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Abstract — This paper presents our research in building a 
virtual humidity sensor using recurrent Neural Networks. 
Recurrent Neural Networks are promising methods for the 
prediction of time series because they provide feedback 
connections from hidden layer to its inputs and, therefore, can 
store temporal information learned from previous time steps. 
This study applies Elman Recurrent Neural Network (ERNN) to 
forecast the specific humidity from three weather stations. In 
addition, this study examines the feasibility of applying ERNN in 
time series forecasting by comparing it with multilayer 
perceptron network. The experiment results indicate that ERNN 
is a promising alternative to specific humidity forecasting.  

Keywords — humidity sensor, recurrent Neural Networks 

I. INTRODUCTION 
Specific humidity (SH), defined as the ratio of the mass of 

water vapor to the mass of dry air (gm/kg), is an important 
input for critical vehicle control systems that operate the 
engine, transmission, climate control and others. Specifically, 
it is needed to control spark timing, EGR (exhaust gas 
recirculation) rate, spark advance and climate control 
functions on vehicles that meet future emissions and fuel 
economy targets. Atmospheric temperature and SH changes 
have significant effects on the specific power output, specific 
fuel consumption and the emissions of nitric oxide and smoke 
from an automotive diesel (compression ignition) engine [1]. 
Better use of SH measurements to improve the vehicle engine 
emission control system is a current area of research [2][3]; as 
is automatic windshield defogging control system [4], and air 
conditioning system [5].  

A few research works have been conducting in predicting 
specific humidity. Cheng et al [6] presented a neural network 
which produces an output based on a linear combination of 
non-linear physical signals generated by conventional physical 
sensors. MacNeille et al [7] developed a system for providing 
weather conditions, which uses a server to communicate with 
a weather data provision service. The authors believe this 
paper is the first demonstration of a virtual SH sensor using a 
neural net trained with historic weather data to predict SH 
from normal vehicle sensors.  

Neural networks offer an alternative approach to the 
hardware humidity sensors.  Prediction of ambient 
temperature, thermal condition and SH have been studied by 
researchers in much larger scales, such as global climate 

modeling [8], building architecture [9][10][11][12], and 
agriculture [13]. Mathematical models based on auto-
regression [10][11][12], artificial neural network [8][14], and 
numerical estimation [9][15] have been used to address these 
large scale problems. In [10] a neural network based nonlinear 
autoregressive model with external inputs (NNARX) was used 
to predict the thermal behavior of an open office in a modern 
building.  External and internal climate data was recorded over 
three months then used to build and validate dry-bulb 
temperature and RH prediction models on several time scales 
(3 hour and 30 minutes). The accuracy of the multiple step-
ahead predictions were tested against multiple performance 
measures such as goodness of fit, mean squared error, mean 
absolute error and coefficient of determination between 
predicted model output and accurate physical measurements.  
The optimal brain surgeon strategy was used to prune the 
network structure of the NNARX model to fully optimize the 
network. The results demonstrate that both the NNARX and 
numerical estimation models provide acceptable predictions, 
but the nonlinear NNARX model outperforms the linear ARX 
model.  

In [11], Yigit and Ertunc use a neural network system to 
predict air temperature and SH at the outlet of a wire-on-tube 
heat exchanger.  A feed-forward neural network is trained to 
model the thermal performance of the coil using nine inputs: 
temperature and SH of the air entering the coil, air velocity in 
the coil, frost weight of the condensation in the coil, the 
temperature at the coil surface, mass flow rate of the heat 
transfer fluid, its temperature at the inlet and outlet of the coil 
and the ambient temperature.  The predicted temperature and 
SH of the air leaving the coil are output by the neural net.  The 
predicted values are found to be in good agreement with the 
measured values in the tests, with mean relative errors less 
than 1% for outlet air temperature and 2% for outlet SH. 

In contrast to the traditional feed-forward neural networks, 
recurrent neural network is capable of implementing temporal 
dynamics, namely representing time parameters implicitly. Its 
recurrent connections are based precedence relationships 
while the forward connections are based on dependency 
relationships [16]. Various RNNs with different architectures 
and topologies have been studied by researchers. For example, 
fully recurrent network, Hopfield network, Elman and Jordan 
network, echo state network, bi-directional network, 
continuous-time recurrent network, hierarchical recurrent 
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network, recurrent multilayer perceptron and Pollack’s 
sequential cascaded network can all be classified as recurrent 
neural network [18][19][20][21][22]. 

