
Interpolating Deep Spatio-Temporal Inference
Network Features for Image Classification

Yongfeng Zhang, Changjing Shang and Qiang Shen
Department of Computer Science

Institute of Mathematics, Physics and Computer Science
Aberystwyth University, UK

Email: {yoz1, cns, qqs}@aber.ac.uk

Abstract—This paper presents a novel approach for image
classification, by integrating the concepts of deep machine learn-
ing and feature interpolation. In particular, a recently introduced
learning architecture, the Deep Spatio-Temporal Inference Net-
work (DeSTIN) [1] is employed to perform feature extraction
for support vector machine (SVM) based image classification.
Linear interpolation and Newton polynomial interpolation are
each applied to support the classification. This approach converts
feature sets of an originally low-dimensionality into those of a
significantly higher dimensionality while gaining overall compu-
tational simplification. The work is tested against the popular
MNIST dataset of handwritten digits [2]. Experimental results
indicate that the proposed approach is highly promising.

I. INTRODUCTION

Deep machine learning is an emerging framework for
dealing with complex data in a hierarchical fashion which
draws inspiration from biological sources [3], [4], [5], [6], [7].
The use of multiple levels of operations can greatly simplify
the computational load of a learning architecture, provided
that it can be successfully trained and optimised for a given
application such as image classification. One fairly recent deep
learning architecture worthy of noting is the Deep Spatio-
Temporal Inference Network (DeSTIN) [1], [8], [9], which is
to be employed in the present work.

The key challenge to successfully build an image classifier
is to extract and use informative features from given images
[10], [11]. The extracted features minimise the computational
complexity to a certain extent. Unfortunately, the technique
underlying DeSTIN itself introduces significant computation,
which may well offset the potential benefit regarding the
efficiency in the implementation of the entire feature extraction
process. An alternative approach is to employ interpolation to
produce a more informative feature set, which helps improve
the representation of the underlying images to be classified
with minimal computational overheads, thereby increasing
the classification accuracy without sacrificing the efficiency.
This paper presents a novel discriminating deep learning
architecture that combines DeSTIN with interpolation, in an
attempt to implement the above idea. This architecture, which
is referred to DESTINI hereafter, leads to a highly scalable
modelling system which is capable of effectively extracting
image features efficiently.

To perform the actual feature-based image classification
task, Support Vector Machines (SVMs) [12] are employed,
by mapping input feature vectors onto the underlying image
class labels. This is due to the recognition of their high

generalisation performance in complex data sets [12], [13].
Such a classifier seeks to find the optimal separating hyper-
plane amongst different classes, by focusing on those training
points (named support vectors) which are placed at the edge
of the underlying feature vectors and whose removal would
change the solution to be found [11]. The fact that SVM-
based classifiers typically involve a fair amount of computation
makes it even more significant to gain maximal efficiency from
the feature extraction process.

The rest of this paper is organised as follows. Section
II introduces the MNIST dataset of handwritten digits that
will be used as the illustrative problem for the subsequent
work presented herein. Section III outlines the background of
DeSTIN. Section IV details the proposed DESTINI approach,
including both linear interpolation and Newton interpolation
mechanisms, supported with worked examples. Section V
gives a brief overview of SVMs that are used to implement the
image classifiers for experimental evaluation. Section VI shows
the experimental results, supported by comparative studies,
demonstrating that the framework is highly promising. The
paper is concluded in Section VII, including a discussion about
further research.

II. MNIST DATASET OF HANDWRITTEN DIGITS

In this work, DESTINI is tested on a popular problem,
the MNIST data set of handwritten digits, which is widely
used for various machine learning algorithms. The dataset
consists of 60,000 training images and 10,000 test images.
Each hand-written digit was originally extracted from a larger
set made available by NIST [2], before being size-normalised
and centred in a fixed-size image (28×28 pixels). Each image
is labelled by one of 10 classes corresponding to the numbers
0-9. Fig. 1. shows a tiny part of the MNIST database, and
Fig. 2. presents a sample image of digit 4. The application
problem for this research is to develop an image classifier that
can detect and recognise different digital numbers from such
a given hand-written figure.

III. DEEP SPATIO-TEMPORAL INFERENCE NETWORK

A Deep Spatio-Temporal Inference Network (DeSTIN) [1]
offers an emerging framework for dealing with complex high-
dimensional data. Fig. 3. shows the generic architecture of
such a network. It contains a hierarchy of layers whereby
each layer consists of multiple instantiations of an identical
cortical circuit or node. Each node is tasked with observing

2014 International Joint Conference on Neural Networks (IJCNN)
July 6-11, 2014, Beijing, China

978-1-4799-1484-5/14/$31.00 ©2014 IEEE 1819

Fig. 1. Example images in MNIST database

Fig. 2. Example image of digit 4

and learning the sequences of data that are presented to it.
The lowest layer of the hierarchy processes the input data
(that may be temporally varying) to the network, such as
image pixels, and over time continuously constructs a belief
state that attempts to characterise the data sequences received.
The second layer, and all those above it receive as input the
belief states of the nodes at their respective lower layers, and
attempt to construct belief states that capture any interesting
regularities in the data. The resulting outputs can be fed to a
classifier, such as an SVM as extracted features for subsequent
processing (e.g., classification).

