
 
 

 

  

Abstract—Learning process is an important part in two-layer 
networks. It is imperative to search for an optimal learning rate 
to get a maximum error reduction in each learning step. Related 
literature has proposed various kinds of methods to find such an 
optimal learning rate in the past decades.  In this paper, we 
proposed an improved dynamic optimal learning rate by adding 
an optimal ratio   . It is found that our improved dynamic 
optimal learning rate can generate a better result in learning 
processes. Meanwhile, we have proved the existence of the ratio by giving it a proper math expression. Furthermore, we also 
applied the improved learning rate to solve inverse problem and 
compared the difference of the improved learning rate with the 
previous approach. It is observed that our proposed method 
performs better. Therefore, it can be concluded that our new 
method to search for dynamic optimal learning rate is valuable 
in the intelligence learning applications of neural networks, or it 
is effective in the aspect of tested problem at least. 

I. INTRODUCTION 
HE two-layer neural networks (NN) were inspired 

from biological modeling of human’s brain. Many 
literatures reported in designing artificial neural networks 
from a wide range of disciplines [1]. It has been applied to 
various fields, such as pattern matching, optimization, control, 
classification, and function approximation [2-5].  Generally, 
the networks include two phases. The first is to calculate the 
actual outputs from the input layers by applying the activation 
function. The second is to train the neuron weights by back 
propagation (BP). Adjusting the weight degree of neuron by 
using the descent gradient method can be achieved [6, 7]. And 
the general procedure of this method is to carry out 
continuous iterative of the two phrases by minimizing the 
total squared error of the actual outputs and desired outputs 
until reaching to stop conditions. 

 Classical BP methods are mainly to find the local optimal 
solution of optimized function in negative gradient direction. 
The learning rates were always fixed empirical values. 
However, there are mainly two disadvantages, one is the 

 
T. Zhang is with the Department of Computer and Information Science, 

Faculty of Science and Technology, University of Macau, Macau, China 
(e-mail: ztony86@gmail.com).  

C. L. Philip Chen is with the Department of Computer and Information 
Science, Faculty of Science and Technology, University of Macau, Macau, 
China (phone: 853-8397-4950; fax: 853-2883-8314; e-mail: 
Philip.Chen@ieee.org). 

J. Zhou is with the Department of Computer and Information Science, 
Faculty of Science and Technology, University of Macau, Macau, China 
(e-mail: ise.zhouj@gmail.com). 

This work was supported by the Macau Science and Technology 
Development Fund under Grant No.008/2010/A1 and University of Macau 
Multi-Year Research Grants. 

learning or convergence process is very slowly while the 
other is the learning process may lead to local minimum. 
However, the effects of learning rates on the training process 
are very huge in various kinds of learning applications and 
these differences can even lead to the failure of the process [8, 
9]. Therefore, many researches are devoted to adjusting the 
learning rates of BP algorithms to improve the learning speed 
[7, 9-11]. 

For example, the learning rate was optimized by using 
derivative information. In [10], the authors introduced a 
dynamic changing of learning rates for a neuron set of input. 
Then, the dynamic learning rate was found in [10, 14] and was 
proven that must be greater than zero. In [13], we have 
proposed the new learning rate by adding a ratio ݇, ሺ0 ൏ ݇ ൏1ሻ, which improved the efficacy of the training process. 

In this paper, we propose a more precise function of this 
ratio ݇ and it is proved effectively existing in any kind of 
learning processes. After multiply calculating, we find the 
proper math expression of ratio ݇ from a differential equation. 
And, we have proved the math expression of ratio ݇ has a 
unique solution, which ranges from 0 to 1. Finally, we present 
the performance of the improved optimal learning rate on 
solving the inverse problem. 

The following parts of this paper are organized as below. 
In section II, we briefly review the two-layer neural network 
and dynamic optimal learning rate. Section III presents the 
idea of the new dynamic optimal learning rate with ratio ݇ and 
the mathematical expression, along with its detailed proofs of 
ratio ݇. The experimental results are showed and analyzed by 
using the proposed learning method to solve reverse problems, 
compared with the previous learning rate at the same time in 
Section IV. Section V concluded the paper. 

