hidden state (and switching parent) assignments.

Details of the learning algorithms for the specific models can

be found in the papers cited above. The resulting algorithm

is a two-stage iterative procedure, known also as the Baum-

Welch algorithm [16] in the context of Markov chains,

which allows to efficiently compute a solution to the log-

likelihood maximization problem. At the E-step, it estimates

the posterior of the indicator variables introduced in the

completed log-likelihood, while, at the M-Step, it exploits

such posteriors to update the model parameters θ. Posterior

estimation is the most critical part of the algorithm and

can be efficiently computed by message passing upwards

and downwards on the structure of the nodes’ dependency

graph [6], [17]: this procedure is an extension to trees of

the Forward-Backward inference algorithm for HMMs on

sequences [3].

The TD and BU approaches are characterized by different

context propagation strategies, that are determined by the

direction of the state transition function (generative pro-

cess) which, in practice, induces different conditional in-

dependence relationships. Such diverse generative dynamics

leads to different representational capabilities. Consider the

representation of the DBN of the TD and BU for a given

tree in Fig. 1. With a top-down approach (Fig. 1(b)), the

hidden state Qu assigned to node u captures information

about path πu leading to the node from the root. With a

bottom-up context (Fig. 1(a)), on the other hand, the hidden

state assignment Qu summarizes information concerning

structural properties of its descending subtrees τu. In other

words, the hidden state space of BU provides a summarized

view of the subtrees occurring in the data, where each hidden

state identifies a cluster of similar structures, while TD

provides a summarized view where each hidden state clusters

similar root-to-node paths. In [6] it has been shown that

the conditional dependence relationships introduced by the

BU context allow, in general, to capture more discriminant

details on the tree structures with respect to a TD context.

Nevertheless, we are convinced that the TD approach models

a different form of structural information with respect to BU

and that the integration of the two approaches can yield

to more accurate and effective learning models for trees.

In the following section, we discuss a way of fusing such

information by means of generative kernels.

B. Integrating Top-Down and Bottom-Up Context in a Jac-

card Kernel for Trees

The TD and BU exploit the concept of hidden states to

define a generative model for tree-structured data, using the

latent variables Qu to simplify the conditional probabilities

underlying the model. These hidden states summarize struc-

tural information concerning tree components, providing an

adequate context, e.g., for the emission of a node label. We

expect the hidden states of TD and of BU to encode different

forms of structural contexts. By exploiting the concept of

hidden states multisets [11], we discuss a generative kernel

that integrates the structural information of independently

trained TD and BU models. Roughly, each tree is represented
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πu

Qu

(a)

τu
Qu

(b)

Fig. 1. Generative process associated to TD (a) and BU (b) models for a
given tree: empty nodes denote latent variables (e.g. the hidden state Qu)
while shaded nodes are observable variables (e.g. the corresponding tree
labels xu); the switching parent nodes Su are not shown in BU for the
sake of simplicity. The figures highlight the context associated to an example
node u in each model: πu is the path leading to the node form the root; τu
is the set of substructures rooted in u.

in terms of its associated hidden states both in the TD and

BU models; then, structure similarity is computed on the

basis of overlap in the hidden states’ configurations. More

specifically, given a trained TD and BU, we transform a tree

x into a bag-of-states, that is a vector of hidden state counts,

similarly to how textual documents are represented as vectors

of word counts.

To compute the multiset encoding, we first need to deter-

mine the most likely hidden state assignment for a tree x:

this is referred to as the more general decoding problem in

the literature on Hidden Markov Models [3]. Although there

are different interpretations of optimality in the decoding

problem, a widely accepted formulation is based on finding

the hidden states that maximize the joint probability with the

observation, i.e.

max
q

P (X = x,Q = q|θ), (5)

where x is the observed tree, q is a (generic) associated

hidden state assignment and θ is the set of parameters learned

for BU (θbu) and TD (θtd). The optimization problem in

(5) is solved independently for the two generative models,

obtaining the most likely hidden state assignment Qtd
n,u and

Qbu
n,u of each node u in tree xn for TD and BU, respectively.