For completion the theoretical foundation of DeSTIN is
outlined below; further details can be found in [1], [8], [9]. Let
the current observation be denoted by o, the current sequence
by s, the new (updated) sequence by s

′
, and the parent node

sequence by s
′′

. Also, let b denote the belief state of s, b
′

denote a new (updated) belief state of s
′
, and c denote the

belief state of s
′′

, such that

b
′
= Pr(s

′
|o, b, c) = Pr(s

′
, o, b, c)

Pr(o, b, c)
(1)

or alternatively

b
′
=

Pr(o|s
′
, b, c)Pr(s

′ |b, c)Pr(b, c)

Pr(o|b, c)Pr(b, c)
(2)

Under the assumption that observations depend only on the
underlying true state, or Pr(o|s

′
, b, c) = Pr(o|s

′
), the above

can be further simplified such that

b
′
=

Pr(o|s
′
)Pr(s

′ |b, c)
Pr(o|b, c)

(3)

Fig. 3. Topological architecture of DeSTIN

where Pr(s
′ |b, c) =

∑
s∈S Pr(s

′ |s, c)b, yielding the belief
update rule

b
′
=

Pr(o|s
′
)
∑

s∈S Pr(s
′ |s, c)b∑

s′′∈S Pr(o|s′′)
∑

s∈S Pr(s
′′ |s, c)b

(4)

where S denotes the sequence set (i.e., the so-called belief
dimension) and the denominator term is a normalisation factor.

One interpretation of Eqn. (4) is that the belief state
inherently captures both spatial and temporal information. Note
that there are two core constructs in it to be learned: Pr(o|s

′
)

and Pr(s
′ |s, c). The former can be learned via online clustering

while the latter is learned by trial and error through adjusting
the parameters with each transition from s to s

′
given c.

To compute Pr(o|s
′
), an online clustering algorithm is

utilised with a finite set of centroids that each represent the
possible state s of a certain node. The cardinality of the
centroid set is a predefined parameter, which is preferably
larger than necessary to provide each node with sufficient
representational capacity in modelling the observed images.
Let n be the cardinality of the centroid set defined for the
top layer, then the output of DeSTIN can be represented by a
vector of features, say, Voriginal = (O1, · · · , On)

T that jointly
represent the current input of the network.

IV. DESTINI

For the present application, the input to a DeSTIN is an
image, represented as a high-dimensional signal:

1820

Mn×m =

a00 a01 · · · a0m
a10 a11 · · · a1m

...
...

. . .
...

an0 an1 · · · anm

 (5)

After propagating through a DeSTIN, the original image is
converted to a vector of features, which as indicated previously,
can be represented as

Voriginal = (O1, · · · , On)
T (6)

To perform effective image classification such a vector is
expected to have a significant dimensionality. However, this
means that the number of layers and/or the number of nodes
required in each layer is also significant and hence will incur
considerable computation. Thus, a trade off between subse-
quent classification effectiveness and computational effort in
converting the original image into the feature vector is needed.
This observation leads to the present development, by applying
simple interpolation methods to create additional elements in
an artificially expanded feature vector. That is, interpolation
can be applied to Voriginal in order to generate additional
vector elements:

Vadditional = (l1, · · · , lm)T (7)

resulting in a final vector of features that jointly represent the
original image:

VD = (O1, · · · , On, l1, · · · , lm)T (8)

A. Interpolation methods

1) Linear interpolation: The simplest possible interpola-
tion is to linearly set lk = ik (1 ≤ k ≤ m) with ik being
local sums Oj + Oj+1, 1 ≤ j ≤ n− 1, which is represented
as Oj+(j+1). On top of these local sums, the global sum
sum =

∑n
i=1 Oi can also be obtained in a straightforward

manner. In so doing, the dimensionality of the additional
feature vector can be increased to a number that is up to
n. Obviously, such linear addition-based interpolation involves
little computation.

Consider that if m = 2, which means that additional vec-
tors of each containing two elements, Vadditional = (i1, i2)

T

can be generated from the original vector produced by DeS-
TIN. In particular, i1 may be set to be one element of the
local sum set {O1+2, O2+3, · · · , O(n−1)+n} or the global sum
sum =

∑n
i=1 Oi. So there are n options, after choosing the

value of i1, the size of the optional set is reduced to n−1. For
i2, there are n−1 options. So if m = 2, there are C2

n different
types of possible combination of the elements contained within
the optional set to construct an additional feature vector.

In general, if m = j, j ∈ {2, 3, ..., n}, then j-dimensional
vectors can be generated, with ik, (1 ≤ k ≤ m) representing
the local sum O1+2, O2+3, · · · , O(j−1)+j , · · · , O(n−1)+n or the
global sum sum =

∑n
i=1 Oi. There are Cj

n different options of
possible combination to form such additional vectors. Thus, if
necessary, a total of C2

n+C3
n+ · · ·+Cn−1

n +Cn
n possible com-

binations can be generated when Voriginal is an n-dimensional
vector.

