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Abstract— The advancement in renewable energy sector be-
ing the focus of research these days, a novel neuro evolutionary
technique is proposed for modeling wind power forecasters.
The paper uses the robust technique of Cartesian Genetic
Programming to evolve ANN for development of forecasting
models. These Models predicts power generation of a wind
based power plant from a single hour up to a year - taking a big
lead over other proposed models by reducing its MAPE to as
low as 1.049% for a single day hourly prediction. Results when
compared with other models in the literature demonstrated that
the proposed models are among the best estimators of wind
based power generation plants proposed to date.

I. INTRODUCTION

THE environmental hazards like pollution and global
warming have compelled the power generation sectors

to come up with different green energy production tech-
niques. The depletion of natural resources like petroleum,
coal and natural gas which are the main sources of ther-
mal power generation has also forced the power generation
industry to work with renewable power generation sources.
Wind power production sector is one of them. According to
the European Wind Energy Association (EWEA) report, the
European Union (EU) installed 9.616GW wind based power
plants during 2011. In 2012, EU further installed wind based
power plants having capacity of 11.66GW thus achieved the
total capacity of 105.6GW by the end of 2012 [1]. This
meets 7% of the Europe’s electricity demand [2]. Considering
these facts, one must adopt techniques that are feasible and
provide optimum forecasting results regarding wind power
generation. Estimation of future production of wind power
is one of them. Techniques used for forecasting wind power
generation includes stochastic, probabilistic and machine
learning techniques. The application of machine learning
techniques is on a leading edge due to its self-learning nature
and adaptability. The forecast, made by machine learning
techniques, covers a time span of as short as 10min and
can go up to years as proposed in the paper. The paper
circles around the theme of short term load forecasting that
is the basic ingredient in the application of Real Time Load
Forecasting (RTLF).

Section II gives a review of wind power forecast and
various techniques that are used for modeling forecasters
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for wind power. It also explains concepts regarding Genetic
Programming, CGP, Neuro-evolution and Artificial Neural
Networks. Section III describes CGPANN in brief while
Section IV covers experimental setup. Section V contains
analysis and validation results whereas the whole work is
summarized in Section VI.

II. LITERATURE REVIEW

A. Wind Power Forecasting

The energy production forecast of a wind based power
plant is associated with the wind speed, seasonal changes
and wind power plant characteristics. Research has explored
different time horizons for Wind Power Forecasting using
various techniques. Adaptive Neuro-Fuzzy Interface Systems
(ANFIS) is used for short term Wind Power Forecasting in
[3] considering 150 turbines, each having the capacity of
750KW and producing 112.5MW power instantly. Different
models for Wind Power Forecasting is highlighted in [4]
including GH Forecaster, Alea Wind, SOWIE, WPMS and
WEPROG. First and Second order Markov Chain Models
are employed for Very Short-term probabilistic Wind Power
Forecasting having time intervals of 10min in [5]. The same
method can be applied for different time spans but the over
all technique is not generic i.e. one model can’t be employed
directly for its another time series prediction application.
In [6] different error calculations methods are revised that
are being used in the field of Wind Power Forecasting
supervised by statistical models. 10min and hourly Wind
Power Forecasting is done in [7] using 10min persistence,
10min averaging, hourly persistence and direct ANN method.
The minimum NRMSE in the prediction Models is 9.52% for
10min averaging and 10.45% for Hourly direct ANN. Radial
Basis Function (RBF) Network is used for 1 hour interval
prediction of Wind Power and wind Speed Forecasting in [8].
Coefficient of determination, that is a statistical method used
to find the accuracy, is used to find the exactness of the model
during the evaluation. Further, the minimum Mean Absolute
Error (MAE) is found to be 0.69m/s and 9.66W for wind
speed and wind energy forecasting respectively. Enhanced
Particle Swarm Optimization and Modified Hybrid Neural
Network are used for Wind Power Prediction by the proposed
New Forecaster Engine in [9] estimating power production
by the Model having minimum Mean Absolute Percentage
Error of 2.12% and RMSE of 4.18% for a month. [10], [11]
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has employed Support Vector Machine (SVM) and Wavelet
SVM for hourly wind power forecast giving a Mean Absolute
Percentage Accuracy of 98.92% and 96.2% respectively.
Wind power forecasting uses RBF Neural Network in [12]
for predicting wind power from 1 hour up to 60hrs. The
effectiveness of this RBF Neural Network is satisfactory for
short time series prediction. The model proposed in [13]
is based on Artificial Neural Network that predicts short-
term wind power showing RMSE below 20%. Time series
analysis of the historical data of power production is made
using Autoregressive integrated moving average (ARIMA)
and Neural Networks [14] for Wind Speed Forecasting. The
paper uses the data that is used in [15] for 1 hour ahead
Wind Power Forecasting for two different farms. The best
model that is proposed in [15] is having an RMSE of 5.8%.

