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Abstract—Interaction between different brain regions has
received wide attention recently. Granger causality (GC) is one
of the most popular methods to explore causality relationship
between different brain regions. In 2011, Hu et. al [1] pointed
out shortcomings and/or limitations of GC by using a large of
number of illustrative examples and showed that GC is only a
causality definition in the sense of Granger and does not reflect
real causality at all, and meanwhile proposed a new causality
(NC) which is shown to be more reasonable and understandable
than GC by those examples. Motor imagery (MI) is an important
mental process in cognitive neuroscience and cognitive psychology
and has received growing attention for a long time. However,
there is few work about causality flow so far during MI based on
scalp EEG. In this paper, we use scalp EEG to study causality
flow during MI. The scalp EEGs are from 9 subjects in BCI
competition IV held in 2008 [2] and provided by Graz University
of Technology. We are interested in three regions: Cz (the centre
of cerebral cortex), C3 (the left of cerebral cortex) and C4 (the
right of cerebral cortex) which are considered to be optimal
locations for recognizing MI states in literature. We apply GC
and NC to scalp EEG and find that i) there is strong directional
connectivity from Cz to C3/C4 during left hand and right hand
MI based on GC and NC. ii) During left hand MI, there is
directional connectivity from C4 to C3 based on GC and NC. iii)
During right hand MI, there is strong directional connectivity
from C3 to C4 which is much clearly revealed by NC method
than by GC method. iv) Our results suggest that NC method in
time and frequency domains is demonstrated to be much better
to reveal causal influence between different brain regions than
GC method. Thus, we deeply believe that NC method will shed
new light on causality analysis in economics and neuroscience.

I. INTRODUCTION

GC is one of the most popular methods to detect the
directional influence of system components because of its
simplicity and easy implementation, and plays a key role in
understanding systems behavior in many different areas, such
as economics [3] and [4], climate studies [5] and [6], genetics
[7], and neuroscience [8] and [9]. In neuroscience, GC has
been mainly applied to disclose effective connectivity of brain
regions, which is defined as the influence one neuronal system
exerts over another [10]. The basic idea of GC was originally
conceived by Wiener in 1956 [11], and later formalized by
Granger in 1969 [12] in the form of linear regression model.
The idea can be briefly described as follows: If the historical

information of time series Y significantly improves the predic-
tion accuracy of the future of time series X in a multivariate
autoregressive (MVAR) model, then GC from time series Y
to X can be identified. In classic GC, time-invariant MVAR
models are used to fit the experimental data of the observed
time series [13]. Although GC has tremendous applications
in many areas, this success has also been accompanied by
criticism from different prospectives [14] and [15]. The criti-
cism of GC has most been centered around the philosophical
debate on the relationship between GC and true causality. As
its name implies, GC is not necessarily true causality [16]. For
example, if both X and Y are driven by a common third process
with different lags, one might still fail to reject the alternative
hypothesis of GC and may produce misleading results. In 2011,
Hu et. al [1] pointed out shortcomings and/or limitations of
GC by using a large of number of illustrative examples and
showed that GC is only a causality definition in the sense of
Granger and why GC does not reflect real causality at all, and
meanwhile proposed NC defined as a causality from any time
series Y to any time series X in the linear regression model
of multivariate time series, which describes the proportion that
Y occupies among all contributions to X and is shown to be
more reasonable and understandable than GC to reveal real
causality by those examples. NC is a natural extension of GC
and overcomes GC’s shortcomings and/or limitations.

