
 
 

 

 

Abstract— Neuromorphic computing systems refer to the 
computing architecture inspired by the working mechanism of 
human brains. The rapidly reducing cost and increasing per-
formance of state-of-the-art computing hardware allows 
large-scale implementation of machine intelligence models with 
neuromorphic architectures and opens the opportunity for new 
applications. One such computing hardware is Intel Xeon Phi 
coprocessor, which delivers over a TeraFLOP of computing 
power with 61 integrated processing cores. How to efficiently 
harness such computing power to achieve real time decision and 
cognition is one of the key design considerations. This paper 
presents an optimized implementation of Brain-State-in-a-Box 
(BSB) neural network model on the Xeon Phi coprocessor for 
pattern matching in the context of intelligent text recognition of 
noisy document images. From a scalability standpoint on a High 
Performance Computing (HPC) platform we show that efficient 
workload partitioning and resource management can double the 
performance of this many-core architecture for neuromorphic 
applications. 

I. INTRODUCTION 
Cognitive computing is an emerging field made possible 

due to the advancement in High Performance Computing 
(HPC) domain. There is a special interest in cognitive com-
puting because the challenges which are being faced today 
have no definite way of deriving a solution and hence cannot 
be coded in the traditional style. There are many examples 
which fall under this category, including natural language 
understanding, text image recognition, autonomous un-
manned vehicle controls, user preference suggestion, etc. 

Neuromorphic computing systems refer to the computing 
architecture inspired by the working mechanism and massive 
parallel structure of human brains. A neuromorphic informa-
tion processing model is presented in [1]. The model consists 
of a simple but massive parallel pattern matching layer that 
generates fuzzy results retaining rich information (sometimes 
referred as ambiguity) and a powerful information inference 
layer that removes the ambiguity by statistical inference. The 
event-driven computation in neuromorphic engines loosely 
represents the integrate-and-fire behavior of neurons, leading 
to high computation efficiency. The hierarchical architecture 
mimics the primary sensory cortex and association cortex in 
brain’s sensory processing area [2][3][4]. The model is ap-
plied for intelligent text recognition in document image 
processing, where meaningful sentences are extracted from 

camera captured documents and road signs. These are 
non-trivial problems as the images are captured with pers-
pective distortion, angular distortion, warping or other gen-
eral noises. Reliable performance is achieved even when the 
system is exposed to new experiences. As their experience 
gets richer and richer for every new exposure, their perfor-
mance improves. 

The state-of-the-art multi-core computer architecture 
enables large-scale implementation of neuromorphic models. 
One of such computer system is Intel’s Xeon Phi coprocessor, 
where more than 61 X86 compatible cores with 4-way mul-
ti-threading capability are integrated on a single die. Each 
core has its own L1 and L2 cache and can access coherent L2 
caches of any other core [5]. This architecture delivers over a 
TeraFLOP computing bandwidth. How to harness such 
computing power to achieve real-time cognition and decision 
is an urgent research problem.  

In this work, we accelerate the performance of the neu-
romorphic model for Intelligent Text Recognition System 
(ITRS) using the hybrid Xeon - Xeon Phi coprocessor setup. 
According to Amdahl’s law, the most effort in performance 
optimization should be spent on the most common operation, 
which is identified to be pattern matching in ITRS. Pattern 
matching forms the bottom layer of ITRS. It is implemented 
using an auto-associative memory model called 
Brain-State-in-a-Box (BSB). BSB is a simple nonlinear, 
energy minimizing neural network [6][7][8], whose conver-
gence speed is proportional to the similarity between the input 
image and the stored pattern. The bottom layer of the ITRS 
consists of large number of independent BSB models, which 
are ideal candidates for parallel implementation. 

A scalable platform capable of handling images with dif-
ferent resolutions for higher fidelity pattern matching is de-
veloped on Intel’s Xeon Phi coprocessor. One of the reasons 
to select Xeon Phi over GPGPU is that the applications can 
run natively on Xeon Phi compared to the offload model of 
GPGPU. This is particularly an important capability as it 
frees up the CPU to handle more control intensive functions 
of ITRS [1]. 

The rest of the paper is organized as follows: Section 2 
provides insight into related work, section 3 provides a 
background of the entire system, section 4 provides the im-
plementation setup details, section 5 presents the optimiza-
tion work, section 6 presents the results, section 7 has per-
formance analysis of the implementation and finally section 8 
gives the conclusions and future works. 