2) Newton interpolation: In addition to linear interpola-
tion (that is computationally least complex), another pos-
sible means to create artificial features is through Newton
interpolation. The basic idea is that given the values of
Voriginal = (O1, · · · , On)

T , a set of k + 1 data points P =
{(x0, y0), (x1, y1), . . . , (xk, yk)}, (k ≥ n) are created, such
that the values of {x0, x1, . . . , xk} are set to consecutively
integer values, and the elements of Voriginal are assigned
as the values to a subset of {y0, y1, . . . , yk}, with the other
(k + 1 − n) missing values of this set to be generated via
interpolation. To distinguish linearly interpolated features from
those produced by the Newton method, the latter are denoted
by Ij (1 ≤ j ≤ k + 1− n = m) below.

Formally, the Newton interpolation polynomial is of the
form:

N(x) =
k∑

j=0

ajnj (x) (9)

with the so-called Newton basis polynomials defined by

nj (x) =

j−1∏
i=0

(x− xi) (10)

and the coefficients by

aj = [y0, . . . , yj] (11)

where [y0, . . . , yj] denotes divided differences. Given k+1 data
points (x0, y0), (x1, y1), . . . , (xk, yk), the divided differences
are defined as:

[yv] = yv, v ∈ {0, . . . , k} (12)

[yv, . . . , yv+j] =
[yv+1, . . . , yv+j]− [yv, . . . , yv+j−1]

xv+j − xv
(13)

where v ∈ {0, . . . , k − j}, j ∈ {1, . . . , k}.

Now, consider the specific case of m = 1, where additional
1-dimensional vectors Vadditional = (I1)

T can be generated
from the original vectors produced by DeSTIN. In this case, the
dimensionality of data points is n+ 1. First, {x0, x1, . . . , xk}
are set to integer values consecutively; without losing general-
ity, these can be represented as {x0 = 1, x1 = 2, . . . , xk−1 =
n, xk = n + 1}. Then, O1 is set to becoming the value of
yi, i ∈ {0, 1, 2, ..., k}. So, there are n + 1 options for such
an assignment. After choosing the value of yi, the size of the
optional set is reduced to n. For O2, there are n options, and so
on. Thus, if m = 1, there are C1

n+1 different kinds of possible
combination of artificial features to form an additional feature
vector.

In general, similar to the linear interpolation case, if
m = j, j ∈ {2, 3, ..., n + 1}, then j-dimensional vectors can
be generated, with Ik (1 ≤ k ≤ m) representing the Newton
interpolated feature value. There are Cj

n+1 different options
of possible combination to construct the additional vector. To-
gether, if required, a total of C1

n+1+C2
n+1+· · ·+Cn

n+1+Cn+1
n+1

possible combinations can be generated when Voriginal is an
n-dimensional vector.

1821

B. The DESTINI algorithm

A given image for classification is first processed by a
DeSTIN of a low complexity. The resulting low-dimensional
feature vector of the (relatively simple) DeSTIN is then trans-
lated into a feature set of a higher dimensionality and hence
of potentially more discriminating power, through interpolation
that leads to Eqn. 8. Reflecting the above-introduced straight-
forward interpolation mechanisms, lj (j ∈ {1, 2, ...,m}) in
VD stands for ij in linear interpolation and for Ij in Newton
interpolation. The feature vectors so produced that consist
of the original DeSTIN outputs and interpolated additional
artificially created features are regarded as the returns of the
DESTINI system, thereby computationally integrating DeSTIN
and feature interpolation. From this, any of the generated VD

can be fed to an SVM (which acts as the image classifier,
see below) for the purpose of robust image classification.
This integrated use of DeSTIN and interpolation significantly
increases the feature vector dimensionality without incurring
much additional computation.

The working of DESTINI can be summarised as shown in
Algorithm 1. Given a set of training data, the algorithm starts
by assuming that the (initial) brief states b are set to default
values (line 1). As the main body of the algorithm, it then runs
an iteration loop (lines 2-6), in which an image is assigned to
a matrix Mn×m (line 2), and then for each layer, an update is
carried out to refine the brief state (line 3). Having updated all
the layers, set the original features Voriginal to be the output of
DeSTIN (line), and interpolate it to build VD (line 5). Repeat
the loop until no image remaining to be processed (line 6).
What is returned by this algorithm is the VD constructed from
a set of original features Mn×m (line 7).

