
 
 

 

  

Abstract— The availability of advanced driver assistance 
systems (ADAS), for safety and well-being, is becoming 
increasingly important for avoiding traffic accidents caused by 
fatigue, stress, or distractions. For this reason, automatic 
identification of a driver from among a group of various drivers 
(i.e. real-time driver identification) is a key factor in the 
development of ADAS, mainly when the driver’s comfort and 
security is also to be taken into account. The main focus of this 
work is the development of embedded electronic systems for 
in-vehicle deployment of driver identification models. We 
developed a hybrid model based on artificial neural networks 
(ANN), and cepstral feature extraction techniques, able to 
recognize the driving style of different drivers. Results obtained 
show that the system is able to perform real-time driver 
identification using non-intrusive driving behavior signals such 
as brake pedal signals and gas pedal signals. The identification 
of a driver from within groups with a reduced number of 
drivers yields promising identification rates (e.g. 3-driver group 
yield 84.6 %). However, real-time development of ADAS 
requires very fast electronic systems. To this end, an 
FPGA-based hardware coprocessor for acceleration of the 
neural classifier has been developed. The coprocessor core is 
able to compute the whole ANN in less than 4 μs. 

I. INTRODUCTION 
NNOVATION in car safety over recent decades has 

undoubtedly contributed to a reduction in traffic accidents, 
even though the number of cars on the roads in the developed 
countries continues to rise. As a consequence of continuous 
technological advances, mainly in the areas of 
microelectronics and communications, new safety systems 
are being developed and incorporated into cars as standard 
equipment [1]-[3]. However, the main source of insecurity in 
a car is the driver himself, and many traffic accidents are 
wholly or partly caused by the driver. The availability of 
advanced driver assistance systems (ADAS), for safety and 
well-being, is becoming increasingly important in order to 
avoid traffic accidents caused by fatigue, stress, or 
distractions, especially since the driving population is getting 
older [4]-[5]. In this context, the ability to identify a driver 
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and his/her driving behavior is the basis of many ADAS. In 
addition, being able to recognize the driver could be useful for 
security purposes (i.e. driver authentication) and comfort 
improvement in smart cars [6]. 

In the last decade there has been increasing research 
activity concerning driving behavior signals and their 
potential application in the development of ADAS [6]-[9]. 
These particular signals can be obtained in a non-intrusive 
manner, without disturbing the driver, as opposed video or 
audio signals which are the basis of some current ADAS. 
Driving behavior signals, mainly CAN bus signals, and 
sensor recordings (e.g. gas pedal pressure, brake pedal 
pressure, vehicle velocity, etc.) were used to develop models 
of drivers’ behavior with the aim of identifying the driver and 
the driver’s status under different cognitive conditions (e.g. 
distraction, and stress) [10]. The authors obtained satisfactory 
results by means of cepstral analysis and Gaussian mixture 
models (GMM). Cepstral feature extraction and cepstral 
filtering are well known techniques, commonly used in the 
digital processing of voice signals, and are suitable for 
efficient hardware implementation [11]. On the contrary, 
GMM are complex algorithms, with high computational 
demands [12]. These algorithms are unsuitable for in-vehicle 
embedded solutions with restrictive design specifications 
such as high performance, reduced size, and low power 
consumption. 

To tackle the problem of the computational workload of 
statistical models such as GMMs, we investigated the 
suitability of artificial neural networks (ANN), combined 
with cepstral feature extraction techniques, for developing 
driver behavior models. The main aspects that support the 
proposal are the following: 

 
1) Artificial neural networks have proven useful to model 

complex dynamic systems, in particular, human behavior 
in changing environments [13]. 

2) The learning capabilities of ANNs enable online 
adaptation of the models in demanding long-term 
applications. 

3) The regular and parallel structure of typical ANNs is 
very suitable for developing high-speed hardware 
computation devices [14]. 