II. RELATED WORK 
The first stage of a text recognition system is image 
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ledge links. The three columns in Fig. 1 represent three lex-
icons for the concept of shape, object, and color with each box 
representing a neuron. Different combinations of neurons 
represent different symbols. For example, the pink neurons in 
lexicon I represent the cylinder shape, the orange and yellow 
neurons in lexicon II represent a fire extinguisher and a cup, 
while the red neurons in lexicon III represent the red color. 
When a cylinder shaped object is perceived, the neurons that 
represent the concepts “fire extinguisher” and “cup” will be 
excited. However, if a cylinder shape and a red color are both 
perceived, the neurons associated with “fire extinguisher” 
receive more excitation and become activated while the 
neurons associated with the concept “cup” will be suppressed. 
At the same time, the neurons associated with “fire extin-
guisher” will further excite the neurons associated with its 
corresponding shape and color and eventually make those 
symbols stand out from other symbols in lexicons I and III. 

C. Software Architecture of ITRS 
ITRS is developed to extract meaningful sentences from 

document images. It has two information processing layers, a 
BSB model based pattern-matching layer and a confabulation 
model based statistical inference layer. The salient feature of 
ITRS is that it provides contextually correct sentence recon-
struction even if there are illegible characters or words in the 
document image. This is enabled by a trained knowledge 
base, which captures the statistical information among 
building components in English language, from letters and 
words to phrases and part-of-speech tagging.  

 
The information processing in ITRS has several stages, 

which can be arranged as a pipeline shown in Fig. 2. After 
simple image processing which corrects image distortion, 
skew and warping, the character images are segmented from 
document image and forwarded to BSB, where fuzzy pattern 
matching is performed. The pattern matching results will be 
processed by word level and sentence confabulation for in-
ference based error correction and association. 

 
A working example of ITRS is shown in Fig. 3. Given a 

noisy document image, the BSB provides best effort pattern 
matching for each character images. Each question mark in 
the figure represents all 26 possible alphabets. The word 
confabulation layer forms all possible words based on these 
matching alphabets and the sentence confabulation layer 
selects the words that forms the most meaningful sentence. It 
is easy to see that, for each sentence, one sentence confabu-
lation task and multiple word confabulation tasks must be 
executed, along with even more number of BSB pattern 
matching tasks. Information is passed across layers. The 
computation tasks in the same layer are independent to each 
other and hence can be implemented in parallel. 

The pattern-matching layer (BSB) is trained on clean font 
image. The word level confabulation is trained by reading a 
dictionary. And the size of word level knowledge base is 
about 200 MB. The sentence level knowledge base is trained 
by reading multiple classic literatures. The size of this 
knowledge base is 6 - 12 GB. 

D. Intel Xeon Phi Coprocessor 
Intel Xeon Phi coprocessor is based on Intel Many Inte-

grated Core (MIC) Architecture. It has more than 50 modified 
x86 cores integrated on a single die [5]. The X86 compatible 
architecture allows many existing software to be supported 
with very few modifications, while the multi-core architec-
ture provides huge performance boost. The 7110P Intel Xeon 
Phi coprocessor used in our experiments has 61 cores with 
8GB RAM, each core runs at 1.1GHz and supports 4 hard-
ware threads. 

The cores on Intel Xeon Phi coprocessor are simplified 
in-order execution cores, hence they are small and power 
efficient. Huge performance boost is obtained by exploiting 
the massive parallelism and by hiding memory latency. This 
architecture is a very good example of MIMD (multiple in-
struction, multiple data). It supports a total of 244 threads 
running independent of each other. Thus fine grained paral-
lelism and good load balancing can be achieved.  

There is a 512-bit wide vector processing unit (VPU) on 
every core providing Single Instruction Multiple Data 
(SIMD) capable instruction set. The VPU can execute 16 
single-precision or 8 double-precision operations per cycle. It 
also supports Fused Multiply-Add (FMA) instructions and 
hence can execute 32 SP or 16 DP floating-point operations 
per cycle. Vectorization can be assisted by Intel Compiler or 
by manually inserting intrinsics and language extensions. 

Every core on Xeon Phi has a local L1 and L2 cache. The 
L2 cache is coherent and its capacity is 512KB. Cache co-
herence is achieved through a ring interconnect which is 64 
bytes wide. Hence each core has the access to a total of 30MB 
shared L2 cache. 