II. PRELIMINARY 

A. Two-layer Neural Network 
Two-layer NN plays a crucial role in theory and practice of 

artificial intelligence fields. It includes interconnected 
processing elements, known as nodes or neurons which can 
work together efficiently. Fig. 1 shows the basic structure of a 
two-layer NN. 
In the input and output layers, ݎԦ ൌ ሾݎଵ, ,ଶݎ ڮ , ሿ்ݎ א ܴ                        (1) ݕԦ ൌ ሾݕଵ, ,ଶݕ ڮ , ሿ்ݕ א ܴ                     (2)  
where “T” is the transpose operator. ܹ stands for the weighting matrix, ܹ ൌ ሾݓଵሬሬሬሬԦ, ,ଶሬሬሬሬሬԦݓ ڮ , ሬሬሬሬሬԦሿ்ݓ א ܴൈ               (3)  
Then, for the desired output, refer to Equation (4), 
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 Ԧ݀ ൌ ሾ݀ଵ, ݀ଶ, ڮ , ݀ሿ் א ܴ                    (4)  
 

 Fig. 1. Basic structure of two-layers ANN 
According to inter relations of the nodes or neurons, we get 

the following equation, y ൌ  ݓݎ
ୀ ൌݎԦ்ݓ௭ሬሬሬሬԦ                         ሺ5ሻ 

In mathematical way, we assume both the input and output 
elements are notated in matrix, if the training dataset included 
P samples, we can get the input matrix as Equation (6)  ܴ ൌ ,ଵݎൣ ,ଶݎ … , ൧ݎ א Թൈ                  ሺ6ሻ 

The actual output can be obtained from Equation (7), ܻ ൌ ்ܴܹ                                             ሺ7ሻ 
Matrix ܦ stands for the desire output, which have a same 
dimension with ܻ. 
Hence, the total square error (TSE) can be described as 
Equation (8), which is a function of ܹ. ܬሺܹሻ ൌ 12ܲ ൈ ܼ ሺݕ௭ െ ݀௭ሻ்ሺݕ௭ െ ݀௭ሻ                ሺ8ሻ 
Then, the learning process can be summarized to reduce the 
value of ܬሺܹሻ by updating the weighting matrix ܹ. 

B. Dynamic Optimal Learning Rate 
The dynamic optimal learning rate was proposed in paper 

[9]. Compared with the classical approach by using gradient 
descent method, the authors construct an iterative process to 
train the weight ܹ in a two-layer NN, which is expect to 
converge to the optimal one. Refer to Equation (9). 

௧ܹାଵ ൌ W௧ െ ௧ߚ ሺܬ߲ ௧ܹሻ߲ ௧ܹ ቤW                           ሺ9ሻ 

where ݐ is the iteration number and ߚ௧ is the dynamic optimal 
learning rate. Applying the chain rule, differential part in 
Equation (9) can be calculated as Equation (10), 

ሺܹሻ߲ܹܬ߲ ൌ  1ܲ · ܼ ܴሺ்ܴܹ െ  ሻ                  ሺ10ሻܦ
Then, after solving the quadratic polynomial ܽߚଶ   to  ߚܾ
get the minimum solution by applying the theorem 1 in [5], 
we can obtain the optimal learning rate from Equation (11), ߚ௧ ൌ െ 2ܾܽ                                           ሺ11ሻ 
where, ܽ ൌ 12ሺܲ · ܼሻଷ ௧்ܧ௧ܧ்ܴܴ ்ܴܴ            ሺ12ሻ ܾ ൌ  12ሺܲ · ܼሻଷ ௧்ܧ௧ܧ்ܴܴ ்ܴܴ           ሺ13ሻ ܧ ൌ ்ܴܹ െ  ሺ14ሻ                                      ܦ
The details of the training process can be referred to 
algorithm I in [8] 
 

III. ANALYSIS OF RATIO ݇ OF DYNAMIC OPTIMAL LEARNING RATE 
In this part, the new dynamic learning rate with ratio ݇ is 

shown. Then, we analyze its proper math expression. 

