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Abstract— Mining imbalanced data has recently received
increasing attention due to its challenge and wide applications in
the real world. Most of the existing work focuses on numerical
data by manipulating the data structure which essentially
changes the data characteristics or developing new distance
or similarity measures which are designed for data with the
so-called IID assumption, namely data is independent and
identically distributed. This is not consistent with the real-
life data and business needs, which request to fully respect
the data structure and coupling relationships embedded in
data objects, features and feature values. In this paper, we
propose a novel coupled fuzzy similarity-based classification
approach to cater for the difference between classes by a fuzzy
membership and the couplings by coupled object similarity,
and incorporate them into the most popular classifier: kNN
to form a coupled fuzzy kNN (ie. CF-kNN). We test the
approach on 14 categorical data sets compared to several kNN
variants and classic classifiers including C4.5 and NaiveBayes.
The experimental results show that CF-kNN outperforms the
baselines, and those classifiers incorporated with the proposed
coupled fuzzy similarity perform better than their original
editions.

I. INTRODUCTION

CLassification [1] is a widely accepted machine learning
and data mining technique of great practical impor-

tance. By building appropriate classifiers, it identifies which
class a new instance belongs to, based on training instances
whose category memberships are known. The majority of
classic classification algorithms, e.g. kNN, Decision Tree,
Bayesian Networks and SVM [2], has been built for class-
balanced data sets, i.e., each class of the data set includes
a comparable number of instances. By contrast, the classi-
fication analysis on the class-imbalanced datasets (i.e. the
number of instances in one class is dramatically different
from that of the other one) has received much less attention,
especially for the categorical data described by categorical
features. It has been observed that such algorithms do not
perform as good on imbalanced datasets as on balanced
datasets. Hence, classifying class-imbalanced data emerges
and attracts increasing attention in recent years.

In general, existing class-imbalanced classification meth-
ods represent two sorts of efforts, either manipulating the
data distribution by over or under sampling or modifying
existing methods to fit class imbalance. Although sampling-
based methods show to outperform the original algorithms in
most situation, they do not introduce much improvement for

kNN, especially on imbalanced categorical data. This may
be partially explained by the maximum-specificity induction
bias of kNN in which the classification decision is made
by examining the local neighbourhood of query instances,
and therefore the global re-sampling strategies may not have
pronounced effect in the local neighbourhood under exam-
ination. In addition, sampling strategies inevitably change
the inherent structures of the original data, or even worse,
lose information or add noise. Instead, several distance or
similarity-based classification algorithms are proposed, such
as kENN[3] and CCW-kNN[4], to adapt kNN to imbalanced
data. However, they were designed for numeric data.

Let us take some of the UCI Breast Cancer data (Table I)
as an example to illustrate the problems with the existing
algorithms and show the challenge of classifying class-
imbalanced categorical data. As shown in Table I, eleven
instances are divided into two classes with four categorical
features: age, tumor-size, inv-nodes and breast-quad. The
value in the brackets indicates the frequency of the corre-
sponding feature value. It is a class-imbalanced categorical
data set, since there are only three instances in class A while
eight instances in class B. Here, we use the first instance
{u0} as the testing data set, and the rest {ui}10i=1 as the
training data set. If we use the traditional kNN algorithm to
classify u0, it will be labeled as B due to a relatively large
number of the instances in class B. As indicated in Table I,
the Overlap Similarity is defined as

Sim Overlap(ui, uj) =
|ui
∩
uj |

min{|ui|, |uj |}
, (1)

the Overlap Similarity between (u0, u1) is equal to that of
(u0, u4), (u0, u6), (u0, u9) and (u0, u10), all are 0.5, while
less than Sim Overlap(u0, u7), which is the max value -
0.75. If we adopt the Cosine Similarity which is defined as

Sim Cosine(ui, uj) =
ui · uj
||ui|| ||uj ||

, (2)

then the instances u10, u1, u6 and u7 will be the top 4
instances which are close to u0, while u2 is only the seventh
close instance to u0. Under this scenario, u0 will be assigned
to class B rather than class A no matter what k we choose
in kNN, because there are always more nearest neighbors
labeled as class B than as class A. Therefore, kNN fails to
correctly classify u0 within the class-imbalanced categorical
data shown in Table I.
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TABLE I
AN EXAMPLE FROM THE UCI DATASET: BREAST CANCER DATA