IV. IMPLEMENTATION FLOW 
The hardware system used for this project has a Xeon 

based host processor and the 7110P Xeon Phi coprocessor. 
We started with a sequential implementation of the ITRS 
software, followed by 3 development phases. The first phase 
is to restructure the ITRS software to support multiple parallel 
BSB threads, and thus to parallelize the pattern matching 
layer. We first implemented the BSB threads and the rest of 

 
Fig. 3.  ITRS cognitive model 

BSB
Recognition

Word Level
Confabulation

Sentence Level
Confabulation

…but b?gi??in? to p?r?ei?e t??t 
?he ?andcuffs ?ere n?? f?r…

but b?gi??in? to p?r?ei?e t??t ?he ?andcuffs ?ere n?? f?r

but besieging to proceite twit the handcuffs fere nut fur

believing perceive that she sere nun for

beginning parseile text were not fir

banishing test here nod far

…. …. …. ….

…but beginning to perceive that 
the handcuffs were not for…

…but beginning to perceive that 
the handcuffs were not for…

Association (word level)

Knowledge
Base (KB)

Knowledge
Base (KB)

Association (sentence level)

 
Fig. 2.  ITRS Pipeline 

Word 
Confabulation

Sentence 
Confabulation

Image 
Processing

BSB

ConfabulationMeaningful

Sentence

Document 
Image

4274



 
 

 

the ITRS software on a standalone CPU. Each BSB can 
handle 2 character image sizes, with 15x15 or 30x30 pixels 
per character image. They correspond to 256 bytes wide and 
1024 bytes wide input vectors respectively. This is a crucial 
step as both CPU and the coprocessor are based on similar 
x86 architecture, hence initial code development and testing 
becomes smoother. Once the initial code is tested on CPU, it 
can also be compiled and run on Xeon Phi.  

Naturally the next phase is to move the BSB code to Xeon 
Phi coprocessor, and port the image processing and confa-
bulation models on the host Xeon processor of our system. 
Message Passing Interface (MPI) is used for data communi-
cation between confabulation and BSB. In this way we se-
parated the pattern-matching layer from the rest of the ITRS 
and allocate more computing resources to it. Image 
processing module groups the character images in to work-
loads and issues them to BSB through MPI. Each workload 
consists of 96 characters, which is an input to the BSB mod-
ule. The size is chosen to provide a good balance between 
communication and computation time. BSB compares each 
image in the workload against 93 trained patterns. The pattern 
set consists of lower case and upper case English alphabets, 
numbers and some common symbols & punctuations. The 
output is the set of matching patterns, which are called letter 
candidates, and their convergence speed. These results are 
used by the confabulation module to generate meaningful 
sentences.  

The third and final phase is to optimize the BSB code for 
Xeon Phi coprocessor. The methods utilized and the avenues 
explored for optimization are described in the next section. 

V. OPTIMIZATION 
Two progressive steps are taken to optimize the pat-

tern-matching layer to exploit the resource on Xeon Phi. The 
first step is to restructure the software for efficient resource 
management and workload balance. The second step is to 
tweak compiler options to investigate different auto optimi-
zation/vectorization techniques and performance benefits.  

The core computation of BSB model is matrix vector 
multiplication as shown in equation (1). This is repeated for a 
maximum of 50 iterations or until the results converge 
whenever an input image is compared against a stored pat-
tern. It is worth to note that the Intel Math Kernel Library 
(MKL) provides an optimized parallel implementation for 
matrix-vector multiplication, where the original matrix and 
vector are segmented and loaded to different cores for dis-
tributed processing. The results will be merged at the end. 
However, the performance of such fine-grained workload 
partition and parallelization is severely limited by Amdahl’s 
law. Unless the size of the matrix and vector is sufficiently 
large, the performance gain from parallel computing is not 
enough to offset the overhead of communication and syn-
chronization [25]. Furthermore, to get best performance, 
MKL allocates the maximum resources i.e. all the cores, for 
one matrix-vector operation. Hence we have to serialize the 
bottom layer of ITRS and run the pattern-matching tasks one 
by one. It was observed that such globally serial and locally 
parallel (GSLP) implementation is not efficient for ITRS.  