A. New Dynamic Learning rate with Ratio ݇ 
Assume that the initial weighting matrix ܹ  has been 

calculated at the beginning. The corresponding total square 
error was denoted as ܬ. Then, the optimal learning rate ߚ 
can be obtained from theorem 1 in [10]. Instead of applying 
Equation (15) in [10], a ratio ݇ will be added to ߚ. So the ଵܹ 
can be got from Equation (15), 

ଵܹ ൌ ܹ െ ߚ݇ ሺܬ߲ ܹሻ߲ ܹ                      ሺ15ሻ 

where, ߚ ൌ ൫்ൣாబோோாబ൧൯்ൣோோாబாబோோ൧                       ሺ16ሻ 

Then, the error function is, ܧଵ ൌ ்ܴ ଵܹ െ ൌ ܦ ܧ െ  ሺܼܲሻିଵ                         ሺ17ሻܧ்ܴܴߚ݇

For the next iteration, we can get, ܧଶ ൌ ܧ െ ߚ݇ ܼܲܧ்ܴܴ  െ ଵߚ ܼܲܧ்ܴܴ  ଵߚߚ݇  ሺܼܲሻଶܧ்்ܴܴܴܴ  

The optimal learning rate ߚଵ in the next generation can be 
calculated as Equation (18) 

ଵߚ  ൌ ܼܲሺܶݎሼሾܧ െ ܧሺܼܲሻିଵሿ்ܴܴሾܧ்ܴܴߚ݇ െ ଵ்்ܴܴ൧ܧଵܧ்ܴܴൣݎሺܼܲሻିଵሿܶܧ்ܴܴߚ݇  

ൌ ܼܲ൛ܶܧൣݎ்்ܴܴܧ െ 2ሺܼܲሻିଵ݇ߚܧ௧ ௧ܧ்்்ܴܴܴܴ  ሺܼܲሻିଶ݇ଶߚଶܧ௧்்்்ܴܴܴܴܴܴܧ௧൧ൟܶܧ்ܴܴൣݎ௧ାଵܧ௧ାଵ்்ܴܴ൧   
ൌ ܼܲ · ሿܧ்்ܴܴܧሾݎܶ െ ሿܧ்்்ܴܴܴܴܧሾݎܶߚ2݇  ሺܼܲሻିଵ݇ଶߚଶܶݎሾܧ்்்்ܴܴܴܴܴܴܧሿܶݎሾܧ்்்ܴܴܴܴܧሿ െ ሺܼܲሻିଵ2݇ߚܶݎሾܧ்்்்ܴܴܴܴܴܴܧሿ  ሺܼܲሻିଶ݇ଶߚଶܶݎሾܧ்்்்்ܴܴܴܴܴܴܴܴܧሿ   ሺ18ሻ 
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For the sake of writing conveniently, we denote five new 
intermediate variables ܲ, ଵܲ, ଶܲ, ଷܲ, ܽ݊݀ ସܲ , expressed as 
Equation (19) to Equation (23) as below, 

ܲ ൌ  ሿ                                              ሺ19ሻܧ்ܧሾݎܶ

ଵܲ ൌ  ሿ                                     ሺ20ሻܧ்்ܴܴܧሾݎܶ

ଶܲ ൌ  ሿ                             ሺ21ሻܧ்்்ܴܴܴܴܧሾݎܶ

ଷܲ ൌ  ሿ                     ሺ22ሻܧ்்்்ܴܴܴܴܴܴܧሾݎܶ

ସܲ ൌ  ሿ             ሺ23ሻܧ்்்்்ܴܴܴܴܴܴܴܴܧሾݎܶ

Then, we get Equation (24) from (18). ߚଵ ൌ ܼܲ · ଵܲ െ ߚ2݇ ଶܲ  ሺܼܲሻିଵ݇ଶߚଶ ଷܲଶܲ െ ሺܼܲሻିଵ2݇ߚ ଷܲ  ሺܼܲሻିଶ݇ଶߚଶ ସܲ             ሺ24ሻ 

