

Abstract— Neuromorphic computing systems refer to the
computing architecture inspired by the working mechanism of
human brains. The rapidly reducing cost and increasing per-
formance of state-of-the-art computing hardware allows
large-scale implementation of machine intelligence models with
neuromorphic architectures and opens the opportunity for new
applications. One such computing hardware is Intel Xeon Phi
coprocessor, which delivers over a TeraFLOP of computing
power with 61 integrated processing cores. How to efficiently
harness such computing power to achieve real time decision and
cognition is one of the key design considerations. This paper
presents an optimized implementation of Brain-State-in-a-Box
(BSB) neural network model on the Xeon Phi coprocessor for
pattern matching in the context of intelligent text recognition of
noisy document images. From a scalability standpoint on a High
Performance Computing (HPC) platform we show that efficient
workload partitioning and resource management can double the
performance of this many-core architecture for neuromorphic
applications.

I. INTRODUCTION
Cognitive computing is an emerging field made possible

due to the advancement in High Performance Computing
(HPC) domain. There is a special interest in cognitive com-
puting because the challenges which are being faced today
have no definite way of deriving a solution and hence cannot
be coded in the traditional style. There are many examples
which fall under this category, including natural language
understanding, text image recognition, autonomous un-
manned vehicle controls, user preference suggestion, etc.

Neuromorphic computing systems refer to the computing
architecture inspired by the working mechanism and massive
parallel structure of human brains. A neuromorphic informa-
tion processing model is presented in [1]. The model consists
of a simple but massive parallel pattern matching layer that
generates fuzzy results retaining rich information (sometimes
referred as ambiguity) and a powerful information inference
layer that removes the ambiguity by statistical inference. The
event-driven computation in neuromorphic engines loosely
represents the integrate-and-fire behavior of neurons, leading
to high computation efficiency. The hierarchical architecture
mimics the primary sensory cortex and association cortex in
brain’s sensory processing area [2][3][4]. The model is ap-
plied for intelligent text recognition in document image
processing, where meaningful sentences are extracted from

camera captured documents and road signs. These are
non-trivial problems as the images are captured with pers-
pective distortion, angular distortion, warping or other gen-
eral noises. Reliable performance is achieved even when the
system is exposed to new experiences. As their experience
gets richer and richer for every new exposure, their perfor-
mance improves.

The state-of-the-art multi-core computer architecture
enables large-scale implementation of neuromorphic models.
One of such computer system is Intel’s Xeon Phi coprocessor,
where more than 61 X86 compatible cores with 4-way mul-
ti-threading capability are integrated on a single die. Each
core has its own L1 and L2 cache and can access coherent L2
caches of any other core [5]. This architecture delivers over a
TeraFLOP computing bandwidth. How to harness such
computing power to achieve real-time cognition and decision
is an urgent research problem.

In this work, we accelerate the performance of the neu-
romorphic model for Intelligent Text Recognition System
(ITRS) using the hybrid Xeon - Xeon Phi coprocessor setup.
According to Amdahl’s law, the most effort in performance
optimization should be spent on the most common operation,
which is identified to be pattern matching in ITRS. Pattern
matching forms the bottom layer of ITRS. It is implemented
using an auto-associative memory model called
Brain-State-in-a-Box (BSB). BSB is a simple nonlinear,
energy minimizing neural network [6][7][8], whose conver-
gence speed is proportional to the similarity between the input
image and the stored pattern. The bottom layer of the ITRS
consists of large number of independent BSB models, which
are ideal candidates for parallel implementation.

A scalable platform capable of handling images with dif-
ferent resolutions for higher fidelity pattern matching is de-
veloped on Intel’s Xeon Phi coprocessor. One of the reasons
to select Xeon Phi over GPGPU is that the applications can
run natively on Xeon Phi compared to the offload model of
GPGPU. This is particularly an important capability as it
frees up the CPU to handle more control intensive functions
of ITRS [1].

The rest of the paper is organized as follows: Section 2
provides insight into related work, section 3 provides a
background of the entire system, section 4 provides the im-
plementation setup details, section 5 presents the optimiza-
tion work, section 6 presents the results, section 7 has per-
formance analysis of the implementation and finally section 8
gives the conclusions and future works.

II. RELATED WORK
The first stage of a text recognition system is image

Accelerating Pattern Matching in Neuromorphic Text Recognition
System Using Intel Xeon Phi Coprocessor
Khadeer Ahmed, Qinru Qiu, Parth Malani, Mangesh Tamhankar

Khadeer Ahmed, Qinru Qiu are with Syracuse University, Syracuse NY

13244 USA e-mail: {khahmed, qiqiu}@syr.edu.
Parth Malani, Mangesh Tamhankar are with Intel Corporation, 2200

Mission College Blvd. Santa Clara, CA 95054 USA e-mail: {parth.malani,
mangesh.tamhankar}@intel.com

2014 International Joint Conference on Neural Networks (IJCNN)
July 6-11, 2014, Beijing, China

978-1-4799-1484-5/14/$31.00 ©2014 IEEE 4272

processing, which feeds the Optical Chara
(OCR) modules. A wide variety of OCRs
recognition were developed over the year
heavy focus on improving their accuracy b
ious image processing and classifying tech
neural network based learning techniques
ITRS, the intelligence for recognition and er
been pushed to upper layers, where word a
texts are considered. Hence it affords a s
tern-matching layer, which generates more
matches for a given pattern. This is also w
optimization rather than accuracy optimizat
this work.