 
The automotive sector has ºrecently taken advantage of 

field programmable gate arrays (FPGA); this is mainly due to 
the high computational demands of this sector where a huge 
amount of signals have to be processed in real time by means 
of very fast electronic systems [15]-[17]. Currently, FPGAs 
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are used as single-chip embedded platforms (i.e. 
system-on-programmable chip: SoPC) or hardware 
coprocessors for algorithm acceleration, and as sensor 
interfaces (camera sensor interface, infrared or thermal 
camera interface, radar sensor interface, CAN bus interface, 
etc) [18], [19]. The main objective of this work is the 
development of embedded electronic systems for in-vehicle 
deployment of driver identification systems based on cepstral 
analysis and ANNs. 

The paper is organized as follows: Section II presents the 
data base used in this work (i.e. Uyanik corpus), and the main 
characteristics of the selected driving behavior signals. In 
Section III the proposed model is presented, and 
representative simulation results are discussed. Section IV 
addresses the development of the driver identification 
systems, and provides details of their FPGA-based 
implementations. Finally, Section V presents some 
concluding remarks.  

II. DRIVING BEHAVIOR SIGNALS 
The aim of this work is to model individual differences in 

driving behavior of a group of drivers, and identify the driver 
in real-time by using the developed models. The main 
characteristics of the data collection are then introduced and 
the selection of signals, from the whole set of driving 
behavior signals, is justified. 

A. Data Collection 
The driving behavior data collection was supplied by the 

“Drive-Safe Consortium”. It was collected in Istanbul with an 
instrumented car called Uyanik, which is a sedan car 
equipped with different sensors [7]-[8]. The complete data set 
(84 male and 17 female) includes audio and video recordings, 
CAN-bus signals, pedal-sensor recordings, 180º laser range 
finder, and XYZ accelerometer recordings. 

The car route is around 25 km (about 40 minutes), and 
includes different kinds of sections: city, very busy city, 
highway, highway with less traffic, a university campus, etc. 
The route is the same for all drivers; however, the road 
conditions differ depending on traffic and weather. 
Approximately half of the driving sessions include driving 
while completing specific tasks with the aim of disturbing the 
attention of the drivers: signboard and plate reading, different 
types of dialogs on mobile phones, and conversations with 
passengers. To avoid additional noise sources, these driving 
periods were not considered. 

B. Signal Selection 
Firstly, the most suitable signals for performing driver 

identification in a non-intrusive manner were selected. The 
data collection was analyzed using data mining techniques 
with the aim of categorizing the data, finding similar 
characteristics across a large number of observations, and 
identifying potential useful signals. As a result of this task, 
also of some preliminary experiments, two signals were 
selected: gas pedal pressure (GP), and brake pedal pressure 
(BP). Both signals GP and BP are continuously sampled at 32 

Hz. 
Illustrative histograms of GP and BP signals, obtained 

from five randomly selected drivers, are shown in Fig. 1. As 
can be seen, each driver has his/her own driving style. The 
first driver on the top makes little use of the brake pedal. On 
the contrary, the fourth driver presses the brake pedal with 
much more strength (note that a different X-axis scale has 
been used for this driver in Fig. 1). The same consideration 
applies to the gas pedal. Moreover, the particular driving style 
of driver four is easier to identify than the other drivers. 
 

0 0.05 0.1 0.15 0.2 0.25 0.3
0

1

2
x 104

kg/cm2

S
am

pl
es

Brake pedal pressure

0 0.05 0.1 0.15 0.2 0.25 0.3
0

1

2
x 104

kg/cm2
S

am
pl

es

0 0.05 0.1 0.15 0.2 0.25 0.3
0

1

2
x 10

4

kg/cm2

S
am

pl
es

0 0.2 0.4 0.6 0.8 1
0

1

2
x 104

kg/cm2

S
am

pl
es

0 0.05 0.1 0.15 0.2 0.25 0.3
0

1

2
x 10

4

kg/cm2

S
am

pl
es

0 0.2 0.4 0.6 0.8 1
0

2000

4000

kg/cm2

Gas pedal pressure

0 0.2 0.4 0.6 0.8 1
0

2000

4000

kg/cm2

0 0.2 0.4 0.6 0.8 1
0

2000

4000

kg/cm2

0 0.2 0.4 0.6 0.8 1
0

2000

4000

kg/cm2

0 0.2 0.4 0.6 0.8 1
0

2000

4000

kg/cm2
 

Fig. 1.  Histograms of the selected driving behavior signals, sampled at 32 Hz 
over 30 minutes, for five randomly selected drivers. The histograms of brake 
pedal pressure are shown on the left side of the figure, while the histograms 
of gas pedal pressure are shown on the right side. It is worth noting that 
Y-axis scale is limited to 2x104 and 5x103 samples for BP and GP, 
respectively. 
 