The total square error ܬሺ ଶܹሻ can also be calculated as 
Equation (25), ܬሺ ଶܹሻ ൌ 12ܲ · ܼ  ൫ܳଵܳଵ்൯                        ሺ25ሻݎܶ

Where,   ܳଵ ൌ ܧ    െ ߚ݇ ܼܲܧ்ܴܴ  െ ଵߚ ܼܲܧ்ܴܴ  ଵߚߚ݇  ሺܼܲሻଶܧ்்ܴܴܴܴ   
ܳଵ் ൌ ்ܧ െ ߚ݇ ்்ܴܴܼܲܧ  െ ଵߚ ்்ܴܴܼܲܧ  ଵߚߚ݇  ்்்ܴܴܴܴሺܼܲሻଶܧ  

In order to find the minimum of ሺܬ   ଶܹሻ , we 
differentiate ܬሺ ଶܹሻ with respect to ݇ and let it equal to zero, 
then we can solve the equation. After multiply calculating 
from MAPLE or Mathematica, we find three roots (Equation 
26-28) of the differential equation. However, only the root of 
equation (26) is ranged from 0 to 1. 

݇ଵ ൌ ሺ ଵܲ ସܲ െ ଶܲ ଷܲ െ ܳଶሻ · ܼܲ4ሺ ଶܲ ସܲ െ ଷܲଶሻߚ                                  ሺ26ሻ 

݇ଶ ൌ ሺ ଵܲ ସܲ െ ଶܲ ଷܲ  ܳଶሻ · ܼܲ4ሺ ଶܲ ସܲ െ ଷܲଶሻߚ                                  ሺ27ሻ 

݇ଷ ൌ ܼܲ ඥെ12 ଶܲ ଷܲ ସܲ  4 ଵܲ ସܲଶ  8 ଷܲଷ  ܳଶయ 8൫ ଶܲ ସܲ െ ଷܲଶ൯ߚଶ  

  െ 2ܼܲ൫ ଶܲ ସܲ െ ଷܲଶ൯2ߚ ඥെ12 ଶܲ ଷܲ ସܲ  4 ଵܲ ସܲଶ  8 ଷܲଷ  ܳଶయ           ܼܲ · ଷܲ8ߚ ସܲ                                                   ሺ28ሻ 

Here, ܳଶis an intermediate variable and  ܳଶ ൌ ට4 ଶܲଷ ସܲ െ 3 ଶܲଶ ଷܲଶ െ 6 ଵܲ ଶܲ ଷܲ ସܲ  ଵܲଶ ସܲଶ  4 ଵܲ ଷܲଷ 

B. Math Expression of Ratio ݇ 
Firstly, we define a function ࣠ with respect to ݇,  ࣠ሺ݇ሻ ൌ ሺܬ   ଶܹሻ െ ሺܬ   ܹଶሻ    
Obviously, if k=1, there is no difference between   ܬሺ ௧ܹାଶሻ 
and ሺܬ   ܹ௧ାଶሻ , i.e. ࣠ሺ1ሻ ൌ 0 . We assume that when k is 
satisfied with the Equation (26), we get the minimum of ࣠ሺ݇ሻ. 
It should satisfy the following two conditions, ࣠ሺ݇ሻ ൏ 0 ࣠ᇱᇱሺ݇ሻ  0 
We sub Equation (26) to   ܬሺ ܹଶሻ and   ܬԢሺ ܹଶሻ respectively. 
Then, we have,   ܬሺ ܹଶሻ ൌ ଶܲଷ െ ܲ ଶܲ ସܲ െ 2 ଵܲ ଶܲ ଷܲ  ଵܲଶ ସܲ  ܲ ଷܲଶ2ܼܲሺ ଶܲ ସܲ െ ଷܲଶሻ     ሺ29ሻ 