There are prior attempts to implement the
layer of ITRS on IBM Cell processors [13][1
limited size of on-chip memory of Cell proc
from processing higher resolution images in
Attempts have been made to have a hardw
processing these BSB neural networks
crossbar arrays [15]. However, no real ha
implemented yet. GPGPU based optimiza
implemented for several similar neural
[16][17][18]. They need special attention f
move computation data from main memory
Furthermore, combining CUDA with Mes
terface (MPI) is not an ideal option [19].

Efficient use of Single Instruction Multi
architecture is the key to achieving high p
Xeon Phi coprocessor. Several SIMD ve
niques are proposed in [20]. A comprehens
timization for the coprocessor is given by [2
optimizing a data intensive application run
the coprocessor is presented in [23]. Its auth
reduce inter-thread dependency to minimiz
overhead. Efficient parallelization of batch
algorithm for the coprocessor and other H
proposed in [24]. It uses MPI to perform co
reduction operations at the same time.

III. BACKGROUND
In this section, the computation model

chitecture of ITRS are presented, followed
duction of hardware architecture of Xeon Ph

A. Brain-state-in-a-box model
BSB model is a simple, auto-associative,

minimizing neural network [6][7][8]. A com
of the BSB model is to recognize a patter
noisy input. It can also be used as a patter
employs a smooth nearness measure and g
decision boundaries.

There are two main operations in a BSB
and Recall. Here the focus is on BSB reca
mathematical model of a BSB recall o
represented in the following form:

ݐሺݔ 1ሻ ൌ ܵሺߙ כ ܣ כ ሻݐሺݔ ߣ כ ሻݐሺݔ ߛ

Where:

acter Recognition
s for printed text
rs [9]. There is a
y employing var-

hniques including
 [10][11][12]. In

rror correction has
and sentence con-
simple fuzzy pat-
e than one likely
why performance
tion is focused in

e pattern matching
14]. However, the
cessor prevents us
n reasonable time.
ware solution for
using memristor

ardware has been
ations have been
network models

from the CPU to
to GPU memory.

ssage Passing In-

iple Data (SIMD)
performance with
ectorization tech-
sive guide on op-
21][22]. Work on
nning natively on
hors have tried to
ze thread syncing
h pattern training
HPC platforms is
mmunication and

and software ar-
d by a brief intro-
hi coprocessor.

nonlinear, energy
mmon application
rn from the given
rn recognizer that
generates smooth

B model, Training
all operation. The
operation can be

כ ሺ0ሻሻ (1)ݔ

is an N dimensional real v ݔ •
is an NxN connection ma ܣ •
ܣ • כ ሻ is a matrix-vectorݐሺ ݔ
is a scalar constant feedb ߙ •
is an inhibition decay con ߣ •
is a nonzero constant if th ߛ •

the input stimulation
• ܵ ሺሻ is the “squash” functio

 ܵሺݕሻ ൌ ቐ 1 ݂݅ ݕ ݕ ݂݅ െ1 െ1ݕ ݂݅ ݕ ൏

Note that in our implementation, wߛ to be 0.0. But they can be easily
Given any input pattern ݔሺ0ሻ, the
equation (1) iteratively to reach con
verges when all entries of ݔሺݐ 1ሻ a

The BSB model is selected in th
First, it is simple to operate compared
network models [4]. Although it has
can be corrected by the upper layer
Second, its convergence roughly in
tween the input and the stored patter
that the average convergence time
creases as the input goes further away
property enables the racing behavior
which is discussed in confabulation

B. Cogent confabulation
Cogent confabulation is a con

computing model. It captures correla
features) at the symbolic level and st
knowledge base [1]. Given an obser
tion with high relevancy will be reca
base.

Based on the theory, the cognit
consists of two steps: learning and re
knowledge links are established and
are co-activated. During recall, a ne
from other activated neurons. A “w
takes place within each lexicon. On
icon) that represent the winning sym
the winner neurons will activate
knowledge links. At the same time, t
win in this procedure will be suppre

Fig. 1 shows an example of lexic
Fig. 1. A simple example of lexicons, sym

vector
atrix
r multiplication operation
back factor
nstant
here is a need to maintain

on defined as follows: ݕ1 1൏ 1 (2)

we choose ߣ to be 1.0 and
changed to other values.
recall process executes

nvergence. A recall con-
are either “1.0” or “-1.0”.

he ITRS for two reasons.
d to other complex neural
lower accuracy, the error

r information processing.
dicates the similarity be-
rn. It is pointed out by [4]
e of the BSB model in-
y from the attractor. Such
r in character recognition,
sub section.