Algorithm 1: The DESTINI Algorithm

(1) Initialise b, with all unclassified images to buffer
(2) Load an image to Mn×m
(3) For each layer of DeSTIN, update b to b

′

(4) Set Voriginal to the output of DeSTIN
(O1, · · · , On)

T

(5) Interpolate Voriginal to derive
VD = (O1, · · · , On, l1, · · · , lm)T

(6) If every image has been processed go to the next,
else go to (2)

(7) Return VD = (O1, · · · , On, l1, · · · , lm)T

The time complexity of DESTINI is mainly deter-
mined by two aspects: the time complexity of generat-
ing Voriginal = (O1, · · · , On)

T and that of computing
Vadditional = (i1, · · · , im)T , (2 ≤ m ≤ n). Consider that
the core calculation for Voriginal is the application of the
Euclidean distance metric, so the time complexity of com-
puting Voriginal is O(n2). If Vadditional is generated by
linear interpolation, the time complexity for Vadditional is
O(m). Together the time complexity of producing VD =
(O1, · · · , On, i1, · · · , im)T , (2 ≤ m ≤ n), is O(n2)+O(m). If
however, Vadditional is generated by Newton interpolation, the
time complexity for obtaining Vadditional is O(m2). Together
the time complexity of producing VD is O(n2) + O(m2).
Yet, to generate an original feature vector of the same dimen-
sionality, which is (m + n), the time complexity of DeSTIN

is O((m + n)2). Because 2 ≤ m ≤ n, given the same
dimensionality, it is clearly more efficient for DESTINI to
generate VD.

C. Generic worked examples

To illustrate the basic idea of DESTINI, consider the case
where the output of DeSTIN is a 3-dimensional vector:

Voriginal = (O1, O2, O3)
T (14)

Thus, the following additional interpolated vectors

Vadditional = (i1, · · · , im)T , 2 ≤ m ≤ 3 (15)

can be generated by linear interpolation, plus the global feature
sum =

∑3
i=1 Oi.

If m = 2, which means additional vectors of 2 dimensions
Vadditional = (i1, i2)

T can be generated from the original
vector. So ik, k ∈ {1, 2}, represents O1+2, O2+3 or sum =∑3

i=1 Oi, and there are C2
3 =3 different kinds of combination:

(i1 = O1+2, i2 = O2+3)
T (16)

(i1 = O1+2, i2 = sum)T (17)

(i1 = O2+3, i2 = sum)T (18)

Consequently, the combined VD may be either of the following
three:

(O1, O2, O3, O1+2, O2+3)
T (19)

(O1, O2, O3, O1+2, sum)T (20)

(O1, O2, O3, O2+3, sum)T (21)

If m = 3, then a 3-dimensional additional feature vector
consisting of the following can be produced: i1 = O1+2, i2 =
O2+3, i3 = sum. Thus, VD represents

VD = (O1, O2, O3, O1+2, O2+3, sum)T (22)

Together, out of the original 3-dimensional feature vector, C2
3+

C3
3 = 4 combinations can be created to act as the artificially

generated additional features.

Now, consider an example using Newton interpolation with
the same 3-dimensional original feature vector. In this case, the
following additional interpolated vectors can be generated:

Vadditional = (I1, · · · , Im)T , 1 ≤ m ≤ 4 (23)

If m = 1, which means that additional vectors of 1 dimen-
sion Vadditional = (I1)

T are required to be generated. Thus,
the set of data points is P = {(1, y0), (2, y1), (3, y2), (4, y3)},
which may be either of:

{(1, I1), (2, O1), (3, O2), (4, O3)} (24)

{(1, O1), (2, I1), (3, O2), (4, O3)} (25)

{(1, O1), (2, O2), (3, I1), (4, O3)} (26)

{(1, O1), (2, O2), (3, O3), (4, I1)} (27)

There are therefore C1
4 = 4 different kinds of combination.

If m = 2, additional vectors of 2 dimensions Vadditional =
(I1, I2)

T can be generated. The set of artificially created data

1822

points is P = {(1, y0), (2, y1), (3, y2), (4, y3), (5, y4)}, which
may be either of:

{(1, I1), (2, O1), (3, I2), (4, O2), (5, O3)} (28)

{(1, I1), (2, O1), (3, O2), (4, I2), (5, O3)} (29)

{(1, I1), (2, O1), (3, O2), (4, O3), (5, I2)} (30)

{(1, O1), (2, I1), (3, O2), (4, I2), (5, O3)} (31)

{(1, O1), (2, I1), (3, O2), (4, O3), (5, I2)} (32)

{(1, O1), (2, O2), (3, I1), (4, O3), (5, I2)} (33)

forming the C2
4 = 6 different kinds of combination.

If m = 3, additional feature vectors of 3 dimensions
Vadditional = (I1, I2, I3)

T can be created. The set of data
points is P = {(1, y0), (2, y1), (3, y2), (4, y3), (5, y4), (6, y5)},
which may be either of the C3

4 =4 different kinds of combi-
nation:

{(1, I1), (2, O1), (3, I2), (4, O2), (5, I3), (6, O3)} (34)

{(1, I1), (2, O1), (3, I2), (4, O2), (5, O3), (6, I3)} (35)

{(1, I1), (2, O1), (3, O2), (4, I2), (5, O3), (6, I3)} (36)

{(1, O1), (2, I1), (3, O2), (4, I2), (5, O3), (6, I3)} (37)

If m = 4, which means that a 4-dimensional addi-
tional vector Vadditional = (I1, I2, I3, I4)

T can be gen-
erated, with the set of artificial data points being P =
{(1, y0), (2, y1), (3, y2), (4, y3), (5, y4), (6, y5), (7, y6)}:

{(1, I1), (2, O1), (3, I2), (4, O2), (5, I3), (6, O3), (7, I4)}
(38)

Altogether, C1
4 +C2

4 +C3
4 +C4

4 = 15 combinations can be
produced from the original 3-dimensional feature vector.