In contrast to GSLP, we adopt a globally parallel and lo-

cally serial approach. OpenMP threads and pthreads are 
created and distributed across Xeon Phi to handle multiple 
pattern-matching tasks independently. They are referred as 
solver threads. All threads run in parallel. Their synchroni-
zation is handled by thread safe blocking queues, which have 
critical sections defined for accessing the queue and blocks 
the thread if the queue is empty. This allows the architecture 
to be inherently load balancing as each computation thread 
can pick up workload from the queues whenever it finishes 
processing the current task. The compute threads have data 
exchange only with the thread-safe queue. The communica-
tion with the rest of the ITRS system, which runs on the host 
CPU, is handled by another thread. By decoupling the com-
pute thread from MPI communication, we keep them busy for 
maximum duration. 

A. Software architecture optimizations 
The first step of optimization is to the find the best software 

architecture for efficient resource management and workload 
balancing. For any combination of input image and stored 
pattern for comparison, a pattern-matching task is created. 
The set of pattern-matching tasks for all of the 96 input im-
ages forms the workload. Based on how the workload is 
partitioned and distributed, three different resource man-
agement schemes are tested and their performance is com-
pared. 

Multiple comparison patterns to multiple OpenMP 
threads (MPMT): In this architecture 244 solver threads are 
created using OpenMP. This is the number of logical cores 
available on the coprocessor card. Any pattern-matching job 
can be assigned to any of the available solver threads. Fig. 4 
shows how the workload is created and assigned. 

 
Because the threads can work on any available job at any 

time, this approach has excellent load balancing ability. 
However, the BSB models for different patterns have dif-
ferent weight matrices. Due to the limited cache size, every 
time a new pattern-matching job is started, a new weight 
matrix of the BSB model (corresponding to the pattern to be 
compared) must be shuttled/read into the target core’s local 
cache. When 244 threads running simultaneously, large 
amount of data transfer is created, which causes bus conten-
tion. Explicit data management to preserve data locality can 
improve the performance significantly. Using this resource 
management scheme, it takes 18.41 seconds to process 96 
input images with 30x30 resolution. The performance analy-
sis from VTune Amplifier confirms that there were huge 

 
Fig. 4.  MPMT architecture 
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memory stalls in the compute section of the solver thread. 
This indicates that the performance of the pattern-matching 
layer is bounded by memory performance. 

Specific comparison pattern to specific pthread 
(SPST): To get finer control over data, thread creation and 
destruction, pthreads are used instead of OpenMP threads as 
shown in Fig. 5. A set of 93 pthreads are created during in-
itialization and destroyed only when the ITRS terminates. 
There are 3 other threads, which take care of MPI commu-
nication and cleanup. We also divide the entire workload into 
93 sets. Each set of workload contains pattern-matching tasks 
between all input images and one of the 93 stored patterns. A 
specific set of workload is assigned to a specific pthread. 
Because each pthread always compares the input with the 
same stored pattern, the weight matrix of the corresponding 
BSB model can stay in the cache. Therefore, the data con-
tention problem in MPMT is relieved. 

Since the solver threads are alive for the entire duration of 
the program and each thread works on a specific symbol, 
there is better utilization of cache. Compared to MPMT, the 
work distribution of SPST may not be uniform but the per-
formance gained due to efficient memory utilization outper-
forms load balancing overhead 

 
Performance can also be tweaked by changing the thread 

affinity. Specifying affinity of a particular thread makes it run 
on the specified logical core. Three affinity settings were tried 
out as described below: 

Compact affinity: Each thread was assigned to adjacent 
core. The run time was 18.5 seconds. This is not very ideal 
setting as every physical core (and its local cache) is shared 
by 4 pthreads.  

Affinity for alternate logical cores: In this case each 
physical core will run no more than two threads. This is an 
improvement over the previous case because only 2 threads 
share a physical core and the cache. The runtime was 11.3 
seconds. 

Scatter affinity: By default the micro OS running on the 
coprocessor scatters the threads among the 244 logical cores. 
This is the best configuration, as it tries to minimize cache 
sharing among threads. The runtime in this case was 10.37 
seconds. 

Performance analysis by VTune Amplifier shows that the 
optimized solver code was not getting steady stream of data 
due to sustained memory bandwidth limitations and smaller 
local cache size for the required data. We were able to achieve 
176.58 GB/s memory bandwidth utilization. 