III. DRIVER IDENTIFICATION MODEL 
The driver identification system proposed in this work is 

based on cepstral analysis and ANNs. Firstly, cepstral 
analysis is used to extract the most relevant features of the 
driving behavior signals, and then an ANN classifies the 
drivers according to their driving style. Let us briefly 
introduce both techniques. 

A. Cepstral Analysis 
Cepstral analysis is a nonlinear signal processing technique 

[11]. It was originally designed for characterizing the seismic 
echoes associated with earthquakes. However, at present, the 
most fruitful application area is concerned with the digital 
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processing of voice signals (e.g. speech recognition and 
speaker recognition). It has also been used to analyze radar 
signal returns, and to evaluate machinery vibration. Recently, 
encouraging results have been obtained by applying Cepstral 
feature extraction to driving behavior signals [10]. 

The real cepstrum for a long-time sequence x(n) is defined 
as 

 
{ }1 log ( ( ))( ) ,xc x nn −= F F  (1) 

 
in which F  denotes the discrete-time Fourier transform 

(DTFT), and 1−F  denotes its inverse (IDTFT). Usually, the 
natural or base 10 logarithm is computed, but any base can be 
used. 

An important property of the cepstrum is that the logarithm 
operation transforms the magnitude spectrum of a signal, 
where the components of the signal are generally not 
separable, to a linear combination (sum) of these components. 
The separation is done by taking the IDFT of the linearly 
combined logarithm spectra (e.g. separation of excitation and 
vocal tract system in speech signals, or separation of a low 
frequency signal from high-frequency noise). The IDFT of 
linear spectra transforms back to the time domain, but the 
IDFT of logarithm spectra transforms to the so-called 
quefrency domain or the cepstral domain. 

In the case of practical signal processing applications, short 
terms or frames of the signals have to be used [20]. To select a 
desired frame of the original signal x(n), the signal is 
multiplied by a finite length window w(n). Commonly used 
window sequences are smooth bell-shaped functions, 
symmetric about the time (T-1)/2, where T is the duration of 
the frame (e.g. Hamming window). This kind of window is 
useful to reduce the edge effects caused by data segmentation 
[20]. 

B. Data preprocessing 
The selected signals, gas pedal pressure (GP) and brake 

pedal pressure (BP), were sampled at 32 Hz and subdivided 
into frames of T=2s duration (64 samples). The overlapping 
between consecutive windows is of 60 samples. That is to 
say, a new frame begins every 125 ms (i.e. 4-sample frame 
shift). For each frame k the short term real cepstrum is 
evaluated, and K cepstral features fk are extracted as follows 
 

{ }{ }1
2log ( ))(BPF ,k wx n kTf −= +F F  (2) 

 
where xw(n + kT) is the frame signal multiplied by the window 
function. The fast Fourier transform (FFT) was used to 
compute the DTFT and its inverse, and finite impulse 
response (FIR) filters were developed to perform high 
frequency noise filtering. The band-pass filter (BPF) 
separates noise from driving behavior signals. Two BPFs, 
with different cut-off frequencies, were implemented for BP 
and GP signal, respectively. As suggested in [10], 1-13 Hz 
cut-off frequencies were selected for BP signals, while 1-6.5 

Hz frequencies were used for GP signals. Moreover, a base 2 
logarithm was used to simplify further hardware 
implementation; this base is more suitable for efficient digital 
hardware implementation. 