This problem can be efficiently solved for both generative

models through a dynamic programming approach, known

as the Viterbi Algorithm, whose details can be found in [17]

for TD and in [18] for BU.

Figure 2 describes the tree encoding process to obtain the

bidirectional hidden states multiset. First, a sample tree (on

the left) is associated to its Viterbi states in both the TD

and BU models (right). By means of such Viterbi states, it is

possible to define several bag-of-states encodings, depending

on the amount of structural information that we want to

introduce in the kernel feature-space representation: here, we

consider two forms of bag-of-states, shown at the bottom of

Fig. 2, corresponding to unigram and bigram multisets. The

unigram is the simplest form of multiset that is based on

counting the occurrence of the single hidden states (see left-

side arrows in Fig. 2). Given a tree xn and its associated

TD hidden state assignments Qtd
n,u, it is transformed into

a C-dimensional feature-vector Φtd(xn) such that its i-th

component is

Φtd
i (xn) =

∑

u∈Un

δ(Qtd
n,u, i) and i = 1, . . . , C (6)

where we recall that Un is the set of nodes in the n-th tree

and δ(·, ·) is the Kronecker function. The unigram encoding

Φbu(xn) for the BU model is obtained as in (6). The unigram

representation captures information on the prevalent topics

in the tree, but does not convey any structural information,

besides that captured by the generative model and conveyed

by the hidden state assignment. To introduce more structural

knowledge, we might be interested in modeling the co-

occurrence of hidden-states in a parent-children relationship

(see right-side arrows in Fig. 2). This is similar to when,

in document analysis, we model the co-occurrence of two

adjacent words in a text by means of a word bigram. In

analogy to this, we define an hidden state bigram, where an

input tree xn is transformed in a (C2)-dimensional feature-

vector Φtd(xn), such that its ij-th element is

Φtd
ij
(xn) =

∑

u∈Un

∑

l∈ch(u)

δ(Qtd
n,u, i)δ(Q

td
n,l, j)

and j = 1, . . . , C, ij = 1, . . . , C

(7)

where ch(u) is the set of children of node u (and Φbu(xn)
is obtained similarly to (7)). The bigram encoding allows to

represent the co-occurrence of hidden states patterns between

a parent node and each of its children taken independently,

thus providing the kernel with some form of (partial) struc-

tural information.

The unigram and bigram encodings can be computed by

a single visit of the tree for each generative model. For

efficiency, this calculation can be embedded in the steps of

the Viterbi recursion of the underlying generative model,

with only a minor modification in the (constants of the)

Viterbi computational complexity. Algorithm 1 provides a

procedural view of the steps needed to compute the encoding

in BU (more details in [6]). For the purposes of Algorithm

1, we use the following notation: state transition Al
ij =

P (Qu = i|Qchl(u) = j), prior probability ρi = P (Qu = i),
switching parent distribution ϕl = P (Qu = l) and emission

distribution bi(xu) = P (xu|Qu = i). Note that the term

ind in Algorithm 1 denotes an hash table whose element

ind(i, u, u′) = j stores the Viterbi hidden state j associated
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Tree

decoding

bigramunigram

TD BU

i

j′

i′

Φ(x)

i′ i′, j′ j i, j

j

Fig. 2. Tree encoding process yielding to the bidirectional hidden states
multiset: a test tree is associated to its most likely TD and BU hidden states
through Viterbi decoding. Then unigram and bigrams are calculated for each
generative model and concatenated in the final bidirectional representation.
Note that, in the unigram representation (left-side arrow), the i-th vector
component stores the number of occurrences of the i-th state in the tree.
In the bigram (right-side arrow), there is a vector component for each pair
of hidden states (e.g. i, j): the corresponding entry stores the co-occurrence
counts of the first hidden state (e.g. i) being associated to a node whose
child is assigned to the second hidden state (e.g. j).

to node u′, that is a child of node u, if the latter node is

associated to the Viterbi hidden state i.