B. Cartesian Genetic Programming

Cartesian Genetic Programming (CGP) is an effective
genetic programming method that is developed by J. F. Miller
and Thomson [16], [17]. CGP utilizes a two dimensional
programming architecture that is incorporated by nodes or
genes. Its architecture is a two dimensional directed graph
inspired from traditional FPGA that evolves digital circuits
[18]. The genetic behavior of learning that leads the specimen
to evolve, is achieved through feed forward mechanism.
Node, the basic constituent of CGP, consists of logical func-
tions such as NOR, NAND, NOT or an arithmetic function.
Evolutionary strategy of 1 + λ is used for producing offspring
for the next generation, where λ is the number of offspring.
Mutation is used as a parameter for producing offspring.

In CGP, a genotype is represented by a string of integers
with the corresponding phenotype a two dimensional nodal
network. The genotype is evolved by changing the connec-
tivity and functions of nodes in the network, thus obtaining
a range of topologies.

C. Neuro-Evolution

The term Neuro-Evolution (NE) is concerned with the
evolution of various characteristics of an ANN. ANN is
the behavioral interpretation of natural nervous system thus
ANNs evolve in the same way as living being’s neural
system. Basic parameters of an ANN includes node func-
tions, number of inputs, input weights, node connections
and network topology. Varying these network parameters,
counts to Neuro-Evolution in ANN while fixing these ANN
attributes stops the evolutionary process. The evolution of a
genotype results in obtaining the desired phenotype behavior.
The evolution of a genotype can either be due to variation
in a single network attribute or it can be accomplished by
changing multiple network parameters. For example only
varying connection weight in a genotype can restrict the
network performance. On the other hand, varying multiple
network attributes like node functions, number of inputs,
input weights, node connections and network topology en-
hances the network performance without any restriction.

Various evolutionary techniques have been discussed in
[19] including TWEANN. An evolutionary design systems

for ANNs-EPNets has been developed in [20]. NEAT-evolved
ANN are applied in [21] for object class recognition while
bio-signal processing is dealt in [22] using CGPANN. Each
of the mentioned work in [21] and [22] explains the dynamic
change of network topologies for different environments.

III. CARTESIAN GENETIC PROGRAMMING EVOLVED
ARTIFICIAL NEURAL NETWORK (CGPANN)

ANN is always credited for its dynamic characteristics that
includes self-modifying and adoptable network architecture.
The variable space of ANN changes dynamically with the
environment thus it leads to efficient results when it is
evolved using CGP which is a two dimensional grid based
architecture [19].

A feed forward CGPANN node consists of input connec-
tions, connection weight and node function. The Node is
considered as input node if its input is only from outside
the network. An intermediate node takes its input from the
preceding node(s) as well as input to the system, whereas
the system output can be from system inputs or any node in
the system. A typical CGPANN Node is shown in Fig. 1 The
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Fig. 1. Structure of a Typical CGPANN Node

selection of the inputs is from the input array I , such that

I = {i1, i2, i3, ....in} (1)

using Psuedo-Random Generator (PRG). The weight Matrix
W , whereas

W = {W1,W2, .....Wn} (2)

consists of randomly generated values between -1 and +1.
A summing junction in ANN can be represented by

y′ =
N∑
i=1

xi (3)

where xi is the input to the junction. If the same input is
scaled with a randomly assigned weight wi then

y′ =
N∑
i=1

xiwi (4)

Let for N inputs to a node, we have yj output such that

yj = f j(y′j) = f j
( N∑
i=1

xiwi

)
(5)
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Here f is an activation function, particular to node j. If total
number of nodes in the network are NT then j is defined by

{j|jεN ∧ 1 ≤ j ≤ NT } (6)

Let I be the input set to a unique genotype network Gk,
consisting unique entries i such that, for all inputs

iεR ∧ 0 ≤ i ≤ 1 (7)

in
I = {i1, i2, i3, ....in}

so, network Gk is the a set of random selection from inputs
[I], outputs of nodes yj , for a single output Op such that

Op =
1

n

N∑
i=1

(
f

(∑
(yjWj + yj−1Wj−1 + ....