C. Neural Classifier 
The kernel of the driver identification system is a 

multi-layer perceptron (MLP). Concerning the topology 
selection, a four-layer interconnected network (i.e. two 
hidden layers) has been devised (see Fig. 4). The size of the 
input layer is equal to the product of the number of driving 
behavior signals S, and the number of cepstral features K. The 
size of the hidden layers (i.e. number of hidden neurons) is a 
critical design parameter as it has a high impact on the 
modeling capability of the neural network. It is well known 
that too few hidden neurons result in poor performances, 
while an excess of hidden neurons could weaken the 
generalization capability of the network. Moreover, since our 
goal is to develop a single-chip hardware solution, too 
complex architectures should be avoided. 

The best trade-off between complexity and performance 
was obtained with the same number of hidden neurons per 
layer as the inputs. Finally, the output layer has d neurons, 
where d is the number of drivers in the group. For example, 
the topology of a neural classifier based on two driving 
behavior signals (S=2), using 10 cepstral features (K=10) for 
a 3-driver group (d=3) is: 20-20-20-3. The driver of the group 
identified by the MLP is that associated with the neuron in the 
output layer which achieves the maximum activation. 

D. Experimental results 
The proposed neural classifier was tested using the Uyanik 

data set. A preprocessing stage based on cepstral feature 
extraction, like the one described in Subsection B, was 
included. The ANN was trained for groups of three, four, and 
five drivers, as these are typical number of drivers in real-life 
situations (e.g. family cars used by various drivers, or a fleet 
of vehicles with frequent driver reassignment). This task was 
accomplished by means of the back-propagation gradient 
descent method (GDM), while the mean squared error (MSE) 
was selected as the error function. 30% of available data was 
used in the learning phase for training and validation (i.e. 
approximately 8 minutes of data collection), while the 
remaining 70% were used for testing purpose (driver 
recognition). Three randomly selected sets of data were used 
in each case, and the mean ratio of success percentage was 
computed. 

For the cepstral feature extraction stage, the number of 
features was set to K=10, as no additional improvement of the 
classifier was observed by increasing the number of features. 
The MSE was used to evaluate the training performance of 
the ANNs, and the percentage of successful driver 
identification was used to check the performance of the 
models. As can be seen in Table I, the fusion of GP and BP 
provides the best training performance. 
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TABLE I.  TRAINING PERFORMANCE: AVERAGE MSE 

Driving 
behavior 
signals 

3 drivers 4 drivers 5 drivers 

Gas pedal 
(GP) 0.162 0.144 0.105 

Brake pedal 
signal (BP) 0.105 0.097 0.082 

BP + GP 
signals 0.071 0.072 0.072 

 
Figure 2 shows the average driver identification rates for 

the three groups of drivers using single signal models (S=1) 
for GP and BP, and 2-signal models (S=2), for the fusion of 
GP and BP. For the case of single signal models, BP is able to 
provide a 75% success rate among three drivers, while GP 
achieves only 61% for the same group. The fusion of both GP 
and BP signals provides the best result, an 84% success rate. 
The results obtained with the fusion of GP and BP are similar 
to those obtained in [10] by means of a more complex 
statistical model (i.e. Gaussian mixture model) using the 
same data set. However, in the case of single signals, GMM 
yields slightly better results, mainly for the gas pedal signal. 
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Fig. 2.  Comparison of driver identification rates obtained with driving 
behavior signals (GP: gas pedal pressure, and BP: brake pedal pressure) 
using the developed model for a different number of drivers. 
 

Several experiments have also been performed using 
Extreme Learning Machine (ELM) method [21]. The main 
advantage of this technique is that it provides very fast 
adaptation. The obtained accuracy was similar to that 
obtained using GDM. However, the size of the networks (i.e. 
the number of neurons) was considerably greater than that 
discussed above. For this reason, a traditional GDM 
adaptation was used in order to reduce digital hardware 
complexity. 

