
 
 

 

  

Abstract—In this work, a generalized central pattern 
generator (CPG) model is formulated to generate a full range of 
gait patterns for a hexapod insect. To this end, a recurrent 
neural network module, as the building block for rhythmic 
patterns, is proposed to extend the concept of oscillatory 
building blocks (OBB) for constructing a CPG model. The 
model is able to make transitions between different gait patterns 
by simply adjusting one model parameter. Simulation results 
are further presented to show the effectiveness and performance 
of the CPG network. 

I. INTRODUCTION 
HE constituents of the locomotive motor system are 
traditionally modelled by nonlinear coupled oscillators, 
representing the activation of the flexor and the extensor 

muscles driven by, respectively, two neurophysiologically 
simplified motor neurons [1-4]. Different types of oscillators 
can be chosen and organized in a designed coupling mode, 
and usually with appropriate topological shape to allow 
simulating the locomotion of particular animals [5-9]. All 
internal parameters or weights of coupled synaptic 
connections of the oscillator network are controlled by the 
environmental stimulations, central  nervous  system 
instructions  and the network itself.  The nature of the parallel 
and distributed processing is a prominent characteristic of this 
oscillatory circuit that can be canonically described by a set of 
ordinary differential equations (ODE), which may also be an 
autonomous system. In other words, a complex biological 
pattern generator system such as the well studied central 
pattern generators (CPG) can be  simplified  and implemented 
in  a phenomenological model that uses the concrete  artificial 
neural network dynamics.  
      Following our previous modelling [10-12] and 
implementation [13] works, a generalized locomotion CPG 
architecture is presented here not only to generate a range of 
legged gait patterns but also to make the transitions between 
different  patterns. A mathematical formalism, extended from 
our previous works for gait pattern generation, is proposed to 
incorporate the gait pattern transitions. The CPG model uses 
an oscillatory building block (OBB) [12] as a pair of flexor 
and extensor motoneurons to drive individual joints. The 
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interconnection of OBBs formulates a CPG model capable of 
generating different gait patterns and their transitions. It is 
also shown that only one OBB parameter is used to control 
the creation of different gait patterns, and gait pattern 
transition is therefore implemented by changing this OBB 
parameter. 
     The proposed CPG model provides a reconfigurable 
architecture to integrate many observed gait patterns of any 
legged animals. The scalability and modularity features make 
the model particularly amenable to hardware or software 
implementation. A computer simulation shows that the model 
is able to run smoothly for both single pattern operation and 
pattern transitions provided that its initial state is properly 
configured.     

The rest of the paper is organized as follows. Section 2 
derives a mathematical framework for the OBB module and 
the CPG model, which is suitable for the neuronal network 
design. Some simulation results are presented in section 3 to 
show its performance. Finally Section 4 concludes the work. 

II. THE MODEL 
In this section a graph dynamics is first introduced, which is 
followed by the dynamics of a generalised OBB module 
description. 

A. Graph Dynamics 
Consider there is a neighbourhood-constrained system 

composed of a set of nodes and a set of shared resources 
represented by a connected graph G=(N,E) where N is the set 
of nodes, and E, the set of all resources between any pair of 
interconnected nodes. Between any two nodes i and j , i, 
j ∈ N, there can exist ije  resources, 0≥ije . The 

reversibility of node i is ir , i.e., the number of resources that 
shall be reversed by node i towards each of its coupled nodes, 
indiscriminately, at the end of its operation. A node will 
operate if and only if it possesses ir  resources from all of its 
coupled nodes.  

 
Fig. 1. An example of the graph dynamics. Node i and j have reversibility 
value as 3 and 1. Dark nodes indicate the sinks and white nodes for sources. 
A cycle of  this graph dynamic system has 4 orientations.  Node i becomes a 
sink exactly once,  and node j becomes a sink 3 times in a cycle. 
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The reversibility value for each coupled node needs to be 
chosen together with a suitable number of resources 
belonging to each node. Two criteria exist for the 
arrangement of coupling parameters to avoid starvation or 
deadlock of the period operation: (1) 

1},max{ −+≤≤ jiijji rrerr . (2) 

).,gcd( jijiij rrrrf −+=  where 
ijf  is the sum of the 

greatest multiple of ),gcd( ji rr  that does not exceed the 

number of shared resources oriented from in  to jn , and 

from jn  to in , respectively in the initial orientation. The 
first rule stipulates a range of the number of the resources 
while the second decides the exact number of resources in the 
range and their directions. Based on the two rules a dynamic 
attractor can be made with flexible control of its active 
patterns, and be immune of the system halt due to deadlock or 
starvation [14][15]. Figure 1 illustrates the graph dynamics. 