+ y1W1 + IWk)

))
(8)

here, Wj , Wj−1, ... W1 are Random subsets of W such that
Wk is a subset Wj and

Wj = {wk|wkεR ∧ −1 ≤Wk ≤ 1} (9)

Now
Gk = {I, yj , yj−1, ...., y1, Op} (10)

yj =

(
f

(∑
(yj−1Wj−1 + yj−2Wj−2 + ....

+ y1W1 + IW )

))
yj−1 =

(
f

(∑
(yj−2Wj−2 + yj−3Wj−3 + ....

+ y1W1 + IW )

))
...

y2 =

(
f

(∑
(y1W1 + IW )

))
y1 =

(
f

(∑
IW

))
(11)

Let Gk and Gl be the two successive genotypes. Gl is
produced from Gk by mutating µ% weights of connections
in G − k, nodal connectivity, functions defining each node
or the combination of these.
Let the total entries in Gk, including weights, connections
and functions be Ncwf
then

N ′cwf = µ×Ncwf (12)

N ′cwf represents genotype entries that are to be randomized
to get Gl.
Let r be a unique entry to the set ζ that contains value to be
changed to get mutated Gk or Gl defined by r.

{r|rεζ∀(W, I, yj)} (13)

each value in r is defined by a Pseudo Random Generator
(PRG) that takes N ′cwf values from available Ncwf entries
using the relation{

ri|riε{1, 2, 3, ..., Ncwf} ∧ ri ⊂ {1, 2, 3, ..., Ncwf}
}

i = 1, 2, 3, ...N ′cwf (14)

where ri can its value from {1, 2, 3, ...Ncwf} so each entry
in ζ is

Γ(i) =

{
ri|riε{1, 2, 3, ...Ncwf}∧{1 ≤ ri ≤ Ncwf}

}
(15)

The value that is replaced in Gk using Γ(r) for N ′cwf values
uses Theorem 1, proven by the author, to assign values
randomly.

Theorem 1 (Pseudo-Random-Number-Generator): A
generator µ : {0, 1}a → ({0, 1}b)φ is pseudo random in
characteristics within a space µ with a size ρ as the block
size and ε as a parameter if for each Finite Machine State
R having size 2n over the character {0, 1}b, we have

|Probabilityy[y 7→ R]− Probabilityx[µ(x) 7→ R]| ≤ ε
(16)

where y is a uniform random choice from ({0, 1}b) and x is
a random choice from {0, 1}a.

Feed forward CGP evolved ANN is shown in Fig. 2. The
Network takes inputs i1, i2, i3 upto input in, defined by the
algorithm. The input layer comprised of Nodes 1, 2, 3 upto
n. It is directly taking the Network inputs. The outputs from
the input layer is fed into intermediate nodes that are also
called processor nodes. Intermediate nodes either perform
Arithmetic or logical operations on the feed (data from input
layer) or passes it to the output layer nodes depending upon
the nature of output. Junk nodes, that contributes nothing
to the network performance by not taking part in data
processing are also shown in Fig. 2.
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Osys

Input Layer Intermediate Layer Output Layer

Junk Nodes

Fig. 2. Feed forward CGP evolved Artificial Neural Network

Log-sigmoid function is used as the activation function,
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given by Eq. 17

f(x) =
1

1 + e−x
(17)

Here x is input to the activation function f(x). x is further
defined by the Eq. 18

O(g, c, j) =
N∑
i=1

w(i, c).I(g, c, i) (18)

Where N is the number of inputs to the given node j for
n = {1, 2, 3,.., N} numbered inputs.

The total network inputs are K in set k =
{1, 2, 3, ..N, ...K}. g defines a specific genotype in a popu-
lation and c is the respected node that is under operation.
w(i, c) is the pseudo-random weight assigned to each input

I(g, c, i) as given by Eq. 2.
Also I(g, c, i) is defined by Eq. 19 as a randomly selected

input to the node j.