IV. IMPLEMENTATION OF THE DRIVER IDENTIFICATION 
SYSTEM 

An embedded system is a special-purpose computing 
platform designed to perform one or several dedicated 
functions. They are often designed for a particular kind of 
activity that is required to work under certain constraints, 
such as low power consumption, real-time operation, 
processing capacity, dependability, security, etc. In addition, 
low cost, and small size/weight are also typical requirements 
for these computing platforms. 

In the progress towards a more autonomous and flexible 
lifestyle, with new levels of comfort, safety and productivity 
in all areas, many embedded platforms have emerged in the 
market and are in use in our daily activities. They can be 
found everywhere in a variety of application areas, from 
control systems in automotive sectors, to consumer and 
multimedia products, among others. 

Field programmable gate arrays (FPGAs) have appeared as 
a suitable means for the development of embedded systems 
[22]. A milestone in the evolution of reconfigurable hardware 
has been to combine the logic blocks and interconnections of 
traditional FPGAs (logic fabric) with embedded 
microprocessors (e.g. standard PowerPC or ARM) and 
related peripherals to form a system-on-programmable chip 
(SoPC) or a multiprocessor SoPC (MSoPC). A similar 
approach consists in using soft-processor cores instead of 
hard-cores that are implemented within the FPGA logic such 
as for example Xilins’s MicroBlaze [23]. 

The development of efficient SoPC-based embedded 
systems involves the use of hardware/software (HW/SW) 
co-design techniques. HW/SW co-design proposes the 
partition of the computation algorithms into HW and SW 
blocks by searching for the partition that optimizes the 
performance parameters of the whole system. This approach 
provides an optimal solution for many systems where a 
trade-off between versatility and performance is required, as 
for example, many applications in the ever-competitive 
automotive sector. In this context, the implementation of 
efficient real-time electronic systems for ADAS, using 
FPGA-based embedded systems for in-vehicle integration, is 
an issue of great interest. 

The FPGA selected to implement the driver identification 
core is the XC7k325T device of Xilinx’s KINTEX-7 family 
[24]. The device is one of the smallest of this family. It has 
50950 Slices (each Slice contains four 6-input look-up table 
(LUTs), and eight flip-flops), 840 digital signal processing 
(DSP) blocks (each DSP consists of a multiplier, an adder, 
and an accumulator), and 445 RAM memory blocks of 36 
Kbits each. This device family provides a scalable 
architecture for mid-range applications. It enables upward 
scalability to a Virtex-7 FPGA for greater performance, or 
downward scalability to an Artix-7 FPGA for further 
reductions in power consumption [24]. 

Hardware/Software partition 
The driver identification system architecture was designed 
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to enable automatic identification of a driver, among a group 
of various drivers, by recognizing his/her driving style. The 
system has been partitioned into three main modules: the 
input/output (I/O) management, the computation of the 
cepstral features (2), and the evaluation of the four-layer MLP 
(feed-forward network). In the proposed architecture (see Fig. 
3) the first two modules are included in the software partition, 
while the latter is developed in the hardware partition. 
Although the sequential computation of the MLP is a 
time-consuming task, it exhibits a regular and highly 
parallelizable structure, so its location in the HW partition is 
appropriate. 

On the other hand, the feature extraction preprocessing 
algorithm is not so critical because it is computed only for the 
selected signals (S=1 or S=2). However, in future works we 
intend to develop special purpose hardware in order to 
accelerate the cepstral feature extraction stage. As has been 
explained in Section III, cepstral analysis involves the 
computation of typical digital signal processing algorithms 
which can be efficiently implemented on FPGA devices. 

A. Neural Classifier 
The neural classifier, implemented in the hardware 

partition, computes an f-input d-output feed-forward network 
with two hidden layers (i.e. a four-layer MLP), being f=SxK. 
This coprocessor communicates with the microprocessor by 
means of a Fast Simplex Link (FSL) Bus (see Fig. 3). It is a 
VHDL module that can be sized in several dimensions by 
means of GENERIC parameters (i.e. word-length, number of 
inputs, number of outputs, and number of neurons).The 
coprocessor architecture exploits the high degree of 
parallelism inherent in neural networks. It is optimized for 
high-speed processing and is able to provide real-time 

response for advanced driving assistance systems. 
Fig. 4 depicts a block diagram of the coprocessor core. The 

main modules of the core are the Input Layer, the Hidden 
Layers, the Output Layer, the RAM module where the neuron 
weights and biases are stored, and the Core Controller. The 
MLP was previously trained (off-line training), as has been 
explained in previous sections. In real-time operation mode, 
the Input Layer reads the inputs provided by the FSL bus and 
pushes them into the parallel data path. Then, the Hidden 
Layers perform the computation of all hidden neurons in 
parallel. 