V. SUPPORT VECTOR MACHINES

As indicated previously, Support Vector Machines (SVMs)
[12] are herein used to implement the task of image classifi-
cation. SVMs work by mapping input feature vectors onto the
underlying image class labels. Such a classifier seeks to find
the optimal separating hyperplane amongst different classes,
by focusing on those training points (named support vectors)
which are placed at the edge of the underlying feature vectors
and whose removal will change the solution to be found.

More formally, SVMs construct a hyperplane in a space of
a dimensionality higher than that of the original, which is then
used for classification (or for other tasks such as regression
and prediction). The underlying intuition is that by mapping
the original data space onto a much higher-dimensional space,
the class separation between data points will become easier in
that space. SVMs use a specific mapping such that the cross
products of data points in the larger space are defined in terms
of a kernel function [14] which is selected to suit the given
problem. In so doing, the cross products may be computed in
terms of the variables in the original space, thereby minimising
computational effort. In particular, a hyperplane in the higher
dimensional space is defined as the set of points whose inner
product with any vector in that space is constant. A good
hyperplane is learned over a training process such that the

resulting hyperplane has the largest distance to the nearest
training data points of any given class. This is in order to
increase the discriminating power of the trained classifier.

In the following, the Radial Basis function (RBF) kernel
is adopted to implement the SVM-based classifiers, and the
sequential minimal optimisation algorithm of [15] is used to
train the SVMs. Note that in implementation, as the default
settings of SVMs are taken from the LIBSVM [16], no hyper
parameters of individual SVMs are further tuned in order
to give equal footings in results comparison. Detailed SVM
learning mechanism is beyond the scope of this paper, but can
be found in the literature (e.g., [12], [17]).

VI. EXPERIMENTAL RESULTS

The topology of the underlying DeSTIN chosen to perform
this experimental investigation consists of 4 layers, with the
first layer hosting 8×8 nodes, each receiving a non-overlapping
4×4 patch of a given image that is vectorised into a 16 element
input. At each subsequent layer, there are one quarter of the
number of the nodes within the preceding layer, such that layer
two hosts 4× 4 nodes, layer three 2× 2 nodes, and layer four
just one node as depicted in Fig. 3.

The task of the experiments is to classify images into one
of the 10 classes corresponding to the digits 0-9. As indicated
previously, the MNIST database [2] which contains 60,000
training images and 10,000 testing images is used to facilitate
the experimental comparison below. The dimensionalities of
the belief states for layers one, two and three are set to 25, 16
and 12, respectively. In order to give the top layer sufficient
representational capacity, the dimensionality of its centroid set
is ranged from 3 to 6. Thus, the output of the DeSTIN can be
represented as Voriginal = (O1, · · · , On)

T , 3 ≤ n ≤ 6. Note
that as the layer index increases, the information compression
rate increases, as reflected by the corresponding reduced di-
mensionality of the belief space.

A. Use of DESTINI features with linear interpolation

TABLE I. ACCURACY USING ADDITIONAL INTERPOLATED FEATURES
BASED ON A 3-DIMENSIONAL ORIGINAL VECTOR

Feature list Accuracy

O1, O2, O3 86.73%
O1, O2, O3, O1+2, O2+3 87.96%
O1, O2, O3, O1+2, sum 88.61%
O1, O2, O3, O2+3, sum 88.80%

O1, O2, O3, O1+2, O2+3, sum 88.92%

This experimentation is to investigate the effect of util-
ising linear interpolation to enrich the representation of
features extracted by the given DeSTIN. It first focuses
on the use of 3-dimensional DeSTIN outputs in order to
minimise the underlying computational complexity required:
Voriginal = (O1, O2, O3)

T . Additional vectors of 2 dimensions
Vadditional = (i1, i2)

T are generated from the original vec-
tors, and there are 3 different kinds of possible combination:
Vadditional = (i1 = O1+2, i2 = O2+3)

T , Vadditional = (i1 =
O1+2, i2 = sum)T , and Vadditional = (i1 = O2+3, i2 =
sum)T , where sum =

∑3
i=1 Oi. A further interpolated vector

of 3 dimensions Vadditional = (i1 = O1+2, i2 = O2+3, i3 =

1823

TABLE II. ACCURACY USING LINEAR INTERPOLATION BASED ON DIFFERENT DIMENSIONAL ORIGINAL VECTORS

Feature list Combination Exception Best Worst Average Original

O1, O2, O3, i1, . . . , im(m = 2, 3) 4 0 88.92% 87.96% 88.57% 86.73%
O1, O2, O3, O4, i1, . . . , im(m = 2, 3, 4) 11 0 97.56% 97.03% 97.29% 96.52%