nnection-based cognitive
ations between objects (or
tores this information as a
rvation, familiar informa-
alled from the knowledge

tive information process
ecall. During learning, the
d strengthened as symbols
euron receives excitations
winner-takes-all” strategy
nly the neurons (in a lex-
mbol will be activated and

other neurons through
those neurons that did not
ssed.

ons, symbols, and know-

mbols, and knowledge links

4273

ledge links. The three columns in Fig. 1 represent three lex-
icons for the concept of shape, object, and color with each box
representing a neuron. Different combinations of neurons
represent different symbols. For example, the pink neurons in
lexicon I represent the cylinder shape, the orange and yellow
neurons in lexicon II represent a fire extinguisher and a cup,
while the red neurons in lexicon III represent the red color.
When a cylinder shaped object is perceived, the neurons that
represent the concepts “fire extinguisher” and “cup” will be
excited. However, if a cylinder shape and a red color are both
perceived, the neurons associated with “fire extinguisher”
receive more excitation and become activated while the
neurons associated with the concept “cup” will be suppressed.
At the same time, the neurons associated with “fire extin-
guisher” will further excite the neurons associated with its
corresponding shape and color and eventually make those
symbols stand out from other symbols in lexicons I and III.

C. Software Architecture of ITRS
ITRS is developed to extract meaningful sentences from

document images. It has two information processing layers, a
BSB model based pattern-matching layer and a confabulation
model based statistical inference layer. The salient feature of
ITRS is that it provides contextually correct sentence recon-
struction even if there are illegible characters or words in the
document image. This is enabled by a trained knowledge
base, which captures the statistical information among
building components in English language, from letters and
words to phrases and part-of-speech tagging.

The information processing in ITRS has several stages,

which can be arranged as a pipeline shown in Fig. 2. After
simple image processing which corrects image distortion,
skew and warping, the character images are segmented from
document image and forwarded to BSB, where fuzzy pattern
matching is performed. The pattern matching results will be
processed by word level and sentence confabulation for in-
ference based error correction and association.

A working example of ITRS is shown in Fig. 3. Given a

noisy document image, the BSB provides best effort pattern
matching for each character images. Each question mark in
the figure represents all 26 possible alphabets. The word
confabulation layer forms all possible words based on these
matching alphabets and the sentence confabulation layer
selects the words that forms the most meaningful sentence. It
is easy to see that, for each sentence, one sentence confabu-
lation task and multiple word confabulation tasks must be
executed, along with even more number of BSB pattern
matching tasks. Information is passed across layers. The
computation tasks in the same layer are independent to each
other and hence can be implemented in parallel.

The pattern-matching layer (BSB) is trained on clean font
image. The word level confabulation is trained by reading a
dictionary. And the size of word level knowledge base is
about 200 MB. The sentence level knowledge base is trained
by reading multiple classic literatures. The size of this
knowledge base is 6 - 12 GB.

D. Intel Xeon Phi Coprocessor
Intel Xeon Phi coprocessor is based on Intel Many Inte-

grated Core (MIC) Architecture. It has more than 50 modified
x86 cores integrated on a single die [5]. The X86 compatible
architecture allows many existing software to be supported
with very few modifications, while the multi-core architec-
ture provides huge performance boost. The 7110P Intel Xeon
Phi coprocessor used in our experiments has 61 cores with
8GB RAM, each core runs at 1.1GHz and supports 4 hard-
ware threads.

The cores on Intel Xeon Phi coprocessor are simplified
in-order execution cores, hence they are small and power
efficient. Huge performance boost is obtained by exploiting
the massive parallelism and by hiding memory latency. This
architecture is a very good example of MIMD (multiple in-
struction, multiple data). It supports a total of 244 threads
running independent of each other. Thus fine grained paral-
lelism and good load balancing can be achieved.

There is a 512-bit wide vector processing unit (VPU) on
every core providing Single Instruction Multiple Data
(SIMD) capable instruction set. The VPU can execute 16
single-precision or 8 double-precision operations per cycle. It
also supports Fused Multiply-Add (FMA) instructions and
hence can execute 32 SP or 16 DP floating-point operations
per cycle. Vectorization can be assisted by Intel Compiler or
by manually inserting intrinsics and language extensions.

Every core on Xeon Phi has a local L1 and L2 cache. The
L2 cache is coherent and its capacity is 512KB. Cache co-
herence is achieved through a ring interconnect which is 64
bytes wide. Hence each core has the access to a total of 30MB
shared L2 cache.

IV. IMPLEMENTATION FLOW
The hardware system used for this project has a Xeon

based host processor and the 7110P Xeon Phi coprocessor.
We started with a sequential implementation of the ITRS
software, followed by 3 development phases. The first phase
is to restructure the ITRS software to support multiple parallel
BSB threads, and thus to parallelize the pattern matching
layer. We first implemented the BSB threads and the rest of

Fig. 3. ITRS cognitive model

BSB
Recognition

Word Level
Confabulation

Sentence Level
Confabulation

…but b?gi??in? to p?r?ei?e t??t
?he ?andcuffs ?ere n?? f?r…

but b?gi??in? to p?r?ei?e t??t ?he ?andcuffs ?ere n?? f?r

but besieging to proceite twit the handcuffs fere nut fur

believing perceive that she sere nun for

beginning parseile text were not fir

banishing test here nod far

…. …. …. ….