ID age tumor-size inv-nodes breast-quad Class Overlap Similarity Cosine Similarity
u0 50-59 35-39 0-2 left low A
u1 50-59 (6) 25-29 (2) 0-2 (8) right up (1) A 0.5 0.9905
u2 60-69 (1) 30-34 (2) 0-2 (8) central (2) A 0.25 0.8681
u3 40-49 (2) 25-29 (2) 0-2 (8) left up (4) B 0.25 0.8947
u4 50-59 (6) 30-34 (2) 6-8 (1) left low (2) B 0.5 0.7274
u5 30-39 (1) 10-14 (3) 0-2 (8) right low (1) B 0.25 0.8452
u6 50-59 (6) 50-54 (1) 0-2 (8) left up (4) B 0.5 0.9834
u7 50-59 (6) 35-39 (1) 0-2 (8) left up (4) B 0.75 0.9834
u8 50-59 (6) 10-14 (3) 3-5 (1) left up (4) B 0.25 0.6817
u9 40-49 (2) 10-14 (3) 0-2 (8) left low (2) B 0.5 0.9000
u10 50-59 (6) 15-19 (1) 0-2 (8) central (2) B 0.5 1.0000

Besides the class imbalance, another key complexity which
hasn’t been catered for in existing classification algorithms
like kNN is the comprehensive coupling relationships be-
tween feature values, features and between instances hidden
in data while computing the similarity/distance between
instances. Considering such couplings has shown [5] to be
very important for capturing the non-IIDness nature in the
real-world data, in which objects and object properties are
coupled and personalized rather than independent and iden-
tically distributed as we usually assume. This is particularly
important for big data analytics of complex behavioral and
social data with diverse interactions.

Incorporating the couplings into classifiers relies on defin-
ing new similarity metrics which can capture the interactions
between values, features and objects. This is much more
doable for numerical data than categorical one, since the
existing metrics such as Manhattan and euclidean distance
and coefficient were mainly built for numeric variables.
Matching [6] is the most common way to measure the simi-
larity of categorical data. The overlap similarity between two
categorical values is to assign 1 if they are identical otherwise
0 if different. Further, for two multivariate categorical data
points, the similarity between them will be proportional to
the number of features in which they match. This will cause
problems in some situations. For example, considering a
categorical data set D, which has only two features: color
and size. Color takes three possible values: red, green, blue,
and size takes three values: small, medium and large. Table
II shows the frequency of co-occurrences of the two features.

Based on the feature values given by data set D, the
overlap similarity between the two instances (green, small)
and (green, medium) is 1

2 , and the overlap similarity between
(blue, small) and (blue, medium) is also 1

2 . But the frequency
distribution in Table II shows that (green, small) and (green,
medium) are frequent co-occurrences, while (blue, small)
and (blue, medium) are very rare co-occurrences. Hence,
the overlap measure is too simplistic by just giving the
equal importance to matches and mismatches, and the co-
occurrence information in categorical data reflects the inter-
action between features and can be useful to define what
makes two categorical values more or less similar. However,
such co-occurrence information hasn’t been incorporated into
the existing similarity metrics including the cosine similarity.

The above analysis shows that it is much challenging
but essential to classify class-imbalanced non-IID categorical
data. In fact, learning from the class-imbalanced data has also
been identified as one of the top 10 challenging problems in
data mining research [7]. To the best of our knowledge, no
existing research is available for handling this, and it is not
possible for the existing classification algorithms built for
class-balanced IID data to capture the coupling relationships
between imbalanced classes and between categorical features
in the increasingly seen social networks, social media, rec-
ommender systems and behavioral applications.

In this paper, we propose a novel coupled fuzzy near-
est neighbor classification algorithm, CF-kNN for short,
for class-imbalanced non-IID categorical data. CF-kNN ad-
vances the idea of classic kNN substantially to address both
class imbalance and couplings within data in terms of the
following main mechanism:

- By incorporating the fuzzy set theory, CF-kNN assigns
the corresponding size memberships to distinct classes
according to their sizes to handle the multi-classes
scenario in a fuzzy way.

- By exploring the feature’s weight, CF-kNN can extract
the inner coupled relationship between features and
classes.

- CF-kNN captures the intra-feature couplings namely
interactions within each categorical feature and inter-
feature couplings between different categorical features
and produces a similarity metric that can extract the
similarity hidden at different levels in categorical data,
from feature values to features and instances.