The bi-directional context encoding is obtained by com-

bining the directional context multiset obtained by TD and

BU as shown in Fig. 2. In particular, we obtain the unigram

and bigram representations of the two models (e.g. through

Algorithm 1) and we concatenate them into a 2 · (C +C2)-
dimensional bi-directional context encoding

Φtb = [Φtd
ugΦ

td
bgΦ

bu
ugΦ

bu
bg ]

where the ug and bg subscripts denote unigrams and bi-

grams, respectively. Once obtained the bi-directional multiset

representation, we obtain the tree kernel by exploiting the

Jaccard similarity [19], [11], that is a well known metric

for comparing multisets. In particular, we define the bi-

directional Jaccard kernel for trees as the multiset Jaccard

similarity

ktb(x
1,x2) =

∑D

i=s min(Φtb
s (x

1),Φtb
s (x

2))
∑D

s′=1
max(Φtb

s′(x
1),Φtb

s′(x
2))

(8)

where D the feature space size of the multiset bi-directional

encodings Φtb(·). The Jaccard metric in (8) is a kernel given

that it is a similarity function and it is positive definite [20].

Note that the encoding Φtb is obtained as a concatenation

of the BU and TD representations: due to the formulation

of the Jaccard kernel in (8), computing the bi-directional

kernel is equivalent to summing the TD and BU kernel

contributions, i.e. ktd and kbu (computed similarly to (8)).

The sum formulation is interesting as it allows to generalize

the bi-directional kernel to a convex combination of the TD

and BU contexts as

ktb(x
1,x2) = (1− α)ktd(x

1,x2) + αkbu(x
1,x2),

where α is a meta-parameter in [0, 1] that can be used to

weight the contribution of one context over the other. Its

value can be determined, for instance, as part of a cross-

validation process. Alternatively, it can be used to express

Algorithm 1 Viterbi unigram-bigram for a BU model

Require: A topologically sorted tree xn with root atu = 1
and leaves with indices from Un (total nodes) back to

In + 1 (In is the index of the first non-leaf node).

for u = In + 1 to Un do

δu(i) = ρi for i = 1, . . . , C
end for

for u = In + 1 to 1 do // upwards recursion

for i = 1 to C do

for l = 1 to L do

j∗ = argmaxj

{

ϕlA
l
i,jbj(x

n
chl(u)

)δchl(u)(j)
}

sumu = sumu + ϕlA
l
i,j∗

produ = produ · bj∗(x
n
chl(u)

)δchl(u)(j
∗)

ind(i, u, chl(u)) = j∗

end for

δu(i) = sumu · produ
end for

end for

Q∗

n,1 = argmaxi {δu(i)bi(x
n
1
)}

for u = 1 to In do // downwards recursion

i = Q∗

n,u

Φi(x
n) = Φi(x

n) + 1 // unigram

for l = 1 to L do

j = ind(i, u, chl(u))
Q∗

n,chl(u)
= j

Φij (x
n) = Φij (x

n) + 1 // bigram

end for

end for

return Φbu(xn) = [Φi(x
n)Φij (x

n)] for i, j ∈ [1, . . . , C]

knowledge on the prior confidence that we have on the

contexts. For instance, given accbu and acctd as the accuracy

of the BU and TD kernels on a validation set, the α meta-

parameter can be chosen as

α =
accbu

accbu + acctd
.

III. EXPERIMENTAL RESULTS

The experimental analysis focuses on assessing whether

the bi-directional kernel (TB) provides a richer and more

effective context with respect to the unidirectional TD and

BU kernels. To this end, we have designed an experimental

evaluation on real-world challenging benchmarks on tree

structured data classification.