…but beginning to perceive that
the handcuffs were not for…

…but beginning to perceive that
the handcuffs were not for…

Association (word level)

Knowledge
Base (KB)

Knowledge
Base (KB)

Association (sentence level)

Fig. 2. ITRS Pipeline

Word
Confabulation

Sentence
Confabulation

Image
Processing

BSB

ConfabulationMeaningful

Sentence

Document
Image

4274

the ITRS software on a standalone CPU. Each BSB can
handle 2 character image sizes, with 15x15 or 30x30 pixels
per character image. They correspond to 256 bytes wide and
1024 bytes wide input vectors respectively. This is a crucial
step as both CPU and the coprocessor are based on similar
x86 architecture, hence initial code development and testing
becomes smoother. Once the initial code is tested on CPU, it
can also be compiled and run on Xeon Phi.

Naturally the next phase is to move the BSB code to Xeon
Phi coprocessor, and port the image processing and confa-
bulation models on the host Xeon processor of our system.
Message Passing Interface (MPI) is used for data communi-
cation between confabulation and BSB. In this way we se-
parated the pattern-matching layer from the rest of the ITRS
and allocate more computing resources to it. Image
processing module groups the character images in to work-
loads and issues them to BSB through MPI. Each workload
consists of 96 characters, which is an input to the BSB mod-
ule. The size is chosen to provide a good balance between
communication and computation time. BSB compares each
image in the workload against 93 trained patterns. The pattern
set consists of lower case and upper case English alphabets,
numbers and some common symbols & punctuations. The
output is the set of matching patterns, which are called letter
candidates, and their convergence speed. These results are
used by the confabulation module to generate meaningful
sentences.

The third and final phase is to optimize the BSB code for
Xeon Phi coprocessor. The methods utilized and the avenues
explored for optimization are described in the next section.

V. OPTIMIZATION
Two progressive steps are taken to optimize the pat-

tern-matching layer to exploit the resource on Xeon Phi. The
first step is to restructure the software for efficient resource
management and workload balance. The second step is to
tweak compiler options to investigate different auto optimi-
zation/vectorization techniques and performance benefits.

The core computation of BSB model is matrix vector
multiplication as shown in equation (1). This is repeated for a
maximum of 50 iterations or until the results converge
whenever an input image is compared against a stored pat-
tern. It is worth to note that the Intel Math Kernel Library
(MKL) provides an optimized parallel implementation for
matrix-vector multiplication, where the original matrix and
vector are segmented and loaded to different cores for dis-
tributed processing. The results will be merged at the end.
However, the performance of such fine-grained workload
partition and parallelization is severely limited by Amdahl’s
law. Unless the size of the matrix and vector is sufficiently
large, the performance gain from parallel computing is not
enough to offset the overhead of communication and syn-
chronization [25]. Furthermore, to get best performance,
MKL allocates the maximum resources i.e. all the cores, for
one matrix-vector operation. Hence we have to serialize the
bottom layer of ITRS and run the pattern-matching tasks one
by one. It was observed that such globally serial and locally
parallel (GSLP) implementation is not efficient for ITRS.

In contrast to GSLP, we adopt a globally parallel and lo-

cally serial approach. OpenMP threads and pthreads are
created and distributed across Xeon Phi to handle multiple
pattern-matching tasks independently. They are referred as
solver threads. All threads run in parallel. Their synchroni-
zation is handled by thread safe blocking queues, which have
critical sections defined for accessing the queue and blocks
the thread if the queue is empty. This allows the architecture
to be inherently load balancing as each computation thread
can pick up workload from the queues whenever it finishes
processing the current task. The compute threads have data
exchange only with the thread-safe queue. The communica-
tion with the rest of the ITRS system, which runs on the host
CPU, is handled by another thread. By decoupling the com-
pute thread from MPI communication, we keep them busy for
maximum duration.

A. Software architecture optimizations
The first step of optimization is to the find the best software

architecture for efficient resource management and workload
balancing. For any combination of input image and stored
pattern for comparison, a pattern-matching task is created.
The set of pattern-matching tasks for all of the 96 input im-
ages forms the workload. Based on how the workload is
partitioned and distributed, three different resource man-
agement schemes are tested and their performance is com-
pared.

Multiple comparison patterns to multiple OpenMP
threads (MPMT): In this architecture 244 solver threads are
created using OpenMP. This is the number of logical cores
available on the coprocessor card. Any pattern-matching job
can be assigned to any of the available solver threads. Fig. 4
shows how the workload is created and assigned.