Tested on different real-life data sets from UCI[8], KEEL[9]
and even an university database, CF-kNN outperforms the
typical kNN algorithms, including classic kNN, kENN which
finds exemplar training samples to enlarge the decision
boundary for the minority class, CCW-kNN which learns the
class weight for each training sample by mixture modelling,
and SMOTE based kNN which uses SMOTE to pre-process
the dataset, showing its significant advantage in handling
class-imbalanced data by considering couplings. The im-
proved performance of variants kNN algorithms which use
our coupled fuzzy strategy indicates that CF-kNN can better
capture the intrinsic interactions and imbalance.

The paper is organized as follows. Section II briefly re-
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views the related work. Preliminary definitions are specified
in Section III. Section IV explains our classification algorith-
m on the class-imbalanced data sets. The experimental results
are discussed in Section V. The conclusion and future work
are summarized in Section VI.

II. RELATED WORK

In recent years, different approaches have been proposed to
handle class imbalance classification problems. In summary,
these methods can be broadly grouped into three different
ways: data sampling, algorithmic modification and ensem-
ble approach. The data sampling-based methods intend to
balance the data. The common strategies are to reduce the
majority class samples (undersampling) or to add new mi-
nority class samples (oversampling)[10], [11]. For instance,
SMOTE [10] over-samples the minority class by taking each
minority class sample and introducing synthetic examples
along the line segments joining all of the k minority class
nearest neighbors based on the nearest neighbor analogy. It
beats the random over-sampling by adding new instances to a
minority class, without suffering from the over-fitting. These
methods are designed more suitable for numerical data sets.
SMOTE would introduce noisy points if it is used for categor-
ical data. Unlike sampling-based methods which change the
original data structure, the approaches of modifying existing
algorithms aim to make them more effective in dealing with
imbalanced data, while keeping the data structure unchanged.
For example, CCPDT[12], which is designed for imbalanced
situation, is a modification of the decision tree algorithm.
The ensemble approach incorporate approaches at the data
level and algorithmic level, considering higher costs for
the misclassification of examples of the positive class with
respect to the negative class, and trying to minimize higher
cost errors[13].

Although kNN has been identified as one of the top ten
most influential data mining algorithms [2], the classic kNN
algorithm is not suitable for the presence of imbalanced class
distribution. To improve the performance of kNN for imbal-
anced classification, kENN[3] and CCW-kNN[4] have been
proposed. kENN proposed a training stage where exemplar
positive training instances are identified and generalized into
Gaussian balls as concepts for the minority class. When
classifying a query instance using its k nearest neighbors,
the positive concepts formulated at the training stage ensure
that classification is more sensitive to the minority class.
This approach is based on extending the decision boundary
for the minority class. CCW-kNN uses the probability of
attribute values given class labels to weight prototypes in
kNN. They used conditional probabilities of classes but
not the probabilities of class labels in the neighborhood of
the query instance. These methods perform more accurately
than kNN. However, both kENN and CCW-kNN were for
numerical data, and require a training stage either to find
exemplar training samples to enlarge the decision boundaries
for the positive class, or to learn the class weight for each
training sample by mixture modelling and Bayesian network
learning.

TABLE II
FREQUENCY OF FEATURE CO-OCCURRENCES

small medium large Total
red 44 47 9 100

green 48 45 7 100
blue 8 8 84 100
Total 100 100 100

Yang Song et al. [14] propose two new kNN algorithms
based on the concept: informativeness, which is introduced
as a query-based distance metric. A data point is treated
informative if it is close to the query point and far away from
the points with different class labels. Locally Informative
kNN(LI-kNN) applies this to select the most informative
points and predict the label of a query point based on the
most numerous class with the neighbors; Globally Informa-
tive kNN(GI-kNN) finds the globally informative points by
learning a weight vector from the training points.

The above work introduces new learning algorithms to deal
with the imbalanced class distribution problem mainly for nu-
merical data. The overlap similarity or cosine similarity[15]
for categorical data is too vague to clearly describe how close
two categorical instances are. Those similarity measures
assume that the categorical features are independent to each
other and thus the data is IID. However, with the appearance
of big data application, an increasing number of researchers
argue that the similarity between categorical feature values
is also dependent on the couplings with other features [16],
as features are more or less coupled. This brings the critical
issue of learning from non-IID data, a very rarely explored
topic in the data mining community.

Classifying non-IID categorical data is challenging, which
needs to consider the explicit and implicit couplings between
objects, features and feature values. This hasn’t been paid
much attention in the existing classification methods, as they
were mainly designed with the IIDness assumption. Very
recently, Wang et al. [5] present a coupled nominal similarity
to examine both the intra-coupling and inter-coupling of cat-
egorical features. Their approaches were used for clustering
class-balanced categorical data. Inspired by their work, this
paper incorporates the couplings between objects, features
and feature values into the classification of class-imbalanced
categorical data, which has not been addressed so far.