Specific pattern to specific pair of pthreads (SP2T): The 
architecture in Fig. 6 was developed to improve weight ma-
trix data retention in cache. It is similar to SPST, however, 
each weight matrix was split into halves and distributed to a 
solver thread and its companion thread. While issuing cha-
racters for comparison a duplicate copy was also issued to the 
companion thread. Hence one workload now needs 93*2=186 
threads as shown in Fig. 6. 

 
Although the core computation in this case took the same 

time as SPST, new overhead for syncing the computation 
between the thread pairs is added. The runtime had now in-
creased to 13.92 seconds.  

B. Compiler based optimizations 
Compiler switches and corresponding pragmas, language 

extensions and appropriate coding styles were employed to 
assist in auto optimization, based on the guidelines provided 
by the Intel compiler. Loop unrolling, vectorization, pre-
fetching, streaming stores and Inter Procedural optimization 
(IPO) were evaluated. 

Streaming stores and IPO had limited boost in performance 
due to the nature of the BSB algorithm. Since the software 
architecture was already refined the compiler generated op-
timized loops without the need for additional guidance for 
loop unrolling. 

Prefetching: The coprocessor does not have out of order 
execution and has to solely depend on prefetch techniques to 
keep the pipeline full. It is accomplished by issuing prefetch 
instructions interleaved between other instructions before the 
actual need for the specified data/instruction. These instruc-
tions don’t stall the processor and the data/instructions will be 
available ready in cache by the time they are actually needed. 

The coprocessor supports both hardware prefetch and 
software prefetch. It relies more on software prefetching than 
on hardware prefetch. Hardware prefetching is enabled by 
default. The BSB algorithm did not benefit from the hardware 
prefetcher due to the nature of data access pattern required by 
the algorithm. However software prefetching had significant 
impact on the runtime and is enabled by default. For the case 
of 30x30 character BSB run needed about 16 seconds without 
software prefetching and after enabling, it took about 10 
seconds for the same run. 

An experiment was carried out by manually adding pre-
fetch intrinsics and hints for prefetch distances to C++ code. 
In comparison the compiler optimized code provided better 
performance as it was able to compute optimum prefetch 
distances. As an observation in this particular case; manually 

 
Fig. 6.  SP2T architecture 
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Fig. 5.  SPST architecture 
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adding prefetch is probably best suited if the coding style is at 
assembly level or for intrinsic heavy coding format. 

Vectorization: The Xeon Phi compiler performs vectoi-
zation, which converts scalar operations (operations on one 
set of data) to vector operations (same operation is performed 
on multiple data). One vector instruction operates on multiple 
operands hence significantly reducing the effective runtime 
compared to scalar implementation. 

The coprocessor has vector processing units with 512 bit 
vector registers. These VPUs help in greatly reducing the 
code runtime. In fact vectorization provided the largest boost 
to the overall performance. All the results presented in this 
section are obtained with vectorized code. 

Vectorization was achieved by recoding computation loops 
in a specific pattern [21], along with the use of language 
extensions (restrict) specific to the Intel compiler and re-
spective compiler switches. Also the data had to be memory 
aligned to benefit from these optimizations. The code was 
fine-tuned and the required level of optimization achieved 
was confirmed through specific compiler reports. 

VI.  RESULTS 
After applying the SPST resource management with scatter 

affinity, and with the help of compiler based optimization 
options, we were able to optimize the pattern-matching layer 
for MIC architecture and achieved 1.8x performance gain on 
Intel’s Xeon Phi coprocessor over MPMT as shown in Fig. 7. 
The runtimes plotted are for one workload of 96 characters at 
30x30 resolution. 

 
For fair comparison, the same pattern-matching layer is 

also implemented on a standalone CPU and IBM Cell pro-
cessor based PlayStation 3® setup. The CPU used in this 
experiment has 16 physical cores, each supporting 2-way 
simultaneous multi-threading. Each core has 512KB L1 
cache, 2MB L2 cache and 20MB L3 cache. Since there are 
more threads than logic cores, the workload balancing is done 
by OS. Each PS3 processor has 6 Synergetic Processing 
Elements (SPE) and one PowerPC processor. Each SPE 
handles one SPST threads.  