Because the threads can work on any available job at any

time, this approach has excellent load balancing ability.
However, the BSB models for different patterns have dif-
ferent weight matrices. Due to the limited cache size, every
time a new pattern-matching job is started, a new weight
matrix of the BSB model (corresponding to the pattern to be
compared) must be shuttled/read into the target core’s local
cache. When 244 threads running simultaneously, large
amount of data transfer is created, which causes bus conten-
tion. Explicit data management to preserve data locality can
improve the performance significantly. Using this resource
management scheme, it takes 18.41 seconds to process 96
input images with 30x30 resolution. The performance analy-
sis from VTune Amplifier confirms that there were huge

Fig. 4. MPMT architecture

0 1 2 96

0 1 2 93

Characters per
workload

Symbols for
comparison

MIC –
OpenMP threads

0 1 2 ----- 244

To any thread

Sort results

4275

memory stalls in the compute section of the solver thread.
This indicates that the performance of the pattern-matching
layer is bounded by memory performance.

Specific comparison pattern to specific pthread
(SPST): To get finer control over data, thread creation and
destruction, pthreads are used instead of OpenMP threads as
shown in Fig. 5. A set of 93 pthreads are created during in-
itialization and destroyed only when the ITRS terminates.
There are 3 other threads, which take care of MPI commu-
nication and cleanup. We also divide the entire workload into
93 sets. Each set of workload contains pattern-matching tasks
between all input images and one of the 93 stored patterns. A
specific set of workload is assigned to a specific pthread.
Because each pthread always compares the input with the
same stored pattern, the weight matrix of the corresponding
BSB model can stay in the cache. Therefore, the data con-
tention problem in MPMT is relieved.

Since the solver threads are alive for the entire duration of
the program and each thread works on a specific symbol,
there is better utilization of cache. Compared to MPMT, the
work distribution of SPST may not be uniform but the per-
formance gained due to efficient memory utilization outper-
forms load balancing overhead

Performance can also be tweaked by changing the thread

affinity. Specifying affinity of a particular thread makes it run
on the specified logical core. Three affinity settings were tried
out as described below:

Compact affinity: Each thread was assigned to adjacent
core. The run time was 18.5 seconds. This is not very ideal
setting as every physical core (and its local cache) is shared
by 4 pthreads.

Affinity for alternate logical cores: In this case each
physical core will run no more than two threads. This is an
improvement over the previous case because only 2 threads
share a physical core and the cache. The runtime was 11.3
seconds.

Scatter affinity: By default the micro OS running on the
coprocessor scatters the threads among the 244 logical cores.
This is the best configuration, as it tries to minimize cache
sharing among threads. The runtime in this case was 10.37
seconds.

Performance analysis by VTune Amplifier shows that the
optimized solver code was not getting steady stream of data
due to sustained memory bandwidth limitations and smaller
local cache size for the required data. We were able to achieve
176.58 GB/s memory bandwidth utilization.

Specific pattern to specific pair of pthreads (SP2T): The
architecture in Fig. 6 was developed to improve weight ma-
trix data retention in cache. It is similar to SPST, however,
each weight matrix was split into halves and distributed to a
solver thread and its companion thread. While issuing cha-
racters for comparison a duplicate copy was also issued to the
companion thread. Hence one workload now needs 93*2=186
threads as shown in Fig. 6.

Although the core computation in this case took the same

time as SPST, new overhead for syncing the computation
between the thread pairs is added. The runtime had now in-
creased to 13.92 seconds.

B. Compiler based optimizations
Compiler switches and corresponding pragmas, language

extensions and appropriate coding styles were employed to
assist in auto optimization, based on the guidelines provided
by the Intel compiler. Loop unrolling, vectorization, pre-
fetching, streaming stores and Inter Procedural optimization
(IPO) were evaluated.

Streaming stores and IPO had limited boost in performance
due to the nature of the BSB algorithm. Since the software
architecture was already refined the compiler generated op-
timized loops without the need for additional guidance for
loop unrolling.

Prefetching: The coprocessor does not have out of order
execution and has to solely depend on prefetch techniques to
keep the pipeline full. It is accomplished by issuing prefetch
instructions interleaved between other instructions before the
actual need for the specified data/instruction. These instruc-
tions don’t stall the processor and the data/instructions will be
available ready in cache by the time they are actually needed.

The coprocessor supports both hardware prefetch and
software prefetch. It relies more on software prefetching than
on hardware prefetch. Hardware prefetching is enabled by
default. The BSB algorithm did not benefit from the hardware
prefetcher due to the nature of data access pattern required by
the algorithm. However software prefetching had significant
impact on the runtime and is enabled by default. For the case
of 30x30 character BSB run needed about 16 seconds without
software prefetching and after enabling, it took about 10
seconds for the same run.

An experiment was carried out by manually adding pre-
fetch intrinsics and hints for prefetch distances to C++ code.
In comparison the compiler optimized code provided better
performance as it was able to compute optimum prefetch
distances. As an observation in this particular case; manually

Fig. 6. SP2T architecture

0 1 2 96

0 1 2 93

Characters per
workload

Symbols for
comparison

MIC –
pthreads

0 1 2 ----- 186 Sorter

Fig. 5. SPST architecture

0 1 2 96

0 1 2 93

Characters per
workload

Symbols for
comparison

MIC –
pthreads

0 1 2 ----- 93 Sorter

4276

adding prefetch is probably best suited if the coding style is at
assembly level or for intrinsic heavy coding format.