III. PRELIMINARY

Classification of the class-imbalanced categorical data can
be formally described as follows: U = {u1, · · · , um} is
a set of m instances; F = {a1, · · · , an} is a set of n
categorical features; C = {c1, · · · , cL} is a set of L classes,
in which each class has dramatically different numbers
of instances. The goal is to classify an unlabeled testing
instance ut based on the instances in the training set {ui}
with known classes. For example, Table I exhibits a class-
imbalanced data set. The training set consists of ten objects
{u1, u2, · · · , u10}, four categorical features {age, tumor −
size, inv−nodes, breast− quad}, and two classes {A,B}.
There are only two instances in class A, while eight instances
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in class B. Our task is to find a suitable classification model
to categorize u0 into class A.

In the following sections, the size of a class refers to the
number of instances in this class. When we say a class cl is
smaller (or larger) than ck, it means that the size of class cl
is smaller (or larger) than that of ck. A minority class has a
relatively small size, while a majority class has a relatively
large size. In addition, |H| is the number of instances in set
H .

IV. COUPLED FUZZY kNN

In this section, a coupled fuzzy kNN algorithm (i.e. CF-
kNN for short) is proposed to handle the similarity-based
classification problem on the class-imbalanced categorical
data sets.

Compared to classic kNN, CF-kNN consists of three new
components: membership assignment, similarity calculation,
and integration. At the phase of membership assignment, we
introduce a fuzzy membership to handle the class-imbalanced
issue: Sized Membership of Class. This membership provides
the quantification on how small a class is. Simultaneously, at
the step of similarity calculation, we introduce the Adapted
Coupled Nominal Similarity following the idea in [5] to
describe the closeness between two different instances by
considering both intra and inter-feature couplings and their
combination. Finally, at the stage of integration, we propose
the Integrated Similarity to measure the similarity between
the test instance and the training instance by merging the
adapted coupled nominal similarity and fuzzy membership
of a class. The classification result of a test instance is
determined according to the integrated pairwise similarity.
Below, we specify these building blocks one by one.

A. Membership Assignment

In this part, we propose a membership: Sized Membership
of Class to characterize the structure of imbalanced classes
and to capture the prior knowledge integrated from the
instances.

1) Sized Membership of Class: In a class-imbalanced data
set, there are usually several small classes that contain much
less instances (i.e. minority), while a lot more instances are
in some large classes (i.e. majority). However, what exactly
does a small class mean? How do we quantify a small class?
As it would be too reductive to regard the smallest class
as the minority, we use a fuzzy way [17] to measure how
small a class is according to its size, and make our approach
suitable for multi-class problems. Accordingly, we have:

Definition 1: The Sized Membership of Class θ(·) de-
notes the rate of a class cl that belongs to the minority.
Formally, θ(·) is defined as:

θ(cl) = 1− |cl|
m

, (3)

where |cl| is the number of instances in classes cl and m is
the total number of instances in the data set. Accordingly,
we have θ(cl) ∈ (0, 1).

The sized membership of class describes how small a
class is. In special cases, θ(cl) reaches the maximum if
cl has the smallest number of instances; θ(cl) is down to
the minimum if cl is the largest class. For other medium
classes, the corresponding sized membership of class falls
within (θ(cl)

min, θ(cl)
max). When a data set is balanced

with two classes, where we have θ(cl) = 0.5. In Table
I, for instance, we have θ(cA) = 1 − 2/10 = 4/5, and
θ(cB) = 1− 8/10 = 1/5.

Later in measuring the similarity of instances, we will
incorporate the sized membership of class θ(·) into the
integrated similarity measure to balance the impact of class
size in measuring instance similarity.

2) Feature Weighting: Less relevant features that provide
little information for classification should be assigned low
weights, while features that provide more reliable informa-
tion should be assigned higher weights. Towards this goal,
the mutual information (MI)[18] between the values of a
feature and the class of the training examples can be used to
assign feature weights. Formally, we have:

Definition 2: The feature weight describes the impor-
tance degree of each categorical feature fj :

αj =
∑
v∈Vf

∑
cj∈C

p(cj , xf = v) · log p(cj , xf = v)

p(cj) · p(xf = v)
(4)

where p(cj) is the frequency of class cj among the training
set D and p(xf = v) is the frequency of value v for f among
instances in D.