O1, O2, O3, O4, O5, i1, . . . , im(m = 2, 3, 4, 5) 26 1 98.56% 98.20% 98.41% 98.22%
O1, O2, O3, O4, O5, O6, i1, . . . , im(m = 2, 3, 4, 5, 6) 57 1 98.73% 98.22% 98.50% 98.25%

sum)T can also be generated. Table I lists the correct clas-
sification rates produced by the resulting SVM classifiers,
respectively using different vectors composed by the union of
the original features and certain interpolated features. Clearly,
the classification accuracy of using the DESTINI features is
greater than 86.73%, the accuracy obtained using the original
features alone.

Experimentation has also been carried out for cases where
more than three original DeSTIN features are used. Table II
lists the correct classification rates based on the DeSTIN out-
puts of a different dimensionality. It presents six performance
indicators to show the accuracy. When the output of the under-
lying DeSTIN is a 4-dimensional vector, the best classification
accuracy of using the DESTINI features is 97.56%, while the
worst is 97.03%, with the average accuracy being 97.29%,
which is significantly higher than that of using four original
features (96.52%). Also, the classification accuracy of using
the DESTINI features is generally higher than that (98.22%) of
using 5-dimensional original DeSTIN features, with only one
exception, where the Vadditional = (i1 = O3+4, i2 = O4+5)

T .
Even on this occasion, the accuracy is 98.20%, a mere 0.02%
worse off. The classification accuracy of using the DESTINI
features is obviously better than that (98.25%) of using the
original 6 dimensional features, again with only one exception,
where the Vadditional = (i1 = O4+5, i2 = O5+6)

T involving
a tiny difference in value (0.03%).

Overall, it can be seen from the above results that the
classification rates using the DESTINI features are higher than
those achievable using the original DeSTIN features alone.
This shows that the classification accuracy is improved with
only very minor extra computation overheads, without the need
of directly generating a larger number of DeSTIN features
which would otherwise incur substantially more computation.

B. Use of DESTINI features with Newton interpolation

The second experimentation reported here deals with the
use of applying Newton interpolation to the DeSTIN outputs.
The first subset of experiments involves a 4-dimensional orig-
inal feature vector Voriginal = (O1, O2, O3, O4)

T . Additional
vectors of one dimension Vadditional = (I1)

T are artificially
created using the original feature vector. There are 5 different
kinds of such artificial vector. Additional vectors of 2 dimen-
sions Vadditional = (I1, I2)

T are also generated and in this
case, there are Cn

n+2 = C4
6 possible combinations with the

original. Of course, many further interpolated vectors can be
generated which are shown in Table III. The best classification
accuracy of using the DESTINI features is 98.65%, and the
average accuracy is 98.03%. There is only one exception,
where the use of VD = (O1, I1, O2, I2, O3, I3, O4)

T fails to
beat the use of just the original DeSTIN features, though the
difference between 96.43% and 96.52% is rather small.

The second subset of experiments investigates the correct
classification rates produced by the SVM classifiers through
the use of different dimensional DeSTIN outputs. The results
are listed in Table IV. When the output of the given DeSTIN is
a 3-dimensional vector, the best classification accuracy using
the DESTINI features is 95.62%, while the average reaches
90.96%. There are 3 exceptions (out of 15 combinations),
which are VD = (O1, I1, O2, O3)

T , VD = (O1, O2, I1, O3)
T ,

and VD = (O1, I1, O2, I2, O3)
T where the use of the DES-

TINI features leads to a lower accuracy than that (86.73%)
obtainable by the use of the original DeSTIN features (with
the corresponding accuracy rates being 86.47%, 85.97% and
85.1%).

The performance of using the DESTINI features can
be further improved when the dimensionality of the orig-
inal DeSTIN feature vectors is slightly increased. For ex-
ample, with 5-dimensional DeSTIN feature vectors, the ac-
curacy rate is generally higher than that (98.22%) of us-
ing just the original, with only two exceptions over 63
cases (where VD = (O1, O2, I1, O3, I2, O4, O5)

T and VD =
(O1, O2, I1, O3, I2, O4, I3, O5)

T) that lead to slightly lower
rates (98.09% and 98.02%). However, the average accuracy
is 98.68%. Also, the classification accuracy of using the
DESTINI features is obviously better than that (98.25%)
when using 6-dimensional feature vectors, with only one
exception (of VD = (O1, O2, O3, I1, O4, O5, O6)

T). Even on
this exceptional occasion, the accuracy is 98.14%, a mere
degradation in performance (0.11%). Overall, it is clear that
the classification rates attainable by the use of the DESTINI
features are significantly higher than those of using the original
features alone.