Brain-computer interface (BCI) is an emerging technology
dealing with computer-aided control using exclusive brain
activity, and has found application across bioengineering fields
and in neuroprosthetics [17]. The most commonly used exper-
imental paradigm in this context is motor imagery (MI) [18],
that is, the imagination of a motor action without any actual
movement of limbs, which has clear practical significance and
provides a new communication channel between the human
brain and the computer [19]. MI is the mental simulation of
a motor act that includes preparation for movement, passive
observations of action and mental operations of motor repre-
sentations implicitly or explicitly. The neuronal representations
of MI have been studied intensively for years using brain
imaging techniques, such as functional magnetic resonance
imaging (fMRI), electroencephalogram (EEG) and positron
emission tomography (PET) [8], [20]-[22]. MI as preparation
for immediate movement likely involves activation of the
motor executive brain regions. Recent findings based on fMRI



suggest the existence of the causal connectivity of motor
related core regions in fronto-parietal circuit [8] during MI.
In EEG-based BCI research, C3, C4 and Cz are demonstrated
to be optimal for recognizing MI states [23]. In this study we
will discuss whether or not there exists causal connectivity
among C3, C4 and Cz based on scalp EEG during MI.

In this paper, firstly we will describe GC and NC in time
and frequency domains in time-invariant bivariate autoregres-
sive model, and show the differences between GC and NC
in mathematical way. Then we apply GC and NC to analyze
the data sets 2b from BCI competition IV held in 2008 [2]
and provided by Graz University of Technology. The data
includes 3 bipolar EEG channels (C3, C4 and Cz) and is from 9
subjects. We apply GC and NC to EEGs and find that i) there
is strong directional connectivity from Cz to C3/C4 in both
time domain and frequency domain (mu rhythm (8 ∼ 12Hz))
during left and right hand MI based on GC and NC where
mu rhythm is an important property of EEG signals during
MI [23]. ii) During left hand MI, there is strong directional
connectivity from C4 to C3 based on GC and NC in both time
domain and frequency domain. iii) During right hand MI, there
is strong directional connectivity from C3 to C4 in both time
domain and frequency domain. iv) For causality from C4 to C3
during left hand MI and causality from C3 to C4 during right
hand MI, the portion of GC values having peeks in mu rhythm
is 32%, however the portion of NC values having peaks in mu
rhythm is 55%. This once again strongly demonstrates that
NC method is much better than GC to reveal real directional
causality flow in real EEG data. Therefore, NC method may
open a new window to study causality relationships and may
have wide applications in economics and neuroscience.

II. GC AND NC

Consider two stochastic time series which are assumed to
be jointly stationary. Individually, under fairly general condi-
tions, each time series admits an autoregressive representation























X1,t =
m
∑

j=1

a11,jX1,t−j + ǫ1,t

X2,t =
m
∑

j=1

a22,jX1,t−j + ǫ2,t

(1)

and their joint representations are described as






















X1,t =
m
∑

j=1

a11,jX1,t−j +
m
∑

j=1

a12,jX2,t−j + η1,t

X2,t =
m
∑

j=1

a21,jX1,t−j +
m
∑

j=1

a22,jX2,t−j + η2,t

(2)

where t = 0, 1, · · · , N , the noise terms are uncorrelated over
time, ǫi and ηi have zero means and variances of σ2

ǫi
, and

σ2
ηi

, i = 1, 2. The covariance between η1 and η2 is defined by

ση1η2
= cov(η1, η2) [1].

GC in Time Domain

Now consider the first equalities in (1) and (2), if σ2
η1

is

less than σ2
ǫ1

in some suitable sense X2 is said to have a causal
influence on X1. In this case, the first equality in (2) is more
accurate than in (1) to estimate X1. Otherwise, if σ2

η1
= σ2

ǫ1
,

X2 is said to have no causal influence on X1. In this case,
two equalities are same. Such kind of causal influence, called
GC [24], [25], is defined by

FX2→X1
= ln

σ2
ǫ1

σ2
η1

(3)

Obviously, FX2→X1
= 0 when there is no causal influence

from X2 to X1 and FX2→X1
> 0 when there is. Similarly, the

causal influence from X1 to X2 is defined by

FX1→X2
= ln

σ2
ǫ2

σ2
η2

(4)

NC in Time Domain

Based on the first equality in (2), we can see contributions
to X1,t, which include