This equation assigns zero to features that provide no
information about the class, and a value proportional to
log(|C|) to features that completely determine the class
(i.e., assuming a uniform distribution on classes). As in the
example of Table I, we have the normalized feature weights:
α1 = 0.2639, α2 = 0.1528, α3 = 0.3750, and α4 = 0.2083.

B. Similarity Calculation

The similarity between instances is defined for the class-
imbalanced categorical data. The usual way to deal with the
similarity between two categorical instances is the cosine
similarity on frequency and overlap similarity on feature
category. However, they are too rough to measure the sim-
ilarity and they do not consider the coupling relationships
among features. Wang et al. [5] introduce a coupled nominal
similarity (COS) for categorical data, which addresses both
the intra-coupling similarity between values within a feature
and the inter-coupling similarity among different features.
The proposed similarity measure picks up both explicit and
implicit interactions between objects, features and feature
values, and has been shown to outperform the SMS and the
ADD[19] in the clustering learning. Here, we adapt the COS
in our classification algorithm as follows.

Definition 3: Given a training data set D, a pair of values
vxj , v

y
j (v

x
j ̸= vyj ) of feature aj . vxj and vyj are defined to be

intra-related in feature aj . The Intra-Coupled Similarity
(IaCS) between feature values vxj and vyj of feature aj in
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either training or testing data is formalized as:

δIa(vxj , v
y
j ) =

RF (vxj ) ·RF (v
y
j )

RF (vxj ) +RF (vyj ) +RF (vxj ) ·RF (v
y
j )
,

(5)
where RF (vxj ) and RF (vyj ) are the relative occurrence
frequency of values vxj and vyj in feature aj , respectively.

The Intra-Coupled Similarity just reflects the interaction of
two values in the same feature. The higher these frequencies
are, the closer such two values are. Thus, Equation (5)
is designed to capture the value similarity in terms of
occurrence times by taking into account the frequencies of
categories. Besides, since 1 ≤ RF (vxj ), RF (v

y
j ) ≤ m, then

δIa ∈ [1/3,m/(m + 2)]. For example, in Table I, values
(leftlow) and (leftup) of feature breast−quad are observed
2 and 4 times respectively, so δIa((leftlow), (leftup)) =
(2 ∗ 4)/(2 + 4 + 2 ∗ 4) = 4/7.

In contrast, the Inter-Coupled Similarity below is defined
to capture the interaction between two values of two different
features of an instance from either training or testing data.

Definition 4: For a training data set D and two different
features ai and aj (i ̸= j), two feature values vxi , v

y
j (i ̸= j)

from features ai and aj , respectively, vxi and vyj are inter-
related if there exists at least one pair value (vxyp ) that co-
occurs in features ai and aj of instance Up. The Inter-
Coupled Similarity (IeCS) between feature values vxi and
vyj of features ai and aj is formalized as:

δIei|j(v
x
i , v

y
j ) =

F (vxyp )

max(RF (vxi ), RF (v
y
j ))

, (6)

where F (vxyp ) is the co-occurrence frequency count function
with value pair vxyp , and RF (vxi ) and RF (vyj ) is the relative
occurrence frequency in their features respectively.

Accordingly, we have δIei|j ∈ [0, 1]. The Inter-Coupled
Similarity reflects the interaction or relationship of two
categorical values from two different features. In Table I,
for example, as δIe1|4((60-69), (central)) = 1/max(1, 2) =

0.50 > δIe1|4((50-59), (central)) = 1/max(6, 2) = 0.167, so
between features 1 and 4, the value pair [(60-69),(central)]
is closer than the value pair [(50-59),(central)].

Though the superiority of COS has been verified for
clustering [5], it cannot be directly used for classification,
due to its lack of class information. To make COS adaptive
to classification, we incorporate class label information into
COS via the feature weighting. First, the correspondence
problem in relation to mapping between the feature values
and the classes needs to be solved. The optimal correspon-
dence can be obtained by using the Hungarian method [20]
with O((nj)

3) complexity for nj feature values. Below, the
correspondence mapping is built for each feature fj (1 ≤
j ≤ n) and a set of classes C.

By taking into account the feature importance, the Adapted
Coupled Object Similarity between instances ui1 and ui2 is

formalized as:

AS(ui1 , ui2)

=
n∑
j=1

[β · αjδIaj + (1− β) ·
n∑

k=1,k ̸=j

δIej|k]

=
n∑
j=1

[β · αjδIaj (vi1j , v
i2
j ) + (1− β) ·

n∑
k=1,k ̸=j

δIej|k(v
i1
j , v

i2
k )],

(7)

where β ∈ [0, 1] is the parameter that decides the weight of
intra-coupled similarity, vi1j and vi2j are the values of feature
j for instances ui1 and ui2 , respectively. δIaj and δIej|k are
the intra-coupled feature value similarity and inter-coupled
feature value similarity, respectively. It is remarkable to note
that αj is the feature weight defined in Equation (4), rather
than αj = 1/n assumed in [15].