Vectorization: The Xeon Phi compiler performs vectoi-
zation, which converts scalar operations (operations on one
set of data) to vector operations (same operation is performed
on multiple data). One vector instruction operates on multiple
operands hence significantly reducing the effective runtime
compared to scalar implementation.

The coprocessor has vector processing units with 512 bit
vector registers. These VPUs help in greatly reducing the
code runtime. In fact vectorization provided the largest boost
to the overall performance. All the results presented in this
section are obtained with vectorized code.

Vectorization was achieved by recoding computation loops
in a specific pattern [21], along with the use of language
extensions (restrict) specific to the Intel compiler and re-
spective compiler switches. Also the data had to be memory
aligned to benefit from these optimizations. The code was
fine-tuned and the required level of optimization achieved
was confirmed through specific compiler reports.

VI. RESULTS
After applying the SPST resource management with scatter

affinity, and with the help of compiler based optimization
options, we were able to optimize the pattern-matching layer
for MIC architecture and achieved 1.8x performance gain on
Intel’s Xeon Phi coprocessor over MPMT as shown in Fig. 7.
The runtimes plotted are for one workload of 96 characters at
30x30 resolution.

For fair comparison, the same pattern-matching layer is

also implemented on a standalone CPU and IBM Cell pro-
cessor based PlayStation 3® setup. The CPU used in this
experiment has 16 physical cores, each supporting 2-way
simultaneous multi-threading. Each core has 512KB L1
cache, 2MB L2 cache and 20MB L3 cache. Since there are
more threads than logic cores, the workload balancing is done
by OS. Each PS3 processor has 6 Synergetic Processing
Elements (SPE) and one PowerPC processor. Each SPE
handles one SPST threads.

We consider the performance of the serial version of BSB
algorithm running on CPU as our base reference and set its
performance to 1. Fig. 8 gives the normalized performance of
the pattern matching layer implemented on CPU, Xeon Phi
and PS3. Because the same software architecture is imple-
mented, the comparison measures the performance gained by
upgrading the hardware to the MIC architectures. There is no

Cell processor implementation data for 30x30 resolution case,
as it was not feasible to run at this resolution due to limited
memory. As we can see, Xeon Phi is able to provide 1.35x
performance gain over the PS3 for 15x15 images and 1.94x
performance gain over optimized CPU implementation for
30x30 images.

Fig. 9 shows the normalized performance comparison

considering the communication interface with the rest of the
ITRS. Again, Xeon Phi is able to provide 1.46x performance
gain over the PS3 for 15x15 images and 1.9x gain over the
optimized CPU implementation for 30x30 images.

VII. ANALYSIS
The pattern matching workload for each input character

image is a matrix multiplication, for 30x30 character it is
[1024 x 1024] * [1024 x 1]. Each element in these matrices is
a float data, hence the size of the weight matrix is 4MB and
the size of the input vector is 4KB. The result of the matrix
vector multiplication generates 4KB of new data. For each
input image, the number of times this multiplication is per-
formed is: 50*93 = 4650, where 50 is the maximum number
of iterations allowed for convergence. The above number of
iterations is repeated for all the characters in the workload i.e.
96 times.

Total data requirement per iteration is ~4MB. Total cache
on the coprocessor is about 30 MB. This cache is coherent
and can be accessible through any core. Each core has 32 KB
L1 cache and 512 KB L2 caches.

The data required per iteration is significantly greater than
the per core cache size hence there is memory spill over per
iteration. This is clearly the bottleneck which is holding back
the overall performance. The nature of core compute part of
the algorithm is like stream read. This application is data
intensive and the achieved bandwidth is 176.58 GB/s (peak)

Fig. 9. Runtime comparison with confabulation

1 1

6.7

3.3

8.3

6.5
5.7

Cell N/A
0

2

4

6

8

10

15x15 30x30

Re
la

ti
ve

 S
pe

ed
up

ov
er

 S
er

ia
l

ITRS Runtime Speedup over Serial Implementation

Serial

Multi-core
CPU

MIC

Cell

1.46x

1.9x

Fig. 8. Runtime comparison for standalone case

1 1

7.2

3.4

8.7

6.66.5

Cell N/A
0

2

4

6

8

10

15x15 30x30

Re
la

ti
ve

 S
pe

ed
up

ov
er

 S
er

ia
l

BSB Runtime Speedup over Serial Implementation

Serial

Multi-core
CPU

MIC

Cell

1.35x

1.94x

Fig. 7. BSB Runtime Optimization

18.41 s

10.37 s

13.92 s

0

5

10

15

20

MPMT SPST SP2T

R
un

ti
m

e
in

 s
ec

.

Software Architecture

BSB runtime on MIC

1.8x

4277

which is almost same as Stream Memory Benchmark which
peaks at 181 GB/s [26].

The BSB runs natively on the coprocessor hence the Xeon
host is dedicated solely for confabulation. This is especially
beneficent as the BSB can run independently by receiving
workload requests and send results through MPI without
stalling any other module. Hence as many BSBs can run as
the system can support.