I(g, c, j) =PRG([I(g, c, 1), I(g, c, 2), ..., I(g, c,N)

..., I(g, c, k)] : [O(g, c, 1), O(g, c, 2),

....O(g, c, j − 1)])

(19)

CGPANN uses 1 + λ evolutionary strategy where as λ rep-
resents the number of offspring having their computational
characteristics slightly different from its parent and produced
using mutation. In proposed model, λ is set at 9. Amongst
the 1 + λ number of ANNs, the fittest network is treated as
parent in the next generation and the same criteria is applied
to produce its offspring by taking into account the network
parameters and node functions. The historical data of hourly
produced wind power plant situated in Galicia [23], Spain,
is used for the validation of the proposed model. The same
data source is used in [15] for estimation purposes. A one
year hourly spaced dataset, starting from August 1st, 2005 up
to July 31st, 2006, is used to train the network models. The
networks take a single day, 15 days and 30 days instances of
hourly spaced time series as its input and predicts the power
production of the site for the next instance. Sliding window
mechanism (Fig. 3) is then used for further prediction. The
mutation rate (µr) is kept at 10% due to its better outcomes
as proposed in [24].

The time series data is used for two purposes. In the be-
ginning, a population of defined number of neural networks
is randomly generated. In our case it is 10. A fixed number
of time series entries is given to the ANN and the output(s)
are compared with the actual data of the time series. This is
called training session. Here, Mean Absolute Error (MAPE)
for outputs of ANN are compared and the fittest ANN is used
for further mutation and generation as discussed in section
III. The MAPE is given by Eq. 20.

MAPE =
1

N

N∑
i=1

|Pif − PiA|
PiA

× 100% (20)

Where Pif is the forecasted wind power, PiA is Actual load
experienced at that same instant and N is the total duration

for which forecasting is made. The FITNESS is given by the
Eq. 21.

FITNESS = 100%−MAPE (21)

When the phenotype of the desired fitness is obtained,
it is provided with the dataset from the time series for its
evaluation and thus prediction.

Fig. 3 graphically explains the sliding window mechanism
for prediction of the 6th element in the given time series. It
takes 5 inputs i.e. I1, I2, I3, I4 and I5 in the first computation
for predicting P1 as window size in this case is 5. The
window slides to the next level having its inputs range from
I2 to I6. The CGPANN thus predicts P2 in the second level

I1 I2 I3 I4 I5 P1

I2 I3 I4 I5 I6 P2

I7 P3

I8 P4

I3 I4 I5 I6

I6I5I4 I7

I1

I1

I1

I2

I2 I3

Arrows I1I5, I2I6, I3I7 and I4I8 Show the Sliding Window
P1, P2, P3 and P4 are the predicted values

CGPANN

Fig. 3. Sliding Window Mechanism - Predicting Single output by taking
5 inputs

of the sliding window. The dotted arrows I1P1, I2P2, I3P3

and I4P4 represent the total span of the window for a single
prediction.

IV. PERFORMANCE AND EVALUATION

The proposed CGPANN, forecaster model has been eval-
uated using hourly spaced power production data of the
Sotavento, Galicia wind farm for the years 2012. MAPE and
NRMSE has been used as an evaluation for the proposed
forecaster. The networks take 24 entries, 360 entries and
720 entries for the prediction of next single hour. Here, the
number of nodes on the network are varied between 50 and
500 with a step size of 50. Fig. 4 pictures the relation between
input arguments and output of the network. The network
size has been reduced from 150 starting nodes (initialized
manually) to 32 nodal phenotype. The connectivity of each
node is in forward direction starting from the least integer
and a non conventional increment. Each connection has a
randomly defined weight and is performing regular summa-
tion as indicated in Fig. 1.

Sliding window mechanism is used for further predictions
spanning up to a year. The results of the training session for
each node and for each network is tabulated in Table IV.

1133



1

5

7

11

12

14

15

18

19

20

21

22

23

25

26

27
30

31

34

70

108

O1

O2

O3

O4

O5

O6

O7

O8

O9

O10

Osys

Intermediate layer

Input layer  

 Output layer

Fig. 4. Phenotype evolved from 150 starting nodes in ANN using CGP

Table IV evidences the fact that each network gives
different results while varying the number of nodes of the
network improving the MAPE values for the year 2006.

In the evaluation, an independent dataset is given to the
network for its validation. In our case this is the hourly
wind power production data for year 2012. MAPE is then
calculated for each hour, day, week, month and year for the
estimated values.