The first two benchmarks have been proposed as part

of the 2005 and 2006 INEX Competition [21]. The first

dataset, referred to as INEX 2005, is the (m-db-s-0) corpus,

comprising 9, 361 XML formatted documents represented

as trees comprising a total of 124, 359 vertices. Documents

are labeled by 11 thematic categories, with consistently

varied class distributions, such that node labels represent 1
out of 366 possible XML-tags, modeled by a multinomial

distribution. The second dataset, referred to as INEX 2006,

is the IEEE corpus, composed of 12, 107 XML formatted

documents (for a total of 218, 537 vertices) representing sci-
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TABLE I

CLASSIFICATION PERFORMANCE ON THE EXTERNAL (OUT-OF-SAMPLE) TEST SET FOR THE GENERATIVE KERNEL CONFIGURATIONS SELECTED IN

CROSS-VALIDATION. PERFORMANCE FOR THE INEX TASK IS EXPRESSED AS CLASSIFICATION ACCURACY (%), WHILE FOR PROPBANK THIS IS

EXPRESSED BY F1 SCORE (VARIANCE IS REPORTED IN BRACKETS). THE BEST RESULT FOR EACH DATASET IS HIGHLIGHTED IN BOLD.

BU TD TB

Dataset Size Test Size Test Size Test

INEX05 (accuracy) C = 8 94.22 (0.81) C = 10 93.39 (2.19) C = 8 95.39 (0.14)

INEX06 (accuracy) C = 6 44.53 (0.09) C = 8 44.38 (0.06) C = 10 44.78 (0.02)

Propbank (F1 Score) C = 8 0.567 (< 10−3) C = 10 0.577 (< 10−3) C = 10 0.586 (< 10−3)

entific articles, each from one of 18 different IEEE journals.

Node emission has been modeled by a multinomial whose

elements represent 1 out of 65 different XML tags. The large

number of classes in both data sets makes them challenging

benchmarks, such that the random classifier baseline for

INEX 2005 and INEX 2006 is 9% and 5.5%, respectively.

Both datasets provide standard splits for training and test

samples [22], such that INEX 2005 comprises 4820 training

structures and 4, 811 test samples, while INEX 2006 is split

into 6, 053 training trees and 6, 054 test data.

The third benchmark, i.e. Propbank, deals with the clas-

sification of parse trees representing English propositions

and associated semantic information. The Propbank dataset

derives from the Penn English TreeBank and consists of

material from a set of Dow-Jones news articles, divided into

sections. For the purpose of this paper, we use a sample

of trees from section 24, including 7, 000 training trees and

2, 000 validation examples, as well as 6, 000 test samples

extracted from section 23 [13]. The trees in the dataset have

outdegree 15 and an average number of nodes equal to 13.95.

The label alphabet is huge and includes 6, 654 elements

corresponding to English words and semantic annotations.

This benchmark defines a binary classification problem with

a very unbalanced class distribution, where the percentage of

positive examples in each set is roughly 7%. For this reason,

the F1 score is used to measure the predictive accuracy of the

kernels. The dataset comes with a standard split into training,

validation and test sets.

Different configurations of the TD and BU generative

models have been tested by varying the number of hidden

states C in {6, 8, 10}. The number of tested hidden states

has been determined following the guidelines in [6]. Note

that both TD and BU train a different model for each class,

hence the total number of hidden states for a task is C · V ,

where V is the number of classes. Training and test trials

have been repeated 5 times for each configuration of the

generative models, each time using different random initial-

izations for the models distributions. Only the initialization

of the emission distribution is kept fixed, by using the prior

distribution of the multinomial node labels estimated solely

on the training trees.

SVM-based multiclass classification has been obtained by

means of the LIBSVM1 software (by a C-SVM classifier)

exploiting the Jaccard Gram matrices as user defined kernel.

1http://www.csie.ntu.edu.tw/˜cjlin/libsvm

TABLE II

TEST CLASSIFICATION ACCURACY ON THE INEX 2005 DATA AS A

FUNCTION OF THE HIDDEN STATE SIZE. THE CONFIGURATION SELECTED

IN CROSS-VALIDATION IS HIGHLIGHTED IN BOLD.