C. Integration

Finally, we aggregate the membership assignment and
similarity calculation, and propose an Integrated Similarity
for classifying class-imbalanced categorical data. In this way,
we are able to select distinct similarity measures for the
instances with different prior belonging memberships and
from different classes. The integrated similarity is defined
below:

Definition 5: The Integrated Similarity represents the
adapted coupled similarity measure by taking into account
the feature weight, feature values’ intra and features inter
coupled relationship as well as the class size information.
Formally,

IS(ue, ui) = θ(C(ui)) ·AS(ue, ui), (8)

where ue and ui are the instances, respectively; C(ui)
denotes the class of ui; θ(·) is the sized membership of class
defined in Equation (3); and AS(·) is the adapted coupled
object similarity defined in Equation (7).

As indicated by Equation (8), on one hand, although we
only choose two classes in our experiments, the θ(·) can
capture the class size information, which is the key clue
to the class imbalance, so it can extends to the classifi-
cation tasks with multiple classes. On the other hand, the
adapted similarity AS(·) includes not only the feature-class
coupling information (feature weight), but it also capture
the feature values’ intra-coupling relationship and values
from different features’ inter-coupling relationship. These
coupling relationship reflect the inner relationship of real
world data. Therefore, the similarity in our algorithm is more
reasonable than that in the existing similarity calculation
related algorithms for the imbalanced categorical data.

D. The CF-kNN Algorithm

As shown in Algorithm 1, the CF-kNN algorithm works
as follows. Following the idea of kNN, after obtaining the
Integrated Similarity between test instance ue and training
instance {ui}, we select the k nearest neighbors in the train-
ing set that correspond to the k highest Integrated Similarity
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values. The largest class cl of the neighbors is the desired
class for ue. For example, in Table I, we have IS(u0, u1) =
3.9785, IS(u0, u2) = 3.8054 and IS(u0, u7) = 3.8332 to be
the top three nearest neighbors to u0, and so u0 is categorized
to its real class, namely class A (k = 3).

Algorithm 1 : Coupled Fuzzy kNN Algorithm
Input: An instance ut without label and a source dataset

D{u1, u2, ..., uN}
Output: The class label of ut

1: Calculate the sized membership of class in the source
dataset using the fuzzy set theory, and compute the
feature weight

2: Create the similarity matrix which contains both intra-
and inter-feature similarity for dataset D

3: Calculate the distance of ut to every instance in dataset
D

4: Select k points which are close to the instance ut
5: Return the class label of those k neighbors which has

the maximum number of instances

V. EXPERIMENTS AND EVALUATION

A. Data and Experimental Settings

As the publicly available data sets were often not designed
for the non-IIDness test as in this work, we choose some
commonly used UCI and KEEL data and a real world
data set. Our motivation is that if an algorithm can show
improvement on such data compared to the baselines, it has
potential to differentiate itself from others in more complex
data with strong couplings. In total, 14 data sets are taken
from the UCI Data Repository [8], KEEL data set repository
[9], and the real Student learning data taken from the records
of an Australian university’s students performance database
(If a student failed both in course L and course S, he or she
will be labeled as “Failure”, or else be labeled as “Success”).
In experiment 3, we use SMOTE on this student data set and
created 50 new data sets with minority class varies from 1%
to 50%. A short description of all the datasets is provided
in Table III and the proportion of minority class to the total
instances is shown as Minority(%). These data sets have been
selected as they typically have an imbalance class distribution
(the lowest one is 0.98%). As some data sets have mixed type
of features, such as D1, D2, D4 and D5, we conducted the
CAIM discretization algorithm [21] on numerical features
first so as to convert them into categorical ones.

We conducted 10-fold cross validation experiments to
evaluate the performance of all the algorithms. In the experi-
ments, we select not only variants of kNN, such as the classic
K Nearest Neighbors(kNN)[2], kENN[3], CCW-kNN[4] and
SMOTE based kNN to compare with, but also the very
popular classifiers C4.5 and NaiveBayes. To make algorithms
more comparable, we further incorporate our coupled fuzzy
method into some kNN algorithms (the new ones are with
a prefix of “CF+”) to compare their results. In all our

experiments, we set k = 5 to all those kNN-based classifiers,
and the confidence levels for kENN is set to 0.1.