∑m
j=1 a11,jX1,t−j ,

∑m
j=1 a12,jX2,t−j

and the noise term ηk,t where the influence from
∑m

j=1 a11,jX1,t−j is causality from X1’s own past values.
Each contribution plays an important role in determining X1,t.
If
∑m

j=1 a12,jX2,t−j occupies a larger portion among all those
contributions, then X2 has stronger causality on X1, or vice
versa. Thus, a good definition for causality from X2 to X1

in time domain should be able to describe what proportion
X2 occupies among all these contributions. So based on this
general guideline NC from X2 to X1 is defined as [1]

nX2→X1
=

N
∑

t=m

(
m
∑

j=1

a12,jX2,t−j)
2

2
∑

h=1

N
∑

t=m

(
m
∑

j=1

a1h,jXh,t−j)
2

+
N
∑

t=m

η21,t

(5)

Similarly, NC in time domain from X1 to X2 is defined by

nX1→X2
=

N
∑

t=m

(
m
∑

j=1

a21,jX1,t−j)
2

2
∑

h=1

N
∑

t=m

(
m
∑

j=1

a2h,jXh,t−j)
2

+
N
∑

t=m

η22,t

(6)

Taking Fourier transformation on both sides of (2) leads to
{

X1(f) = a11(f)X1(f) + a12(f)X2(f) + η1(f)

X2(f) = a21(f)X1(f) + a22(f)X2(f) + η2(f)
(7)

where alj(f) =
m
∑

k=1

alj,ke
−i2πfk,i =

√
−1, l, j = 1, 2.

GC in Frequency Domain

Granger causal influence from X2 to X1in frequency
domain is defined by IX2→X1

(f) =

− log (1−
(ση2

2 − ση1η2
2

ση1
2 )| H12(f) |2

SX1X1

) ∈ [0,+∞) (8)

where the transfer function H(f) = A−1(f) whose
components are

H11(f) =
1

det(A)a22(f), H12(f) =
1

det(A)a12(f),

H21(f) =
1

det(A)a21(f), H22(f) =
1

det(A)a11(f),
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A = [aij ]2×2, akk(f) = 1 −
m
∑

j=1

akk,je
−i2πfk, k = 1, 2.

ahl(f) = −
m
∑

j=1

ahl,je
−i2πfk,h, l = 1, 2, h 6= l.

Similarly, we define Granger causal influence from X1 to X2

by

IX1→X2
(f) =

− log (1−
(ση1

2 − ση1η2
2

ση2
2 )| H21(f) |2

SX2X2

) ∈ [0,+∞) (9)

where SXiXi
(f) is the spectrum of Xi, i = 1, 2.

NC in Frequency Domain

From (7), one can see that contributions to X1(f) include
a11(f)X1(f), a12(f)X2(f) and noise term η1(f). So NC from
X2 to X1 in frequency domain is defined as NX2→X1

(f) =

| a12(f) |2SX2X2
(f)

| a11(f) |2SX1X1
(f) + | a12(f) |2SX2X2

(f) + σ2
η1

(10)

Similarly, NC from X1 to X2 in frequency domain is defined
as NX1→X2

(f) =

| a21(f) |2SX1X1
(f)

| a21(f) |2SX1X1
(f) + | a22(f) |2SX2X2

(f) + σ2
η2

(11)

Remark: In [1] we pointed out that i) for the simple
illustrative example in (10), (11) of [1] GC from X2 to X1

is mathematically equivalently defined on (17) and by (18) or
(13) of [1], however (17) is only partial contribution of X1

(see (11) of [1]). Any real causality definition should consider
all contributions of X1. Thus, GC in (12) or (13) of [1] does
not define real causality from X2 to X1 at all. ii) NC is much
better than GC to reveal real causality by a larger number
of illustrative examples in [1] which include an experimental
EEG data set. iii) In this study, we will further demonstrate
that NC is better than GC to reveal real causality influence
based on EEG during MI states.