The software architecture where a specific symbol is issued
to a specific pthread as shown in Fig. 5 is found to be ideal for
MIC architecture. The scaling capabilities are described
based on this software architecture. This architecture is very
flexible and allows for testing the behavior in terms of scaling
at the workload level with in the Xeon Phi coprocessor. For
one workload configuration 3 + 93 + 1 = 97 threads are re-
quired. The number of threads for two simultaneous workload
configuration is 3 + (93 + 1) * 2 = 191 threads. Going beyond
this is not advisable as number of threads will exceed the
available hardware resources.

The BSB also scales at the node level and cluster level
along with ITRS as shown in Fig. 10. The BSBs communicate
directly with the host Xeon processor and not with each other.
This kind of partitioning helps in maintaining simplicity and
low MPI communication delays. Using multiple coprocessor
cards in a single node provides linear performance scaling of
BSB. The same scaling benefit can be achieved at the cluster
level as well.

VIII. CONCLUSION AND FUTURE WORK
We started off with a goal of upgrading the processing

capability and accelerating BSB by having an efficient and
optimized platform which can scale up to a cluster level. We
parallelized and optimized the serial version of BSB for Xeon
Phi coprocessor. During optimization we explored several
avenues on the software architecture side and tweaked au-
to-optimization features available. We explored the effec-
tiveness of using OpenMP and pthreads for the BSB algo-
rithm. Both 15x15 and 30x30 resolution images were expe-
rimented on and found that 30x30 case is now feasible.
Overall we were able to achieve a speed up of ~2x with our
ITRS hybrid Xeon – Xeon Phi coprocessor implementation.

This architecture is scalable at the core level, node level and
at the cluster level. Every BSB (coprocessor) added to the
system provides linear scaling in overall performance of all
BSBs combined.

Our future work on this problem is to optimize the archi-
tecture for memory bandwidth. Also we will be reformulating
the algorithm such that the computation can be split on mul-
tiple cores and span multiple iterations, to improve data re-
tention on the coprocessor.

ACKNOWLEDGMENT
This work was partially supported by the National Science

Foundation under Grants CCF-1337198, CCF-1337300, and
the Air Force Research Laboratory, under contract
FA8750-12-1-0251. We also thank Intel Corporation for
supporting this work through an internship.

REFERENCES
[1] Qinru Qiu; Qing Wu; Bishop, M.; Pino, R.E.; Linderman, R.W., "A

Parallel Neuromorphic Text Recognition System and Its Implementa-
tion on a Heterogeneous High-Performance Computing Clus-
ter,"Computers, IEEE Transactions on , vol.62, no.5, pp.886,899, May
2013 doi: 10.1109/TC.2012.50

[2] R. Wray, C. Lebiere, P. Weinstein, K. Jha, J. Springer, T. Belding, B.
Best, and V. Parunak, “Towards a Complete, Multi-level Cognitive
Architecture,” Proc. of the International Conference for Cognitive
Modeling, 2007.

[3] R. S. Swenson, “Review of clinical and functional neuroscience,”
Educational Review Manual in Neurology, Castle Connolly Graduate
Medical Publishing, 2006.

[4] J. A. Anderson, “An Introduction to Neural Networks,” The MIT Press,
1995.

[5] George Chrysos, Intel Corporation Intel® Xeon Phi™ Coprocessor -
the Architecture
http://software.intel.com/en-us/articles/intel-xeon-phi-coprocessor-cod
ename-knights-corner

[6] J. Park, Y. Park, “An Optimization Approach to Design of Generalized
BSB Neural Associative Memories,” Neural Computation, MIT Press
Journals, Vol. 12, No. 6, Jun. 2000, pp. 1449-1462.

[7] Y. Park, “Optimal and Robust Design of Brain-State-in-a-Box Neural
Associative Memories," Neural Networks, Elsevier, Volume 23, Issue
2, Mar. 2010, pp. 210-218.

[8] A. Schultz, “Collective recall via the brain-state-in-a-box network,”
Neural Networks, IEEE Transactions on, vol. 4, no. 4, pp. 580–587,
1993.

 Fig. 10. Multi-level scaling of hybrid ITRS architecture

Xeon Host Xeon Phi Coprocessors

MIC-0

MIC-1

MIC-n

M
PI

M
PI

M
PI

M
PI

BSB

BSB

BSB

Image
Processing

Img. Dispatcher/
result collector

Word
Confab

Word
Confab

Word
Confab

Sentence
Confab

Sentence
Confab

Core level parallelism
Multi-threading, shared memory

Node level parallelism
Loose synchronous, MPI

Xeon Host Xeon Phi Coprocessors

MIC-0

MIC-1

MIC-n

M
PI

M
PI

M
PI

M
PI

BSB

BSB

BSB

Image
Processing

Img. Dispatcher/
result collector

Word
Confab

Word
Confab

Word
Confab

Sentence
Confab

Sentence
Confab

Core level parallelism
Multi-threading, shared memory

Cluster level parallelism
Independent tasks, MPI

Page Scheduler

4278

[9] S. Mori, C.Y. Suen, and K. Yamamoto, “Historical Review of OCR
Research and Development,” Proc. IEEE, vol. 80, no. 7, pp.
1029-1058, July 1992.