ሺܬ   ଶܹሻ ൌ 12ܲଷܼଷ൫ ଶܲ ସܲ ଷܲଶ െ ߚ4ܼܲ ଷܲ  ଶߚ4 ସܲ൯ ൫ܲସܼସ ܲ ଶܲ െ ܲସܼସ ଵܲଶ  4ܲଷܼଷߚ ଵܲ ଶܲ െ 4ܲଷܼଷߚ ܲ ଷܲ െ 12ܲଶܼଶߚ ଶܲଶ 8ܲଶܼଶߚ ଵܲ ଷܲ  4ܲଶܼଶߚଶ ܲ ସܲ  ଷߚ16ܼܲ ଶܲ ଷܲ െ ଷߚ16ܼܲ ଵܲ ସܲ  ସߚ16 ଶܲ ସܲ െ ସߚ16 ଷܲଶሻ           ሺ30ሻ 
So, 
 ࣠ሺ݇ሻ ൌ െ ൫ܲଶܼଶ ଶܲଶ െ ଶߚ4 ଶܲ ସܲ  ߚ2ܼܲ ଵܲ ସܲ െ ߚ2ܼܲ ଶܲ ଷܲ െ ܲଶܼଶ ଵܲ ଷܲ  ଶߚ4 ଷܲଶ൯ଶ2ܲଷܼଷ൫ ଶܲ ସܲ െ ଷܲଶ൯൫ܲଶܼଶ ଶܲ െ ߚ4ܼܲ ଷܲ  ଶߚ4 ସܲ൯                    ሺ31ሻ
 
Reviewing the previous Equations (19-23), it is obviously 
that the numerator of Equation (31) is non-negative. For ܧ்்ܴܴ and ்ܴܴܧ, ܧ்்்ܴܴܴܴ and ்்ܴܴܴܴܧ  are both 
real symmetric matrices.  
Let ܣ  ൌ ்்ܴܴܧ , ்ܣ  ൌ ܧ்ܴܴ , ்ܤ ൌ ்்்ܴܴܴܴܧ , ܤ ൌܴܴܴܴܶܶ0ܧ. Then, we have the following proof by applying 
Cauchy–Schwarz inequality, ଷܲ ൌ ሿ                                  ൌܤ்ܣሾݎܶ ሿ            ܧ்்்்ܴܴܴܴܴܴܧሾݎܶ ሺܶݎሾܣ்ܣሿሻభమሺܶݎሾܤ்ܤሿሻభమ ൌ ଶܲభమ ସܲభమ                     
That is  ଷܲଶ  ଶܲ ସܲ , i.e. ଶܲ ସܲ െ ଷܲଶ  0 . But the input 
samples cannot be one. Therefore, the equality cannot holds.  

For ܲଶܼଶ ଶܲ െ ߚ4ܼܲ ଷܲ  ଶߚ4 ସܲ is a quadratic function 
of ߚ.             ∆ൌ 16ܲଶܼଶ ଷܲଶ െ 16ܲଶܼଶ ଶܲ ସܲ             ൌ െ16ܲଶܼଶ൫ ଶܲ ସܲ െ ଷܲଶ൯                 ൏ 0                                              
For all value of ߚ,  ࣠ሺ݇ሻ is negative. In other words, the 
assumption of the existence of ratio ݇ is true, and the proper 
math expression is Equation (26). 
 

IV. EXPERIMENTAL RESULTS 
In order to show the impact on TSE of ratio ݇ in a learning 

process, we generalize the following experiment with random 
input, weight matrix and output. Then, two experiments were 
carries out by applying algorithm I in [10] and algorithm 2 in 
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[13]. 