III. EXPERIMENTAL METHOD

In this section, we first describe our EEG data for analysis.
The data sets 2b from BCI competition IV held in 2008 were
used and provided by Graz University of Technology [2].
These data sets consist of EEG data from 9 subjects. The
subjects were right-handedness, had normal or corrected-to-
normal vision and were paid for participating in the experi-
ments [2]. All volunteers were sitting in an armchair, watching
a flat screen monitor placed approximately 1 m away at eye
level. For each subject 5 sessions were provided, whereby
the first three sessions were training data, and the last two
sessions were evaluation data. We only analyzed the training
data because the classification result of the evaluation data
was unknown. Thus, there are totally 9 × 3 = 27 sessions
for our analysis. The cue-based screening paradigm consists
of two classes, namely left hand MI (Class 1) and right hand
MI (Class 2). Each session contains some trails of Class 1 and
some trails of Class 2. For each session we extract all the trails
data of MI. Then put the left hand MI trail data together and
average the trials data as one time series data of Class 1. For
the right hand MI trial data, we do the same preprocessing to

get one time series data of Class 2. Each class data consists of
3 channels (C3, Cz and C4) data. In this study, we analyze the
data as follows: firstly, we detect the effective connectivity in
time domain by calculating GC and NC between Cz and C3/C4
and between C3 and C4. Secondly, we calculate GC and NC
in frequency domain between Cz and C3/C4 and between C3
and C4, and choose three subjects as representatives to show
our results. For GC and NC results in time and frequency
domains we make comparison to conclude that NC is much
better than GC to reveal real causality based on EEG data
during MI states.

IV. SIMULATION RESULTS

Effective Connectivity Analysis in Time Domain

For the MI data including Class 1 and Class 2, we extract
channels (C3, C4 and Cz) data as three time series. For
each class, we first apply GC to calculate FC3→Cz , FCz→C3,
FC4→Cz , FCz→C4, and meanwhile we apply NC to calculate
nC3→Cz , nCz→C3, nC4→Cz , nCz→C4. The results are shown
in Fig.1 (Class 1) and Fig.2 (Class 2) where each session has
one causality value for each method and as a result there are
totally 27 point for each curve because of 27 sessions being
involved, and summarized in Table I and Table II. From Table
I and Table II one can see that there is strong directional
connectivity from Cz to C3/C4 in time domain during left
and right hand MI based on GC and NC.

By observing the red lines in Fig.1 and Fig.2, one can see
that curves by NC method are less oscillative than that by
GC method, this means those results by NC method are more
stable and less changed during left hand MI and right hand
MI. This is reasonable from the point of view of physiological
phenomenon. On the contrary, curves by GC method have
higher oscillation, as a result, this is unreasonable from the
point of view of physiological phenomenon. So, NC method
identifies the causal influence from Cz to C3/C4. Therefore, in
time domain, we demonstrate that NC method is much better
than GC method to reveal causal influence among different
brain regions during MI states.

TABLE I. THE PROPORTIONS IN CLASS 1

Causality Methods Cz → C3 > C3 → Cz Cz → C4 > C4 → Cz

GC 0.89 0.93

NC 0.93 0.89

TABLE II. THE PROPORTIONS IN CLASS 2

Causality Methods Cz → C3 > C3 → Cz Cz → C4 > C4 → Cz

GC 0.78 0.78

NC 0.85 0.96

Next, we apply GC to calculate FC3→C4, FC4→C3, and
apply NC to calculate nC3→C4, nC4→C3. The results are
shown in Fig.3 and summarized in Table III.

TABLE III. THE PROPORTIONS IN CLASS 1 AND CLASS 2

Causality class 1 class 2

FC3→C4 > FC4→C3 0.37 0.60

FC4→C3 > FC3→C4 0.64 0.41

nC3→C4 > nC4→C3 0.37 0.81

nC4→C3 > nC3→C4 0.64 0.19

From Fig.3 and Table III, one can see that i) during left
hand MI, there is strong directional connectivity from C4 to
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Fig. 1. (a), (b) GC between Cz and C3/C4 in time domain during left hand
MI. (c), (d) NC between Cz and C3/C4 in time domain during left hand MI.