[10] Jianchang Mao, "A case study on bagging, boosting and basic ensem-
bles of neural networks for OCR," Neural Networks Proceedings, 1998.
IEEE World Congress on Computational Intelligence. The 1998 IEEE
International Joint Conference on , vol.3, no., pp.1828,1833 vol.3, 4-9
May 1998

[11] Blando, L.R.; Kanai, J.; Nartker, T.A., "Prediction of OCR accuracy
using simple image features," Document Analysis and Recognition,
1995., Proceedings of the Third International Conference on , vol.1,
no., pp.319,322 vol.1, 14-16 Aug 1995

[12] Peng Ye; Doermann, D., "Learning features for predicting OCR accu-
racy," Pattern Recognition (ICPR), 2012 21st International Conference
on , vol., no., pp.3204,3207, 11-15 Nov. 2012

[13] Qing Wu; Mukre, P.; Linderman, Richard; Renz, T.; Burns, D.; Moore,
M.; Qinru Qiu, "Performance optimization for pattern recognition using
associative neural memory," Multimedia and Expo, 2008 IEEE Inter-
national Conference on , vol., no., pp.1,4, June 23 2008-April 26 2008

[14] Taha, T.M.; Yalamanchili, P.; Bhuiyan, M.A.; Jalasutram, R.; Mohan,
S.K., "Parallelizing two classes of neuromorphic models on the Cell
multicore architecture," Neural Networks, 2009. IJCNN 2009. Inter-
national Joint Conference on , vol., no., pp.3046,3053, 14-19 June
2009

[15] Miao Hu; Hai Li; Qing Wu; Rose, G.S.; Yiran Chen, "Memristor
crossbar based hardware realization of BSB recall function," Neural
Networks (IJCNN), The 2012 International Joint Conference on , vol.,
no., pp.1,7, 10-15 June 2012

[16] Honghoon Jang; Anjin Park; Keechul Jung, "Neural Network Imple-
mentation Using CUDA and OpenMP," Digital Image Computing:
Techniques and Applications (DICTA), 2008 , vol., no., pp.155,161, 1-3
Dec. 2008

[17] Billconan and Kavinguy. A neural network on gpu
http://www.codeproject.com/Articles/24361/A-Neural-Network-on-G
PU

[18] Nere, A.; Hashmi, A.; Lipasti, M., "Profiling Heterogeneous Mul-
ti-GPU Systems to Accelerate Cortically Inspired Learning Algo-
rithms," Parallel & Distributed Processing Symposium (IPDPS), 2011
IEEE International , vol., no., pp.906,920, 16-20 May 2011

[19] Diaz, J.; Munoz-Caro, C.; Nino, A., "A Survey of Parallel Program-
ming Models and Tools in the Multi and Many-Core Era," Parallel and
Distributed Systems, IEEE Transactions on , vol.23, no.8,
pp.1369,1386, Aug. 2012

[20] Xinmin Tian; Saito, H.; Preis, S.V.; Garcia, E.N.; Kozhukhov, S.S.;
Masten, M.; Cherkasov, A.G.; Panchenko, N., "Practical SIMD Vec-
torization Techniques for Intel® Xeon Phi Coprocessors," Parallel and
Distributed Processing Symposium Workshops & PhD Forum
(IPDPSW), 2013 IEEE 27th International , vol., no., pp.1149,1158,
20-24 May 2013

[21] David Mackay, Optimization and Performance Tuning for Intel® Xeon
Phi™ Coprocessors - Part 1: Optimization Essentials
http://software.intel.com/en-us/articles/optimization-and-performance-
tuning-for-intel-xeon-phi-coprocessors-part-1-optimization

[22] Shannon Cepeda, Optimization and Performance Tuning for Intel®
Xeon Phi™ Coprocessors, Part 2: Understanding and Using Hardware
Events
http://software.intel.com/en-us/articles/optimization-and-performance-
tuning-for-intel-xeon-phi-coprocessors-part-2-understanding

[23] Gao Tao; Lu Yutong; Suo Guang, "Using MIC to Accelerate a Typical
Data-Intensive Application: The Breadth-first Search," Parallel and
Distributed Processing Symposium Workshops & PhD Forum
(IPDPSW), 2013 IEEE 27th International , vol., no., pp.1117,1125,
20-24 May 2013

[24] Turchenko, V.; Bosilca, G.; Bouteiller, A.; Dongarra, J., "Efficient
parallelization of batch pattern training algorithm on many-core and
cluster architectures," Intelligent Data Acquisition and Advanced
Computing Systems (IDAACS), 2013 IEEE 7th International Confe-
rence on , vol.02, no., pp.692,698, 12-14 Sept. 2013

[25] Intel® Math Kernel Library http://software.intel.com/en-us/intel-mkl
[26] Karthik Raman Optimizing Memory Bandwidth on Stream Triad

http://software.intel.com/en-us/articles/optimizing-memory-bandwidth
-on-stream-triad

4279