We consider the performance of the serial version of BSB 
algorithm running on CPU as our base reference and set its 
performance to 1. Fig. 8 gives the normalized performance of 
the pattern matching layer implemented on CPU, Xeon Phi 
and PS3. Because the same software architecture is imple-
mented, the comparison measures the performance gained by 
upgrading the hardware to the MIC architectures. There is no 

Cell processor implementation data for 30x30 resolution case, 
as it was not feasible to run at this resolution due to limited 
memory. As we can see, Xeon Phi is able to provide 1.35x 
performance gain over the PS3 for 15x15 images and 1.94x 
performance gain over optimized CPU implementation for 
30x30 images. 

 
Fig. 9 shows the normalized performance comparison 

considering the communication interface with the rest of the 
ITRS. Again, Xeon Phi is able to provide 1.46x performance 
gain over the PS3 for 15x15 images and 1.9x gain over the 
optimized CPU implementation for 30x30 images. 

 

VII. ANALYSIS 
The pattern matching workload for each input character 

image is a matrix multiplication, for 30x30 character it is 
[1024 x 1024] * [1024 x 1]. Each element in these matrices is 
a float data, hence the size of the weight matrix is 4MB and 
the size of the input vector is 4KB. The result of the matrix 
vector multiplication generates 4KB of new data. For each 
input image, the number of times this multiplication is per-
formed is: 50*93 = 4650, where 50 is the maximum number 
of iterations allowed for convergence. The above number of 
iterations is repeated for all the characters in the workload i.e. 
96 times. 

Total data requirement per iteration is ~4MB. Total cache 
on the coprocessor is about 30 MB. This cache is coherent 
and can be accessible through any core. Each core has 32 KB 
L1 cache and 512 KB L2 caches.  

The data required per iteration is significantly greater than 
the per core cache size hence there is memory spill over per 
iteration. This is clearly the bottleneck which is holding back 
the overall performance. The nature of core compute part of 
the algorithm is like stream read. This application is data 
intensive and the achieved bandwidth is 176.58 GB/s (peak) 

 
Fig. 9.  Runtime comparison with confabulation 
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Fig. 8.  Runtime comparison for standalone case 
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Fig. 7.  BSB Runtime Optimization  
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which is almost same as Stream Memory Benchmark which 
peaks at 181 GB/s [26]. 

The BSB runs natively on the coprocessor hence the Xeon 
host is dedicated solely for confabulation. This is especially 
beneficent as the BSB can run independently by receiving 
workload requests and send results through MPI without 
stalling any other module. Hence as many BSBs can run as 
the system can support. 

The software architecture where a specific symbol is issued 
to a specific pthread as shown in Fig. 5 is found to be ideal for 
MIC architecture. The scaling capabilities are described 
based on this software architecture. This architecture is very 
flexible and allows for testing the behavior in terms of scaling 
at the workload level with in the Xeon Phi coprocessor. For 
one workload configuration 3 + 93 + 1 = 97 threads are re-
quired. The number of threads for two simultaneous workload 
configuration is 3 + (93 + 1) * 2 = 191 threads. Going beyond 
this is not advisable as number of threads will exceed the 
available hardware resources.  

The BSB also scales at the node level and cluster level 
along with ITRS as shown in Fig. 10. The BSBs communicate 
directly with the host Xeon processor and not with each other. 
This kind of partitioning helps in maintaining simplicity and 
low MPI communication delays. Using multiple coprocessor 
cards in a single node provides linear performance scaling of 
BSB. The same scaling benefit can be achieved at the cluster 
level as well.  

VIII. CONCLUSION AND FUTURE WORK 
We started off with a goal of upgrading the processing 

capability and accelerating BSB by having an efficient and 
optimized platform which can scale up to a cluster level. We 
parallelized and optimized the serial version of BSB for Xeon 
Phi coprocessor. During optimization we explored several 
avenues on the software architecture side and tweaked au-
to-optimization features available. We explored the effec-
tiveness of using OpenMP and pthreads for the BSB algo-
rithm. Both 15x15 and 30x30 resolution images were expe-
rimented on and found that 30x30 case is now feasible. 
Overall we were able to achieve a speed up of ~2x with our 
ITRS hybrid Xeon – Xeon Phi coprocessor implementation. 

This architecture is scalable at the core level, node level and 
at the cluster level. Every BSB (coprocessor) added to the 
system provides linear scaling in overall performance of all 
BSBs combined. 

Our future work on this problem is to optimize the archi-
tecture for memory bandwidth. Also we will be reformulating 
the algorithm such that the computation can be split on mul-
tiple cores and span multiple iterations, to improve data re-
tention on the coprocessor. 
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