0 10 20 30
0

0.02

0.04

0.06

0.08
Class 2

G
ra

n
g
e
r 

C
a
u
s
a
lit

y

 

 

C3 >Cz

Cz >C3

0 10 20 30
0

0.02

0.04

0.06

0.08
Class 2

G
ra

n
g
e
r 

C
a
u
s
a
lit

y

 

 

C4 >Cz

Cz >C4

(a) (b)

0 10 20 30
0

0.05

0.1

0.15

0.2
Class 2

N
e
w

 C
a
u
s
a
lit

y

 

 

C3 >Cz

Cz >C3

0 10 20 30
0

0.01

0.02

0.03

0.04

0.05

0.06
Class 2

N
e
w

 C
a
u
s
a
lit

y

 

 

C4 >Cz

Cz >C4

(c) (d)

Fig. 2. (a), (b) GC between Cz and C3/C4 in time domain during right hand
MI. (c), (d) NC between Cz and C3/C4 in time domain during right hand MI.

C3 based on GC and NC, more exactly, the portion of causality
values from C4 to C3 being larger than that from C3 to C4
is 64%. ii) During right hand MI, there is strong directional
connectivity from C3 to C4, more exactly, the portion of
causality values from C3 to C4 being larger than that from
C4 to C3 is 60% by GC method, and 81% by NC method.
We also note that during right hand MI, the portion (60%) of
GC values from C3 to C4 being larger than that from C4 to
C3 is much less than the portion (81%) of NC values from C3
to C4 being larger than that from C4 to C3. So, NC method
identifies the causal influence from C3 to C4 during right hand
MI more clearly than GC method. Therefore, in time domain,
we once again demonstrate that NC method is much better
than GC method to reveal causal influence among different
brain regions during MI states.

Effective Connectivity Analysis in Frequency Domain
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Fig. 3. (a), (b) GC between C3 and C4 in time domain. (c), (d) NC between
C3 and C4 in time domain.

In frequency domain, we will apply GC method (8) and
NC method (10) to calculate spectral causality. We calculate
the causality between Cz and C3/C4, and between C3 and
C4. We choose three subjects as representatives to show how
to analyze the MI data. For each subject, we also show the
power spectrums of Cz, C3, C4 of Class 1 and Class 2.
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Fig. 4. Subject 1: (a) The power spectrums of Cz, C3, and C4 during left
hand MI. (b) The power spectrums of Cz, C3, and C4 during right hand MI.
From (a) and (b), one can clearly see mu rhythm (8 ∼ 12 Hz) for all three
channels.

Subject 1: The power spectrums of Cz , C3 and C4 are
shown in Fig.4 where there are clearly peaks in mu rhythm
(8 ∼ 12Hz) of the power spectrums during left hand and right
hand MI. The feature is a basic characteristic of EEG signals
during MI [23].

GC and NC between Cz and C3/C4 in frequency domain
during left hand MI and during right hand MI are shown in
Fig.5 and Fig.6, respectively. From Fig.5 and Fig.6 one can
see that i) in mu rhythm there always exist