 
Fig. 4.  Internal architecture of the neural classifier. 
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Finally, the Output Layer (which is similar to the Hidden 

Layers) includes as many neurons as possible drivers, as well 
as a multiplexer (MUX) that sequences the transfer of the 
core outputs to the MicroBlaze by means of the FSL bus. The 
Core Controller is a simple finite state machine (FSM) 
responsible for the data pipelining through the data path. 

B. Hidden Layers 
The Hidden Layers are organized into h parallel neurons. 

Each neuron in these layers computes the sum of as many 
products (SOPs) as neural network inputs (f) (see Fig. 5). 
Then, the SOPs are passed through a high-precision sigmoid 
filter. When the neuron is enabled, the adder accumulator is 
initialized with the neuron bias, followed by a burst of h 
products (i.e. inputs and weights) which are sequentially 
added. The computation of the SOPs lasts (f+1) clock cycles. 
After the computation of SOPs (i.e. the linear part of the 
neuron), the sigmoid filter is activated. The Output Layer is 
similar to the Hidden Layer. The number of output neurons is 
equal to the number of possible drivers, d, while the 
computation time is (d+1) clock cycles. 

C. Sigmoid Module 
As can be seen in Fig. 6, the input to the sigmoid Filter is 

the result of the computation of the linear part of the neuron 
(SOP). This module is based on a controlled accuracy 
approximation of the sigmoid function [25], [26]. It 
implements the sigmoid function with a maximum 
approximation error ε =6x10-4, using a second order Taylor 
scheme. 

 
Fig. 5.  Diagram of the linear part of a hidden/output neuron (SOP module). 
 

The approximation scheme divides the input range into two 
kinds of regions, the so called saturation regions and the 
Taylor regions. The saturation region is that region where the 
first derivative of the sigmoid function is close to zero; the 
starting point of this region depends on the required precision. 
The Taylor regions, in turn, are split into a number of 
intervals I of width 2r containing a, ( ),I a r a r= − + , where a 
local approximation of the sigmoid function f(x) is computed 
as follows 

 

( ) ( )2''( )( ) ( ) '( )
2!

f af x f a f a x a x a≈ + − + − , (3) 

 
The main computation unit of the sigmoid module is a 

typical DSP core. These embedded blocks, available in most 

current FPGA families, provide high-performance with 
low-power consumption. Two Read Only Memory (ROM) 
modules are used to store the Taylor coefficients in (3), 
ROM1 and ROM2. Both memories are addressed by means 
of the most significant bits of the SOP. The circuit performs 
the computation of the sigmoid approximation in only 5 clock 
cycles. 

 
 
Fig. 6.  Diagram of the Sigmoid circuit. It is based on a second order Taylor 
approximation of the function. 
 

D. Timing Considerations and Resource Utilization 
Table II presents post place and route timing results for 

different MLP topologies. As can be seen, a 10 feature 
classifier (i.e. only one driving behavior signal, BP or GP) is 
able to perform the network computation in less than 2 μs 
(e.g. a 3-driver classifier requires 1.4 μs, while a 5-driver 
classifier needs 1.64 μs). Concerning the topology that 
achieves the best recognition rates (i.e. two driving behavior 
signal, BP and GP), the 20 feature core requires only 3.70 μs 
to evaluate a 3-driver classifier, 4.07 μs to evaluate a 4-driver 
classifier, and a similar result, 3.94 μs to compute a 5-driver 
topology. This performance allows true real-time driver 
identification. In contrast, an embedded system based on a 
whole software implementation of the MLP would have 
increased the computation time by several magnitude orders. 