Random Test Problem: 
Input layer, R ൌ  0.5201 െ0.7982 െ0.7145 െ0.5890െ0.0200െ0.0348 1.01869െ0.1332 1.35139െ0.2248 െ0.2938െ0.8479൩ 

The desire output D, 

D ൌ ൦ െ1.12012.5260 െ1.2571െ0.86551.65550.307535 െ0.17650.79142൪ 

The initial weighting matrix W, 

W ൌ   െ1.332 0.33351െ2.3299െ1.4491 0.391350.45168൩ 

Then we find the performance of TSE with different ratio  , 
which can be illustrated in Fig. 2, 

 Fig. 2. The TSE value associate with different ratio ݇. 
From the calculation ܲ ൌ  36.8982            ଵܲ ൌ  108.2793         ଶܲ ൌ  410.2772         ଷܲ ൌ  1.6671 ൈ 10ଷ ସܲ ൌ  6.9155 ൈ 10ଷ 
Then, the ratio ݇ can be obtained from Equation (26), ݇ ൌ 0.9056            
Solving Inverse problem: 
Suppose we have a convolution equation as Equation (32), gሺxሻ ൌ න ݇ሺݔ െ ᇱሻଵݔ

 ݂ሺݔᇱሻ݀ݔ, 0 ൏ ݔ ൏ 1         ሺ32ሻ 

where ݇ሺݔሻ is a Gaussian kernel function, ݇ሺݔሻ ൌ ߨ2√ߛ1 ݁ି ೣమమംమ , ߛ ൌ 0.05                  ሺ33ሻ ݂ሺݔሻ is the initial function presented in Equation (34) . 

݂ሺݔሻ ൌ ൞ 0.75        0.1 ൏ ݔ ൏ 0.250.25     0.3 ൏ ݔ ൏ ሻ     0.5ݔߨସሺ2݊݅ݏ0.32 ൏ ݔ ൏ 10,             other wise        ሺ34ሻ 

It can be shown in Fig. 3, 

 Fig. 3. The initial function ݂. 
The kernel function can be processed in a discrete way and we 
can get the following equation, ሾܭሿ ൌ ߨ2√ߛ݄ ݁ିሺሺషೕሻሻమమംమ  , ߛ ൌ 0.05, 1  ݅, ݆  ݊     ሺ35ሻ 

Then, we plot the surface graphics of matrix ܭ as in Fig. 4, 

 Fig. 4. Surface graphics of matrix ܭ 
 
We can apply the NN model to approximate the original 
equation as Equation (31), and solve the following inverse 
equation to get fitted curve in Fig. 4. In other words, we aim 
to approximate the distribution of ܭ by a function from ݂ as 
closely as possible [15, 16]. ݂ ൌ  ଵ݀                                       ሺ36ሻିܭ
The results can be shown as in Fig. 5. 
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 Fig. 5. The fitted curves of initial function by comparing the two kinds of optimal learning rate. 
The TSE of our approach is 0.0041 with 6 iterations, while the 
previous method is 0.0096 with 10 iterations. It can be 
summarized that our approach is a better solution with less 
iteration in solving this inverse problem. 

V. CONCLUSION 
Based on the optimal learning rates in previous work, we 

proposed a new dynamic optimal learning rate with ratio ݇. 
And we can contribute to the prior work by giving the ratio k 
a proper math expression. After multiple calculations, three 
roots of the ratio ݇ were obtained. Then, we analyzed the 
rationality of these solutions and further precisely proving its 
range is between 0 and 1. 

Besides, our new method performs better both in the 
convergence speed and training accuracy in two experiments. 
One experiment is designed of using randomly generated 
training data. The other is designed of solving inverse function 
in kernel space.  Our proposed method is preferably fitting and 
stability for the testing case. Therefore, we can draw the 
conclusion that the new dynamic optimal learning rate with 
ratio ݇  is highly efficient, and it performs better than the 
previous work in neural network applications. 

Our future work will focus on solving much broader range 
of related applications and compare the efficiency with the 
other methods (standard BP, Levenberg–Marquardt algorithm 
(LMA), and other gradient descent methods). 
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