ICz→C3 > IC3→Cz , ICz→C4 > IC4→Cz ,

NCz→C3 > NC3→Cz , NCz→C4 > NC4→Cz .
These results are consistent with the findings got in time
domain, that is, there is strong causal influence from Cz to
C3/C4 during left hand and right hand MI. ii) The peaks always
appear in mu rhythm (8 ∼ 12 Hz) for all NC results (blue
curves) which are consistent with peaks of the power spectrums
in Fig.4, but they do not appear in GC results except for (a)
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Fig. 5. Subject 1: (a), (b) GC between Cz and C3/C4 in frequency domain
during left hand MI. (c), (d) NC between Cz and C3/C4 in frequency domain
during left hand MI. One can see peaks in mu (8 ∼ 12 Hz) appear for NC
results (blue curves), but do not appear in (b) of GC results.
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Fig. 6. Subject 1: (a), (b) GC between Cz and C3/C4 in frequency domain
during right hand MI. (c), (d) NC between Cz and C3/C4 in frequency domain
during right hand MI. One can see peaks in mu (8 ∼ 12 Hz) appear for NC
results (blue curves), but do not appear for GC results.

of Fig.5. This means NC method can better reveal real causal
influence from Cz to C3/C4 than GC method in frequency
domain.

GC and NC in frequency domain between C3 and C4 are
shown in Fig.7 from which one can see that i) the causality
of C4 on C3 in mu rhythm is larger than that of C3 on C4
during left hand MI, but the results are reversal during right
hand MI. This consequence is consistent with the conclusion
got in time domain. ii) During right hand MI, the peaks in
mu rhythm (8 ∼ 12 Hz) appear for NC results in (d), which
are consistent with peaks of the power spectrums in Fig.4, but
they do not appear for GC results in (b). This also demonstrates
that NC method is better than GC method to reveal real causal
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Fig. 7. Subject 1: (a), (b) GC between C3 and c4 in frequency domain. (c),
(d) NC between C3 and C4 in frequency domain.

influence between C3 and C4 during this right hand MI in
frequency domain.

Subject 2: The power spectrums of Cz, C3 and C4 are
shown in Fig.8 where there are clearly peaks in about 10 Hz
of during left hand and right hand MI for all three channels.
It indicates the subject performed well during MI.
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Fig. 8. Subject 2: (a) The power spectrums of Cz, C3, and C4 during left
hand MI. (b) The power spectrums of Cz, C3, and C4 during right hand MI.
From (a) and (b), one can clearly see the peaks in about 10Hz for all three
channels.

GC and NC between Cz and C3/C4 in frequency domain
during left hand MI and during right hand MI are shown
in Fig.9 and Fig.10, respectively. GC and NC in frequency
domain between C3 and C4 are shown in Fig.11. We can make
similar discussions as in Subject 1 omitted here for brevity.

By the above analysis from two representative subjects, we
can make the following conclusions: i) there exists obvious
causal influence from Cz to C3/C4 in mu rhythm which is
stronger than that from C3/C4 to Cz during left hand and right
hand MI, that is, Cz region has causal influences on C3 and C4
regions during MI. ii) There exists clear causal influence from
C4 to C3 in mu rhythm which is larger than that from C3 to
C4 during left hand MI, but the result is reversal during right
hand MI. Thus, different MI can lead to different directional
causal influence. iii) NC method can better reveal real causal
influence among Cz, C3 and C4 three regions in mu rhythm
than GC method during MI.

In our experiment analysis, there are 9 subjects (27 training

5



0 5 10 15 20
0

0.5

1

1.5
Class 1

Frequency (Hz)

G
ra

n
g
e
r 

C
a
u
s
a
lit

y

 

 

Cz >C3

C3 >Cz

0 5 10 15 20
0

0.2

0.4

0.6

0.8
Class 1

Frequency (Hz)

G
ra

n
g
e
r 

C
a
u
s
a
lit

y

 

 

Cz >C4

C4 >Cz

(a) (b)

0 5 10 15 20
0

1

2

3

4
x 10

5 Class 1

Frequency (Hz)

N
e
w

 C
a
u
s
a
lit

y

 

 

Cz >C3

C3 >Cz

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

1.2
x 10

4 Class 1

Frequency (Hz)

N
e
w

 C
a
u
s
a
lit

y

 

 

Cz >C4

C4 >Cz

(c) (d)