Table IV contains the yearly MAPE for year 2012. It
is evident from the results in Table IV that results vary
dynamically while varying the nodes’ count and the number
of inputs to the proposed CGPANN. When the number of
inputs is large, fewer nodes can give accurate results as in
the case of 30days input CGPANN Model. It goes up to
5.79% in this case.

The yearly MAPE value for 24hrs input network is 4.718%
which is far less than the MAPE results of the network with
30days inputs. This clarifies that when time span is increased
in terms of input variables, several other random environmen-
tal, technical and seasonal issues effects the forecasting of a
forecaster model.

Monthly MAPE values for 24hrs input CGPANN model
are given in Table IV. The MAPE in the month of March
reaches up to 3.089% which is 23% more consistent if it
is compared with the yearly results of the same data input
model but with 300 nodes’ network .

Minimum MAPE values for a single week are tabulated in
Table IV for number of nodes ranging between 50 and 500
with an increment of 50 nodes for each of the Networks.
The best results are found on the 3rd week for the CGPANN
model that takes single day, hourly spaced generated wind
power data input for predicting the next hour. The weekly
MAPE is calculated to be 1.58% for the estimations of this
150 node single day input CGPANN model. Here, the
improvement in MAPE value is about 60% while shortening
the span of the prediction models by decrementing the free
run of the sliding window from 1 year to a single week.

The last column in Table IV lists the best estimated week
of the year 2012. The results of single day input model are far

better than that of 15 days input and 30 days input CGPANN
model.

The MAPE values of each day for the weeks tabulated in
Table IV are given in Table IV. Table IV further explains
the fact that the CGPANN model gives better results for
short term load forecasting irrespective of the total number
of inputs to the Network models.

Figure 5 visually summarize the perfection of the proposed
models. Hourly spaced normalized Kilo Watts predicted by
the best model are plotted against the actual normalized KW
for the year 2012 and for a single month. The normalized
forecast wind power values are elevated by +0.3 for its better
visualization. Both of the graphs start from 25th hour as the
first 24 hours are used as input to the Model. This hourly
data goes up to 8736 instances.

Table IV has compared the proposed model with the
existing models, declaring the propose model to be the best
amongst these proposed models for hourly prediction of
Wind power for single day.

The NRMSE in Table IV is calculated using Eq. 22 as

NRMSE =

√√√√ 1

N

N∑
i=1

(
Pia − Pif

Pia
)2 (22)

where Pia is the observed power and Pif is the forecasted
power at instance i. Also N is the hour(s) count for which
the NRMSE is being calculated. In case of daily averaging,
its value is 24.

V. CONCLUSION

Based on CGP evolved ANN, three different forecasting
models have been proposed in the work. Each model is
forecasting generating wind power for the next 1 hour.
Estimation of the generating wind power has been made
while a MAPE value of 4.71% has been achieved for a
full one year. This number indicates the accuracy of the
proposed Model. Weekly and monthly MAPE results also
prove the fact that environmental and seasonal changes effect
the proposed model to the least limits due to its self-
adaptability and fast learning characteristics. The Accuracy
of the model goes up to 98.951% for single day prediction,
evidencing the perfection of the proposed CGPANN Models
for short term forecasting. Though the ruling contribution
of the research work is to the power generation and power
regulatory bodies but this proposed solution can be further
enhanced by considering parameters such as wind-speed and
its direction at the site, instantaneous humidity, atmospheric
pressure and air temperature. Therefore a large area in
the field of CGPANN for its application in wind power
forecasting is still waiting for its exploration.
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Nodes 24hrs input for 15days input for 30days input for
predicting one year predicting one year predicting one year

50 5.197348326 5.285745194 6.499721648
100 5.009361269 5.885202194 6.055184734
150 4.901174734 5.915135162 6.414513325
200 4.92469284 5.752828466 6.323593239
250 5.008637518 5.352886353 6.350555627
300 5.196817585 5.309733938 6.438980128
350 4.924292382 6.32252627 6.760614222
400 5.55743624 5.363175172 6.576495275
450 5.176022548 5.953459225 6.273806938
500 4.926968658 6.1806760967 7.101056701

TABLE I
MAPE FOR TRAINING SESSION FOR PREDICTING OF A YEAR DATA USING HISTORICAL DATA OF 24HRS, 360HRS AND 720HRS FOR PREDICTING NEXT