C. Comparison between linear and Newton interpolations

Clearly, both interpolation methods work well with DeS-
TIN. The employment of linear interpolation helps improve the
accuracy without causing much computation, while Newton in-
terpolation performs even better with a little extra computation.
To support a more direct comparison between the two versions
of DESTINI, Figs. 4, 5, 6 and 7 summarise the accuracy
rates gained using Newton interpolation and those using linear
interpolation, for cases where the original feature set utilised
is of a dimensionality of 3, 4, 5 and 6, respectively.

The general trends across all cases are rather similar.
Although the worst result obtained using Newton interpolation
is worse than that of using linear interpolation, it is known
from the previous discussions that only for few situations,
using either linear or Newton interpolation, does DESTINI
show such under-performed behaviour. For a great majority
of cases, Newton interpolation-based DESTINI systems out-
perform linear interpolation-based ones. In particular, consider
the case of having a 3-dimensional original feature vector as an
example. The best performance achieved by the use of linear

1824

TABLE III. ACCURACY USING NEWTON INTERPOLATED FEATURES BASED ON A 4-DIMENSIONAL ORIGINAL VECTOR

Feature list Accuracy Feature list Accuracy

I1, O1, O2, O3, O4 98.39% I1, O1, I2, O2, I3, O3, O4 98.10%
O1, I1, O2, O3, O4 97.18% I1, O1, I2, O2, O3, I3, O4 98.28%
O1, O2, I1, O3, O4 96.65% I1, O1, I2, O2, O3, O4, I3 98.58%
O1, O2, O3, I1, O4 97.34% I1, O1, O2, I2, O3, I3, O4 98.06%
O1, O2, O3, O4, I1 98.37% I1, O1, O2, I2, O3, O4, I3 98.58%

I1, O1, I2, O2, O3, O4 98.62% I1, O1, O2, O3, I2, O4, I3 98.60%
I1, O1, O2, I2, O3, O4 98.16% O1, I1, O2, I2, O3, I3, O4 96.43%
I1, O1, O2, O3, I2, O4 98.21% O1, I1, O2, I2, O3, O4, I3 98.01%
I1, O1, O2, O3, O4, I2 98.45% O1, I1, O2, O3, I2, O4, I3 98.59%
O1, I1, O2, I1, O3, O4 96.86% O1, O2, I1, O3, I2, O4, I3 98.18%
O1, I1, O2, O3, I2, O4 97.24% I1, O1, I2, O2, I3, O3, I4, O4 97.92%
O1, I1, O2, O3, O4, I2 98.59% I1, O1, I2, O2, I3, O3, O4, I4 98.65%
O1, O2, I1, O3, I2, O4 96.93% I1, O1, I2, O2, O3, I3, O4, I4 98.65%
O1, O2, I1, O3, O4, I2 98.28% I1, O1, O2, I2, O3, I3, O4, I4 98.45%
O1, O2, O3, I1, O4, I2 98.49% O1, I1, O2, I2, O3, I3, O4, I4 97.68%

I1, O1, I2, O2, I3, O3, I4, O4, I5 98.43% O1, O2, O3, O4 96.52%

TABLE IV. ACCURACY USING NEWTON INTERPOLATION BASED ON DIFFERENT DIMENSIONAL ORIGINAL VECTORS

Feature list Combination Exception Best Worst Average Original

O1, O2, O3, I1, . . . , Im(m = 1, 2, 3, 4) 15 3 95.62% 85.10% 90.96% 86.73%
O1, O2, O3, O4, I1, . . . , Im(m = 1, 2, 3, 4, 5) 31 1 98.65% 96.43% 98.03% 96.52%

O1, O2, O3, O4, O5, I1, . . . , Im(m = 1, 2, 3, 4, 5, 6) 63 2 98.98% 98.02% 98.68% 98.22%
O1, O2, O3, O4, O5, O6, I1, . . . , Im(m = 1, 2, 3, 4, 5, 6, 7) 127 1 98.92% 98.14% 98.65% 98.25%

interpolation is 88.92% whilst its counterpart using Newton
interpolation is 95.62%. Also, the average accuracy by using
Newton interpolation is 90.96% which is also higher than
88.57% that is achievable using linear interpolation. Of course,
as stated earlier, Newton interpolation does incur slightly more
computation. Nevertheless, the cost is still substantially less
than that required to generate and use vectors of original
features of a dimensionality which is equal to that of the
artificially expanded feature sets.

Fig. 4. Accuracy based on a 3-dimensional original vector

VII. CONCLUSION

This paper has presented a novel deep learning architecture
which draws upon the fundamentals of DeSTIN, supported by

Fig. 5. Accuracy based on a 4-dimensional original vector

feature interpolation. The resulting feature extraction mech-
anism is well-suited for image classification which is im-
plemented using popular SVMs. This work has been tested
using the MNIST dataset. Systematic experimental results
demonstrate that the approach developed in this research is
capable of efficiently extracting features suitable for input
to SVM-based classifiers, generally delivering significantly
improved performance in terms of classification accuracy.