Fig. 9. Subject 2: (a), (b) GC between Cz and C3/C4 in frequency domain
during left hand MI. (c), (d) NC between Cz and C3/C4 in frequency domain
during left hand MI. One can see peaks in about 10Hz appear for NC results,
but do not appear for GC results.
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Fig. 10. Subject 2: (a), (b) GC between Cz and C3/C4 in frequency domain
during right hand MI. (c), (d) NC between Cz and C3/C4 in frequency domain
during right hand MI. One can see peaks in about 10Hz appear for NC results,
but do not appear for GC results.

sessions data sets). Similar to the process as in above two
subjects, we dealt with all the data sets and summarize the
results in Table IV. It is noted that mu rhythm (8 ∼ 12Hz) is
a well-known neurophysiological phenomenon in EEG during
MI [23], so, we marked the data as “good” if the power spec-
trums of three channels have obvious mu rhythm. Otherwise,
we marked the data as “bad”. In this way, we have totally 5
bad data sets and 22 good data sets (see the column of power
spectrum in Table IV). In our analysis in frequency domain, we
only handled these 22 good data sets for which we have three
kinds of results in mu rhythm as follows: Case 1) calculate
GC and NC between Cz and C3/C4 during left hand and right
hand MI. If causality value from Cz to C3/C4 is larger than
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Fig. 11. Subject 2: (a), (b) GC between C3 and c4 in frequency domain. (c),
(d) NC between C3 and C4 in frequency domain.

that from C3/C4 to Cz, then the result of this data is viewed as
“good”, otherwise, it is viewed as “bad”. Case 2) Calculate GC
and NC between C3 and C4 during left hand MI. If causality
value from C4 to C3 is larger than that from C3 to C4, then
the result of this data is viewed as “good”, otherwise, it is
viewed as “bad”. Case 3) Calculate GC and NC between C3
and C4 during right hand MI. If causality value from C3 to C4
is larger than that from C4 to C3, then the result of this data is
viewed as “good”, otherwise, it is viewed as “bad”. Results in
Case 1, Case 2 and Case 3 are reported in Table IV. According
to these results, we have 17 good data sets in Case 1, 15 good
data sets in Case 2 and 13 good data sets in Case 3. So, the
portion of spectral causality value from Cz to C3/C4 being
larger than that from C3/C4 to Cz based on GC and NC during
left hand and right hand MI is 17/22 = 77%, the portion of
spectral causality value from C4 to C3 being larger than that
from C3 to C4 based on GC and NC during left hand MI is
15/22 = 68%, and the portion of spectral causality value from
C3 to C4 being larger than that from C4 to C3 based on GC
and NC during right hand MI is 13/22 = 59%

To demonstrate advantage of NC over GC in frequency
domain, we further mark whether there are peeks in mu
rhythm for the results in Case 1, Case 2 and Case 3 of Table
IV. The corresponding results are summarized in Table V and
Table VI. From Table V one can see that there always exist
peaks in mu rhythm for all 17 good data set in Case 1 of
Table IV by NC method. So, for the results in Case 1 of
Table V, during left hand and right hand MI the portion of
spectral NC value from Cz to C3/C4 being larger than that
from C3/C4 to Cz and meanwhile having peaks in mu rhythm
is 17 ∗ 4/(22 ∗ 4) = 77%. However, the corresponding portion
based on GC is only (10 + 11 + 9 + 11)/(22 ∗ 4) = 53%
from Table V. From Table IV one can see that the portion of
spectral causality values between C3 and C4 have peaks in mu
rhythm by NC method is (12 + 12)/44 = 54%). However the
corresponding portion by GC method is (6 + 8)/44 = 32%).
Thus, NC method is much clearer to reveal the causal influence
among Cz, C3 and C4 than GC method in frequency domain.
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TABLE IV. SPECTRAL GC AND NC RESULTS SUMMARY FOR ALL 27
TRAINING SESSIONS DATA