B. Dynamics of an OBB Module 
Inspired by  the Hopfield  Neural network model,  the 

SMER  graph  dynamics  can be described  by a group of 
difference equations for computer simulation. Consider a pair 
of coupled neuron i and j  with ir  and jr  as their 
reversibility, respectively. This coupled neuron pair is 
referred to as an OBB. The postsynaptic membrane potential 
of neuron i at t time instant, )(tM i , depends on three factors, 
i.e., the potential at last instant )1( −tM i , the impact of its 
coupled neuron output )1( −tv j , and the negative feedback 

of neuron i itself )1( −tvi , without considering the external 
impulses. The difference equation in the discrete time domain 
of this system can be formulated as follows: each neuron’s 
self-feedback strength is ijii ww −= , jijj ww −= , and the 
activation function is a sigmoidal Heaviside type. Thus we 
have, 
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Where W  is the weight matrix. We have the outputs of 
neurons as,  
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The selection of system parameters, such as the neuron 
thresholds and synapse weights, are crucial for modelling the 
OBB module. In the model, let )(' rhr = , h is a function of 

getting highest integer level and multiplying

 

by 10, e.g., let’s 
suppose 77=ir  and 463=jr  then we have the function  

310)463())463,77(max()( === hhrh . The neuron i and j’s 

thresholds iθ  and jθ and their synaptic weights can be 

designed as ijii fr /=θ , ij θθ −= 1 , ,/ rrW iij = , 
,/ rrW jji = . The model parameters can be arranged by 

comparing the two nodes’ reversibility. If ji rr > , then 

ji θθ >  and jiij ww >  (i.e., asymmetric coupling), that 

means, a node with smaller reversibility, corresponding to a 
neuron with lower threshold in an OBB module, will 
oscillate at a higher frequency than its companion does. 

The combination of the duty cycle (the ratio between the 
interval of the positive output and its associated oscillation 
period), the oscillation frequency and the phase latency of a 
coupled pair of neurons is the key set of joint parameters for 
modelling a one DOF joint. The oscillatory pattern transition, 
which is another important concept in addition to the pattern 
generation, can thus be understood as a transition from an 
old to a new set of the joint parameters. It is clear that the 
duty cycle of an extensor motor neuron plays an important 
role in deciding the locomotion speed of a legged animal 
[16-18]. In this model, the duty cycle of a neuron in a 
coupled two neuron system is dependent on the model 
parameters. The choice of reversibility of two coupled 
neurons thus dictates the transition between different 
patterns as it decides the model parameters, and hence the 
duty cycle. Therefore, the design of transition in patterns is 
simplified to the selection among different reversibility 
values. 

Suppose both coupled neurons have their reversibility 

changed in the amount of d
ir  and d

jr , respectively, the 

model formula (1) in a more general format involving 
pattern transition is as follows. 
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control signal, ),( jik ∈ .  
   The model parameters can be now transformed to: 
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These equations indicate that, in theory, the pattern 

transition can be incurred by the reversibility change of any 
one of the two coupled neurons. 

III. SIMULATION RESULTS 
In this section, some case studies of the operations of the 

OBB modules, in the formats of a single OBB or a group of 
OBBs for the collective behaviours, are demonstrated in 
terms of the oscillatory patterns generation and transition.  

A. Pattern Generation 
Let’s suppose that an OBB module has two coupled 

neurons i and j with the reversibility values 3=ir  and 

12=jr . According to the algorithm, we have the module 
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parameters as follows.  
Table 1. OBB module parameters 

    Neuron i    Neuron j 

Reversibility        3       12 
Weighta     0.03    0.12 
Threshold     0.25    0.75 
Initial valueb        0.66    0.34 
a The weights of Neuron i and j are ijW  and jiW , 

respectively. bInitial membrane potential values are chosen
randomly in the range of [0,1]. 

 
The oscillatory dynamics of the OBB module can be 

obtained by using Matlab Simulink, as shown in Figure 2A. 
It is noticeable that the coupled neurons start with a 
self-organised period with the given initial membrane 
potentials. The system then undergoes a stable periodic 
oscillation. The duty cycle of a neuron is decided by the 
model parameters, and thus indirectly related with the 
reversibility of two coupled neurons. The state space plot of 
this example is shown in Figure 2B.  

 
Fig. 2A. The waveforms of an OBB module in time domain. Upper panel : 
Neuron i output ; Lower panel : Neuron j output. When the system becomes 
stable, the oscillatory period is 15 seconds and the duty cycle of neuron i is 12 
seconds. Fig. 2B. The state space plot of the periodic oscillation of an OBB 
module. The two axes on the planar surface represent the membrane 
potentials of two neurons, the vertical axis is for the firing state of neuron j. 
From different initial membrane potentials, the model evolves into a 
sequence of periodical states like a limit cycle.     