While promising, the work also gives rise to a number
of open issues. First of all, it is interesting to investigate
whether either of the two simple interpolation mechanisms
will work when different original feature extraction methods
are used. Also, a combined application of both linear and
Newton interpolation may help further enrich the feature space.

1825

Fig. 6. Accuracy based on a 5-dimensional original vector

Fig. 7. Accuracy based on a 6-dimensional original vector

In addition, it is very interesting to apply the work to more
complex application domains (e.g., to Mars images which
vary significantly in terms of intensity, scale and rotation, and
are blurred with measurement and transmission noise [11]).
Furthermore, the implemented system performs interpolation
on given features; it may be worth exploring the implication
of interpolating classification rules themselves too, using ad-
vanced interpolation techniques such as those reported in [18],
[19]. Finally, it is worth exploring whether imposing a certain
selection of interpolated features may further reduce the overall
computation cost for classification [20], [21].

REFERENCES

[1] I. Arel, D. Rose, and R. Coop, “Destin: A scalable deep learning
architecture with application to high-dimensional robust pattern recog-
nition,” in Proc. AAAI Workshop on Biologically Inspired Cognitive
Architectures, 2009, pp. 1150–1157.

[2] Y. LeCun and C. Cortes, “The mnist database of handwritten digits,”
1998.

[3] Y. Bengio, “Learning deep architectures for ai,” Foundations and
Trends R© in Machine Learning, vol. 2, no. 1, pp. 1–127, 2009.

[4] J.-C. Chappelier and A. Grumbach, “Rst: a connectionist architecture
to deal with spatiotemporal relationships,” Neural computation, vol. 10,
no. 4, pp. 883–902, 1998.

[5] R. J. Douglas and K. A. Martin, “Neuronal circuits of the neocortex,”
Annu. Rev. Neurosci., vol. 27, pp. 419–451, 2004.

[6] D. J. Felleman and D. C. Van Essen, “Distributed hierarchical process-
ing in the primate cerebral cortex,” Cerebral cortex, vol. 1, no. 1, pp.
1–47, 1991.

[7] A. Rockel, R. W. Hiorns, and T. P. Powell, “The basic uniformity in
structure of the neocortex,” Brain, vol. 103, no. 2, pp. 221–244, 1980.

[8] I. Arel, D. Rose, and T. Karnowski, “A deep learning architecture
comprising homogeneous cortical circuits for scalable spatiotemporal
pattern inference,” in NIPS 2009 Workshop on Deep Learning for
Speech Recognition and Related Applications, 2009.

[9] S. Young, I. Arel, T. P. Karnowski, and D. Rose, “A fast and stable
incremental clustering algorithm,” in Information Technology: New
Generations (ITNG), 2010 Seventh International Conference on. IEEE,
2010, pp. 204–209.

[10] K. Huang and S. Aviyente, “Wavelet feature selection for image
classification,” Image Processing, IEEE Transactions on, vol. 17, no. 9,
pp. 1709–1720, 2008.

[11] C. Shang and D. Barnes, “Fuzzy-rough feature selection aided support
vector machines for mars image classification,” Computer Vision and
Image Understanding, vol. 117, no. 3, pp. 202–213, 2013.

[12] V. N. Vapnik, “Statistical learning theory,” 1998.
[13] O. Chapelle, P. Haffner, and V. N. Vapnik, “Support vector machines for

histogram-based image classification,” Neural Networks, IEEE Trans-
actions on, vol. 10, no. 5, pp. 1055–1064, 1999.

[14] J. C. Platt, 12 Fast Training of Support Vector Machines using Sequen-
tial Minimal Optimization. MIT Press, 1999.

[15] ——, “Sequential minimal optimization: A fast algorithm for training
support vector machines,” in ADVANCES IN KERNEL METHODS-
SUPPORT VECTOR LEARNING, 1998.

[16] C.-C. Chang and C.-J. Lin, “LIBSVM: A library for support
vector machines,” ACM Transactions on Intelligent Systems and
Technology, vol. 2, pp. 27:1–27:27, 2011, software available at
http://www.csie.ntu.edu.tw/ cjlin/libsvm.

[17] N. Cristianini and J. Shawe-Taylor, An introduction to support vector
machines and other kernel-based learning methods. Cambridge
university press, 2000.

[18] Z. Huang and Q. Shen, “Fuzzy interpolation and extrapolation: A
practical approach,” Fuzzy Systems, IEEE Transactions on, vol. 16,
no. 1, pp. 13–28, 2008.

[19] L. Yang and Q. Shen, “Adaptive fuzzy interpolation,” IEEE Trans. Fuzzy
Syst., vol. 19, no. 6, pp. 1107–1126, 2011.

[20] R. Diao and Q. Shen, “Feature selection with harmony search,” IEEE
Trans. Syst., Man, Cybern. B, vol. 42, no. 6, pp. 1509–1523, 2012.

[21] R. Jensen and Q. Shen, “New approaches to fuzzy-rough feature
selection,” Fuzzy Systems, IEEE Transactions on, vol. 17, no. 4, pp.
824–838, 2009.

1826