Kernel C = 6 C = 8 C = 10
BU 91.56 (0.81) 94.22 (0.81) 93.81 (0.81)

TD 89.71 (1.57) 93.04 (2.93) 93.39 (2.19)

TB 92.45 (0.56) 95.39 (0.14) 94.76 (0.27)

A cross-validation (CV) procedure has been applied to select

the value of the misclassification cost parameter Csvm from

the following set of values: 0.001, 0.01, 0.1, 1, 10, 100, 1000
using validation data external to the test set. In particular, for

the INEX tasks we have applied a 3-fold CV to the training

set (using classification error), while Propbank comes with

a standard validation set which has been used to perform

model selection on the Csvm misclassification cost (assessing

validation performance with the F1 score). The value used

for α is 1

2
: this choice is likely to return an underestimation

of the performance that can be obtained by optimizing α

in CV, but we are interested in assessing the contribution

of having a bi-directional context rather than seeking an

optimized kernel. The SVM classifier with the Csvm value

selected on the validation set has then been trained and its

average performance on the 5 trials has been evaluated on

the hold-out test data.

Table I shows the test classification performance on the

three datasets for the model-selected configurations of the

generative kernels (and associated probabilistic models). The

results show that TB achieves a classification performance

that is significantly higher (given the low variance) than that

achieved by the TD and BU unidirectional approaches, sug-

gesting that it is effectively combining the context captured

by the two underlying generative models. This behavior is

more evident when considering the detailed results for the

INEX 2005 dataset reported in Table II: here, we compare

the performance of the three approaches for the same hidden

state size C. Note that, for a given C, the TB result is

obtained from the same bottom-up and top-down generative

models used to obtain the BU and TD results, respectively.

These are only combined in 5 random couples to yield to

5 TB trials per each configuration of C. In other words,

the bi-directional context effectively combines the informa-

tion captured in the generative models with respect to an

uni-directional context applied to the very same generative

models.
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By taking a closer look at the results in Table I, it is

interesting to note that certain tasks are better suited to a

bottom-up approach, such as INEX 2005 and INEX 2006,

while Propbank obtains a better result when a top-down

context is used. This aspect points out another significant

advantage of the TB approach, as it appears to be capable of

getting better generalization performance across a variety of

learning task with respect to the unidirectional approaches.

When compared to other results in literature, the TB kernel

shows a competitive performance, in particular as regards

the INEX 2006 and Propbank data. The former dataset is

an hard benchmark, generally yielding to low classification

performances: [23] provides a recent survey of the results

of several tree classification approaches on the INEX 2006

dataset. The results in [23] show that TB achieves the

best classification accuracy in literature on the INEX 2006

dataset: state-of-the-art syntactic kernels such as ST [24] and

SST [25] yield to test classification accuracies of 32.02%
and 40.41%, respectively. Similarly, in [13], it is provided

an aggregated view of the results of the main syntactic tree

kernels in literature on the Propbank dataset. These results

show that TB achieves again the best F1 score: e.g. ST

and SST yield to 0.517 and 0.542, respectively. TB also

outperforms an enhanced version of the PT kernel which

allows richer contexts enabling partial matches between

subtrees and that scores an F1 measure of 0.579 [13].

IV. CONCLUSIONS

We have introduced an approach that easily and effectively

combines the structural information captured by generative

tree models characterized by top-down and bottom-up con-

texts. The proposed approach exploits the idea of hidden

states multisets to realize a tree encoding that takes into

account both the summarized information on the path leading

to a node (i.e. a top-down context) as well as the information

on how substructures are composed to create a subtree rooted

on a node (bottom-up context). We have highlighted how

different contexts yield to different probabilistic assumptions

in the generative models and, more practically, to different

performances depending on the learning task the are applied

to. The experimental analysis shows that by taking a bi-

directional approach incorporating both the top-down and

bottom-up contexts yields to superior performances with

respect to the unidirectional approach. More importantly,

the proposed TB kernel achieves state of the art results

on challenging tree classification benchmarks, i.e. INEX

2006 and Propbank. The method proposed in the paper

to combine different contextual information is simple, but

paves the way to more articulated approaches exploiting the

same underlying intuition. In Section II-B, we have already

suggested more refined ways of combining independent

bottom-up and top-down multisets. Nevertheless, we believe

that a considerable advancement can be obtained through the

introduction of hybrid encodings, such that the state-gram

encodes information on the occurrence of TD and BU hidden

states in a parent-child relationships, allowing the kernel to

capture more discriminative structural matches.
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