As can be seen in Table II, the maximum computation 
frequency is greater than 100 MHz when only 10 cepstral 
features are used (i.e. one driving behavior signal), but 
slightly less than 100 MHz when a 20-feature topology is 
required. This performance could be improved by using 
distributed RAM memories instead of a single RAM module 
to store weights and biases of the whole ANN. Each neuron 
would have its own storage module with the aim of making 
the neural architecture more flexible, and reducing signal 
delays. 

 
 

+ 
x 

CLK 

E 

Input 
Data 

Weights 

To 
Sigmoid 
filter 

Bias 

 
 

+ 

x 

ROM1
 

Taylor 

CLK 

E 

From 
SOP 
modules

MSB 
bits 

ROM2
 

Taylor 

- 
Neuron 
output 

1853



 
 

 

TABLE II.  TIMING PERFORMANCE 

Topology of the 
MLP 

(2 hidden layers) 

Achieved 
frequency (MHz) 

Computation time 
(μs) 

10-10-10-3 126 1.40 

20-20-20-3 91 3.70 

10-10-10-4  121 1.50 

20-20-20-4 84 4.07 

10-10-10-5 114 1.64 

20-20-20-5 88 3.94 

 
Concerning resource utilization, Table III summarizes the 

implementation requirements of different MLP topologies. 
The most representative FPGA primitives have been 
considered (i.e. LUTs, registers or flip-flops, and DSP 
modules). As can be seen, the percentage of resource 
utilization, on average, is less than 7% of the total resources in 
the Xilinx KINTEX-7 device used in this work -it is the third 
in size of this family. Therefore, it can be concluded that the 
resource demands of the classifier core is small enough to 
allow full implementation of more complex topologies. In 
addition, the remaining resources, 93 % of the device, could 
be dedicated to adding new algorithms and strategies for 
real-time ADAS implementation. Alternatively, a smaller 
device of this family could be selected with the aim of 
reducing cost, size, and power consumption of the neural 
classifier. 

 

TABLE III.  RESOURCE UTILIZATION 

Topology of the 
MLP 

(2 hidden layers) 
LUTs Flip-flops DSP 

Blocks 

Mean 
resource 

utilization 

10-10-10-3 3896 6468 24 2.2 % 

20-20-20-3 17623 20834 44 6.4 % 

10-10-10-4  4045 6779 25 2.3 % 

20-20-20-4 19558 21292 45 6.8 % 

10-10-10-5 4373 7044 26 2.4 % 

20-20-20-5 21555 21765 46 7.2 % 

 

V. CONCLUSION 
The availability of advanced driver assistance systems 

(ADAS), for safety and well-being, is becoming increasingly 
important in order to avoid traffic accidents caused by 
fatigue, stress, distractions or chronic diseases. This work 
contributes to the development of ADAS with a 
driver-centred perspective which aims at improving the 
driver’s awareness and driving performance in a personalized 
way. 

A new approach to the problem of real-time driver 
identification is presented. The proposed solution is based on 
artificial neural networks and cepstral analysis. Obtained 

results show that the model is able to recognize different 
driving styles using non-intrusive driving behavior signals 
(gas pedal signal and brake pedal signal). The driver is then 
identified through his/her driving style. 

Real-time development of ADAS requires very fast 
electronic systems. To fulfill this requirement, an 
FPGA-based hardware coprocessor for acceleration of the 
neural classifier has been developed. The coprocessor core is 
able to compute the whole ANN in less than 4 μs. In addition, 
the resource demand is small enough to allow full 
implementation of more complex topologies. 

In future works we are going to improve the identification 
performance of the neural classifier by adding new driving 
behavioral signals. To this aim, we will investigate the fusion 
of two additional CAN bus signals, the vehicle speed and the 
engine revolutions per minute. In addition, the performance 
of the FPGA-based system will be improved in order to 
enable on-line training. This new capability of the the system 
would allow the adaptation of the reference driving style 
models in the long term. 
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