HOUR

Nodes 24hrs input for 15days input for 30days input for
predicting one year predicting one year predicting one year

50 5.03070% 5.17784% 6.26146%
100 4.85882% 5.78293% 5.79552%
150 4.71874% 5.74162% 6.38897%
200 4.73554% 5.62914% 6.03870%
250 4.81306% 5.21547% 6.25025%
300 5.10188% 5.15298% 6.23876%
350 4.73802% 6.26090% 6.47594%
400 5.38251% 5.24453% 6.39620%
450 4.96082% 5.80705% 6.17640%
500 4.74677% 6.04693% 7.04533%

TABLE II
MAPE FOR EVALUATION SESSION FOR PREDICTING OF A YEAR DATA USING HISTORICAL DATA OF 24HRS, 360HRS AND 720HRS FOR PREDICTING

NEXT HOUR

MONTHS 50 100 150 200 250 300 350 400 450 500
JAN 3.87 3.69 3.591 3.631 3.6758 3.8583 3.634 4.035 3.85 3.6
FEB 6.28 5.979 5.921 5.937 6.065 6.084 5.94 6.68 6.26 5.952
MAR 6.06 5.816 5.781 5.82 5.9 5.90 5.817 6.369 6.22 5.802
APR 5.793 5.736 5.543 5.549 5.63 6.053 5.538 6.449 5.723 5.582
MAY 5.497 5.261 5.23 5.261 5.381 5.341 5.266 5.762 5.58 5.25
JUN 5.179 5.026 4.927 4.9 5.03 5.217 4.95 5.67 5.22 4.93
JUL 3.366 3.251 3.089 3.15 3.159 3.460 3.161 3.47 3.33 3.11
AUG 4.119 4.021 3.89 3.94 4.022 4.177 3.947 4.39 4.221 3.91
SEP 5.473 5.29 5.181 5.19 5.3 5.46 5.211 5.822 5.467 5.211
OCT 4.61 4.364 4.26 4.3 4.3 4.5 4.3 4.95 4.51 4.28
NOV 6.0 5.67 5.56 5.57 5.65 5.86 5.5 6.58 5.76 5.6
DEC 6.1 5.993 5.844 5.79 5.92 6.34 5.76 6.52 5.97 5.8

TABLE III
MONTHLY MAPE RESULTS FOR A SINGLE DAY INPUT CGPANN MODEL FOR PREDICTING NEXT HOUR
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NODES 50 100 150 200 250 300 350 400 450 500 Week
Single day input 1.705 1.868 1.58 1.68 1.62 2.27 1.681 1.91 1.81 1.60 3rd

15 days input 2.10 2.65 2.75 1.86 2.17 1.67 2.55 1.93 2.82 2.81 3rd
30 days input 3.85 2.92 3.87 2.99 3.35 4.26 3.95 3.67 3.28 3.31 29th

TABLE IV
WEEKLY MINIMUM MAPE VALUES FOR 50 UP TO 500 NODES WITH 50 NODES SEPARATION

Network Model Single day input 15 days input 30 days input
No. Nodes 150 300 100
Week 3rd 3rd 29th
Monday 1.73195144 1.537707725 3.165312782
Tuesday 1.448382014 3.747227909 4.684221208
Wednesday 3.439170294 1.311564903 4.298508772
Thursday 1.213078905 3.835364514 2.941825104
Friday 1.049062798 1.10593271 2.116909619
Saturday 1.097208015 1.166413005 1.515822673
Sunday 1.083210534 1.14719582 1.695776838

TABLE V
MAPE RESULTS FOR SINGLE DAY IN THE BEST WEEK OF THE PREDICTED WIND POWER FORECASTED YEAR

Model Reference MAPE/NRMSE
Enhanced Particle Swarm Optimization (EPSO)[9] 7.52%(NRMSE)
Hourly Persistence[7] 10.71%(NRMSE)
Direct ANN[7] 10.45%(NRMSE)
Auto tuning Kalman Filter[15] 5.8%(NRMSE)
Wavelet Support Vector Machine (WSVM)[11] 3.7404%(MAPE)
CGPANN 1.0497%(MAPE), 1.49%(NRMSE)

TABLE VI
COMPARISON OF HOURLY MAPE VALUES OF DIFFERENT MODELS WITH 24HRS INPUT - SINGLE HOUR OUTPUT CGPANN MODEL (AVERAGED DAILY)
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