Due to the dominative effect of the majority class, the
overall accuracy is not an appropriate evaluation measure
for the performance of classifiers on imbalanced datasets,
we use Receiver Operating Characteristic (ROC) curve and
the Area Under the ROC Curve (AUC)[22] to evaluate the
performance results. AUC indicates the overall classification
performance, and the AUC of a perfect classifier equals to
1, a bad one less than 0.5, so a good classification algorithm
will has a higher AUC.

B. The performance of CF-kNN

Table IV shows the AUC results for our CF-kNN com-
pared with the state of the art algorithms. The top two results
are highlighted in bold. Compared with other approaches,
our CF-kNN has the highest AUC result and outperforms
others in most of the datasets, especially in datasets with
high imbalance rate. Also, our proposed CF-kNN always
outperforms classic kNN on all the datasets. This evidences
that considering the coupling relationships between objects,
features and feature values by treating the data as non-IID in
computing similarity or distance captures the intrinsic data
characteristics. Note that the SMOTE-based kNN does not
always demonstrate significant improvement compared with
kNN, sometimes even worse, such as in data set D5 and D14.
It means that only using SMOTE on imbalanced categorical
data may not bring much improvement, but even some noise.

From the results we can see that when the imbalance
rates are less than 8%, our method achieves a much better
improvement (the least one is 2.08% and the highest one
is 12.09%) on these very simple UCI data which does
not incorporate much non-IIDness characteristics. On some
specific datasets, such as D8, our methods also approach as
good as CCWkNN. That confirms again that our coupled
fuzzy strategy is very effective for imbalanced non-IID
classification tasks.

C. The effect of incorporating fuzzy membership and cou-
plings

This set of experiments aims to test the effect of incorpo-
rating fuzzy membership of class and the coupled similarity
into other classification algorithms. For doing this, we create
three comparison sets by integrating the proposed coupled
fuzzy mechanism into kENN to form CF+kENN, CCWkNN
to form CF+CCWkNN, and SMOTE based kNN to form
CF+SMOTE based kNN, and compare their performance.
All comparable algorithms are with the same parameter
settings.

Table V shows the performance results of these compara-
ble algorithms with vs. without the coupled fuzzy mechanis-
m. It shows that incorporating our new similarity metrics will
bring more or less improvement for the classic algorithms,
especially for those distance or similarity-based algorithms.
This further shows that our proposed idea of incorporating
the fuzzy membership of classes size and measuring the cou-
plings between objects, features and feature values capture
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TABLE III
DATA SETS, ORDERED IN THE DECREASING LEVEL OF IMBALANCE

Index Dataset Source #Instances #Attribute #Class Minority Name Minority(%)
D1 Students REAL 50000 32 2 Failure 0.98%
D2 kr-vs-k KEEL 28056 6 18 five 1.68%
D3 Abalone UCI 4177 8 29 Class15 2.47%
D4 Nursery UCI 12960 8 5 very recom 2.53%
D5 Dermatology UCI 366 34 6 P.R.P. 5.46%
D6 Zoo UCI 101 17 7 Set6 7.92%
D7 Solar Flare KEEL 1066 11 6 E 8.91%
D8 Connect-4 UCI 67557 42 3 draw 9.55%
D9 Primary Tumor UCI 339 17 22 stomach 11.50%
D10 Soybean(Large) UCI 307 35 19 brown-spot 13.03%
D11 Hayes-roth UCI 160 5 3 3 19.38%
D12 Contraceptive UCI 1473 9 3 Long-term 22.61%
D13 Adult UCI 45222 14 2 >50K 23.93%
D14 Splice-junction KEEL 3190 60 3 EI 24.04%