B. Pattern Transition 
As it is shown above, a change of the reversibility of any 

one of two coupled neurons results in the change of model 
parameters, and hence the change of oscillatory patterns. 

Therefore, the pattern transition in the OBB module is 
straightforward. In Simulink simulation, a control signal, 
corresponding to the control signal in formula 3, is used to 
switch between the old and new model parameters derived 
from the old and new reversibility of the coupled neurons. 
For instance, if we need to change the reversibility of a pair 
of coupled neurons from }12,3{ == ji rr  to }3,3{ == ji rr , 

the dynamic model parameters are changed accordingly,  
Table 2. OBB module parameters 

    Old  i      Old  j         New  i       New j 

Reversibility         3          12             3                3 
Weight     0.03      0.12           0.3             0.3
Threshold     0.25      0.75             1               0 
Initial value       0.66      0.34           0.24          0.76

 
Like a switch being used to control the pattern change, a 

transition between old and new patterns can be achieved 
with some possible intermediate self-organization period 
(see Figure 3). 

 
Fig. 3. A pattern transition process. The transition occurs at the time instant 
of 40, before when the pattern has the reversibility of }12,3{ == ji rr , and 

afterwards it has }.3,3{ == ji rr  

It is clear that if no transition happens then neuron i will 
continue its first pattern, which becomes high at time instant 
39 and lasts for 12 seconds till 51. The duty cycle for neuron 
i is 0.8 (and for neuron j is 0.2 accordingly). As a command 
for pattern transition occurs at 40, ideally the new pattern 
should start immediately after this time instant. Practically a 
self-organisation period exists such that the new pattern 
starts at the time instant of 51 second. This is because the 
membrane potentials of two coupled neurons are not ready 
(or more accurately, not as close as possible to their 
thresholds due to the operation of the old pattern) to make 
the transition to happen immediately. After a short period, 
though, the model will evolve into the desired new pattern 
with the duty cycle of neuron i as 0.5 (neuron j as 0.5). We 
argue that this phenomenon is biologically plausible as no 
real creatures will act immediately, i.e., zero delay, upon a 
command of action.  

C. Simulation of Insect Legs 
A demonstration of how to use the proposed algorithm to 
simulate the gait patterns and their transitions for the legged 
locomotion is briefly introduced here. The simplified 
hexapod structure is represented by 6 pairs of flexors (for 
nodes labeled F) and extensors (for nodes labeled E) working 
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as 6 joints, one for each leg. This group of joints is used for 
driving a hexapod to move forward. More realistic hexapod 
legs should be driven by more groups of joints to move, e.g., 
up and down, though the underlying operation is the same as 
the flexor and extensor pairs proposed in this work. The nodes 
share a different number of resources represented by small 
white circles. The operation of a pair of nodes is controlled by 
SMER algorithm, in a same way as is shown in Figure 1.     

 
Fig. 4. Two snapshots of the running hexapod CPG structure for slow speed 
(upper panel) and medium speed (lower panel) locomotion. The black nodes 
denote the corresponding neurons are firing whilst the grey nodes are those 
which are idle. A pair of coupled flexor and extensor neurons follow the 
SMER algorithm to become firing or idle. The small white circles within 
each pair denote resources shared between nodes.   
 

The animation shows that a transition between different 
gait patterns can happen if the the number of shared 
resources is reconfigured for the locomotion system.  That is, 
in the slow speed locomotion the reversibility of the flexor 
and the extensor is 5 and 1, respectively while in the 
medium speed locomotion the reversibility of the flexor and 
the extensor is 3 and 1, respectively. Although for different 
gait patterns the number of inter-flexor resources is different, 
they are released to the coupled side as a whole since all 
flexors have the same reversibility. Therefore the use of 
resources between flexors can be treated as the glue to bind 
the 6 legs together to form a body of an insect. The 
implementation of the hexapod structure is straightforward 
and similar to the simulation of a single pair of flexor and 
extensor oscillators.  

IV. CONCLUDING REMARKS 
An extended OBB model that is able to be configured to 

build up a tailor designed architecture for both model 
generation and transition has been proposed in this work. 
The simple OBB module constitutes a basis from which a 
complex, rhythm-producing model can be designed. Due to 

adoption of the OBB module, the whole model can be 
modular and scalable for design, prototype, manufacture and 
test. It is also an asynchronous and self-clocked system if the 
reversibility values and initial membrane potentials are 
chosen for individual OBB modules. Because of the 
simplicity of the system, the hardware version of a simple 
OBB module can be made such that a system with arbitrary 
complexity can be hopefully developed for real-time 
hardware implementation.  
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