Subject Power Spectrum Case 1 Case 2 Case 3

subject101 good good good good

subject102 good good good bad

subject103 good bad bad bad

subject201 good good good good

subject202 good good good good

subject203 good good bad bad

subject301 bad – – –

subject302 bad – – –

subject303 good good good good

subject401 good bad good good

subject402 good bad good good

subject403 good good bad bad

subject501 good good good good

subject502 good good good good

subject503 good good good good

subject601 good good good bad

subject602 good good good good

subject603 good good good bad

subject701 good good good bad

subject702 good good bad good

subject703 bad – – –

subject801 good good bad good

subject802 bad – – –

subject803 bad – – –

subject901 good good bad bad

subject902 good bad good good

subject903 good bad bad bad

TABLE V. THE CAUSALITY BETWEEN CZ AND C3/C4 IN CLASS 1 AND

CLASS 2

Class 1 Class 1 Class 2 Class 2

Causality Method Cz ↔ C3 Cz ↔ C4 Cz ↔ C3 Cz ↔ C4
GC 10 11 9 11

NC 17 17 17 17

V. CONCLUSIONS

Nowadays many researchers apply different causality mea-
sures to investigate how different brain regions may causally
influence on each other. In this paper, we use scalp EEG to
study causality flow during MI. We particularly are interested
in three regions: Cz, C3 and C4 which are shown to be optimal
locations for recognizing MI states [23]. The scalp EEGs are
from 9 subjects in BCI competition IV held in 2008 and
provided by Graz University of Technology. We calculate GC
and NC in both time and frequency domains.

In time domain, our results suggest that i) there is strong
directional connectivity from Cz to C3/C4 during left and right
hand MI based on GC and NC (see Fig.12(a)). ii) During left
hand MI, there is strong directional connectivity from C4 to
C3 (see Fig.12(b)) based on GC and NC. During right hand
MI, there is strong directional connectivity from C3 to C4 (see
Fig.12(c)). The results in frequency domain are consistent with
that in time domain, especially in mu rhythm.

There are several evidences to strongly demonstrate that
NC method is much better than GC method to reveal real
causality flow among different brain regions during MI states:
i) By observing the red lines in Fig.1 and Fig.2, one can see
that curves by NC method are less oscillative than that by
GC method, this means those results by NC method are more
stable and less changed during left hand MI and right hand
MI. This is reasonable from the point of view of physiological
phenomenon. On the contrary, curves by GC method have
higher oscillation, as a result, this is unreasonable from the
point of view of physiological phenomenon. ii) During right

TABLE VI. THE CAUSALITY BETWEEN C3 AND C4 IN CLASS 1 AND

CLASS 2

Causality Method Class 1 (15 data sets) Class 2 (13 data sets) sum

GC 6 8 14

NC 12 12 24

hand MI, the portion (60%) of GC values from C3 to C4 being
larger than that from C4 to C3 is much less than the portion
(81%) of NC values from C3 to C4 being larger than that from
C4 to C3. So, NC method identifies the causal influence from
C3 to C4 during right hand MI more clearly than GC method.
iii) For the two subjects analyzed, the peaks in mu rhythm
mostly appear for spectral NC results which are consistent with
peaks of the power spectrums of Cz, C3 and C4. However, they
do not appear in spectral GC results.iv) The portion of spectral
causality values between C3 and C4 have peaks in mu rhythm
by NC method is 54%. However the corresponding portion by
GC method is only 32%). Thus, NC method is much clearer
to reveal the causal influence between C3 and C4 than GC
method in frequency domain.

In this paper, we only use bivariate autoregressive model to
discuss causal influence among three optimal locations during
MI. Since NC definition may be defined for multiple channels,
our future work will focus on applying NC method to reveal
effective connectivity structure of whole brain during MI states
and/or other cognitive experimental tasks.

(a)

(b) (c)

Fig. 12. (a) Cz has influence on C3 and C4 during MI. (b) C4 has influence
on C3 during left hand MI. (c) C3 has influence on C4 during right hand MI.
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