TABLE IV
THE AUC RESULTS FOR CF-kNN IN COMPARISON WITH OTHER ALGORITHMS

Dataset Minority(%) CF-kNN kNN kENN CCWkNN SMOTE C4.5 Naive improvement
D1 0.98% 0.909 0.845 0.849 0.854 0.866 0.857 0.857 4.97%-7.59%
D2 1.68% 0.711 0.661 0.672 0.685 0.682 0.669 0.669 3.87%-7.49%
D3 2.47% 0.718 0.672 0.680 0.692 0.688 0.683 0.682 3.75%-6.89%
D4 2.53% 0.981 0.922 0.959 0.948 0.933 0.958 0.934 2.35%-6.38%
D5 5.46% 0.76 0.715 0.720 0.729 0.678 0.716 0.724 4.28%-12.09%
D6 7.92% 0.887 0.842 0.869 0.869 0.854 0.857 0.859 2.08%-5.30%
D7 8.91% 0.962 0.910 0.920 0.937 0.930 0.947 0.925 1.62%-5.67%
D8 9.55% 0.916 0.864 0.876 0.916 0.910 0.910 0.888 0.00%-6.02%
D9 11.50% 0.716 0.685 0.701 0.695 0.701 0.698 0.705 1.60%-4.59%
D10 13.03% 0.971 0.932 0.957 0.961 0.961 0.942 0.954 1.01%-4.16%
D11 19.38% 0.972 0.932 0.943 0.960 0.942 0.959 0.952 1.26%-4.34%
D12 22.61% 0.755 0.718 0.729 0.725 0.743 0.726 0.736 1.64%-5.12%
D13 23.93% 0.938 0.904 0.915 0.910 0.910 0.920 0.919 1.95%-3.79%
D14 24.04% 0.977 0.938 0.940 0.947 0.907 0.964 0.953 1.36%-7.72%

TABLE V
THE AUC RESULT COMPARISON FOR ALGORITHMS WITH AND WITHOUT COUPLED FUZZY METHOD

Dataset Minority(%) kENN CF+kENN CCWkNN CF+CCWkNN SMOTE CF+SMOTE
D1 0.98% 0.849 0.905 0.854 0.906 0.866 0.922
D2 1.68% 0.672 0.715 0.685 0.726 0.682 0.725
D3 2.47% 0.680 0.724 0.692 0.733 0.688 0.735
D4 2.53% 0.959 0.979 0.948 0.967 0.933 0.990
D5 5.46% 0.720 0.766 0.729 0.771 0.678 0.718
D6 7.92% 0.869 0.922 0.869 0.918 0.854 0.908
D7 8.91% 0.920 0.975 0.937 0.989 0.930 0.985
D8 9.55% 0.876 0.928 0.916 0.965 0.910 0.963
D9 11.50% 0.701 0.742 0.695 0.732 0.701 0.741
D10 13.03% 0.957 0.957 0.961 0.973 0.961 0.975
D11 19.38% 0.943 0.990 0.960 0.974 0.942 0.995
D12 22.61% 0.729 0.764 0.725 0.725 0.743 0.776
D13 23.93% 0.915 0.957 0.910 0.946 0.910 0.951
D14 24.04% 0.940 0.981 0.947 0.984 0.907 0.947
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Fig. 1. The sensitivity to imbalance rate.

the intrinsic characteristics better than existing methods, and
it especially suitable for class-imbalanced categorical data.

D. The sensitivity to imbalance rate

To evaluate our coupled similarity on different imbalance
rate, we do SMOTE on student data and create 50 new data
sets, in which the minority class varies from 1% to 50%
of the total instances. Fig. 1 shows the improvement of the
basic algorithms which combined with our Coupled Fuzzy
Similarity on different imbalance rate. As it shows in the
figure, when minority class only takes up < 10% of the total
instances, both kNN and kENN (combined with CF) can
have an improvement of over 5.821%. Even for CCWkNN,
the improvement can over 5.372%. But with the imbalance
rate declining, this improvement falls simultaneously. When
minority class comes to 35% of the total records (which can
be defined as “balanced” data) or over, the improvement will
not be so outstanding and stay stable at about 2.2%. This
experiment demonstrates that our strategy is sensitive to the
imbalance rate, and it is more suitable for being used in
the scenario with high imbalance rate, that is, imbalanced
categorical Non-IID data.

VI. CONCLUSIONS AND FUTURE WORK

Traditional classifiers mainly focus on dealing with bal-
anced data set and overlook the coupling relationship be-
tween data attributes, objects and classes. Classifying cou-
pled and imbalanced data is very challenging. We propose
a coupled fuzzy kNN to classify imbalanced categorical
data with strong relationships between objects, attributes and
classes. It incorporates the size membership of a class with
attribute weight into a coupled similarity measure, which
effectively extracts the inter-coupling and intra-coupling re-
lationships in categorical data. The experiment results show
that our CF-kNN has a more stable and higher average per-
formance than the classic kNN, kENN, CCWkNN, SMOTE-
based kNN, Decision Tree and NaiveBayes when applied on
class-imbalanced categorical data. Future work will include
increasing the algorithm efficiency, lowering the time com-
plexity and extending the algorithm to mixed type data which
contains both categorical features and numerical features,

and even applying this idea to other basic classification
algorithms based on similarity or distance, such as SVM.
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