Among them, the most basic and popular one may be the 
Elman network employed by Jeff Elman. A three-layer 
network is used, with the addition of a set of "context units". 
There are connections from the middle (hidden) layer to these 
context units fixed with a weight of one [17]. At each time 
step, the input is propagated in a standard feed-forward 
fashion, and then a learning rule is applied. The fixed back 
connections result in the context units always maintaining a 
copy of the previous values of the hidden units. Thus the 
network can maintain a sort of state, allowing it to perform 
such tasks as sequence-prediction that is beyond the power of 
a standard multilayer perceptron. 

Another famous type of recurrent neural network is 
Hopfield network. The Hopfield network is of historic interest 
although it is not a general RNN, as it is not designed to 
process sequences of patterns. Instead it requires stationary 
inputs. It is a RNN in which all connections are symmetric. 
Invented by John Hopfield in 1982 [18], it guarantees that its 
dynamics will converge. If the connections are trained using  
Hebbian learning then the Hopfield network can perform as 
robust content-addressable memory, resistant to connection 
alteration. A variation on the Hopfield network is the 
bidirectional associative memory (BAM) [19]. The BAM has 
two layers, either of which can be driven as an input, to recall 
an association and produce an output on the other layer. 

To accurately forecast the specific humidity, the Elman 
recurrent neural network is exploited in this paper. The paper 
is organized as follows: In section II, the implementation 
algorithms for MLP and ERNN are introduced; in section III, 
a specific humidity forecasting system is developed using both 
MLP and ERNN algorithms, and the experiment performance 
is analyzed; finally in section IV, conclusions are made based 
on case study.  

II. MODELING HUMIDITY SENSOR USING NEURAL 
NETWORKS 

In this section, we first describe a virtual humidity sensor 
model, the two neural network systems we use to implement a 
virtual humidity sensor. 

A. Virtual Sensor System for Predicting Ambient Humidity 
National Oceanic and Atmospheric Administration 

(NOAA) provides local climate data for all states in USA 
(http://www.ncdc.noaa.gov/most-popular-data#loc-clim ) 

Climate data include outlook, temperature, pressure, dew-
point, relative humidity, precipitation, sunrise time, sunset 
time, wind speed, wind direction, etc.  The problem we are 
trying to solve is to predict specific humidity (SH) using other 
available weather data.   

SH is a function of air-mass, temperature and barometric 
pressure. The premise of the proposed virtual sensor is that an 
intelligent system such as a neural network can be trained to 
determine the SH from the air mass that is influencing the area 
surrounding the vehicle using the time, date, temperature and 

barometric pressure, and other signals obtainable from the 
NOAA.  

 Mathematically, we describe the problem as follows.  At 
any time t, we intend to predict specific humidity value using 
a computer system F such that SH(t) = F( x (t) ), where x (t) 
is a feature vector extracted from the  available weather at 
time t, and F is the virtual sensor system that outputs the 
specific humidity at time t. 

Selection of input signals from weather station and 
extracting effective features for building the virtual sensor is 
an essential aspect of conceptualizing a virtual sensor.  We 
select the signals that are available at a NOAA weather 
station.  Through scientific analysis we extracted the 
following signals, day index, hour index, Sun Angle, 
temperature, barometric pressure, and rainy status.  From 
these signals we extracted 19 features, which are illustrated in 
Table 1. Among them, sun angle was calculated based on 
location, time, and date under the assumption that earth is a 
perfect sphere. Several statistical features were extracted from 
the raw temperature and barometric pressure signals 
considering the fact that they are two key parameters in 
determining specific humidity according to the equation (10). 
A feature “Rainy Status” was decoded from the CAN bus 
signal “wiper status” in a vehicle. The “rainy” situation 
includes 7 possible weather types, which are rain, snow, snow 
grains, ice crystals, ice pellets, hail and small hail. Several 
other raw signals, such as wind speed, wind direction, and 
visibility were not considered for feature extraction because 
they are not available in current vehicle CAN bus system.    

Below features serve as input to the neural works 
described below. 

TABLE I. FEATURE LIST OF LOCAL AMBIENT HUMIDITY ESTIMATION SYSTEM 

Index Symbol Description 
1

tDD Day index (1 - 31)

2
tHH Hour Index (0-23)

3
tS Sun Angle (0 – 90 degree)

4/5/6 1/ /t tT T −

 
Temperature at current time/5-minute 

ago/10-minute ago 

7 1av
tT Mean Temperature of past 1 hour

8 6av
tT Mean Temperature of past 6 hours

9 24av
tT Mean Temperature of past 24 hours

10 1std
tT Temperature Std. of past 1 hour

11 min1
tT Min Temperature of past 1 hour

12 max1
tT Max Temperature of past 1 hour

13/14/15 1 2/ /t t tP P P− −

 
Barometric Pressure at current time/5-

minute ago/10-minute ago 

16 1std
tP Barometric Pressure Std. of past 1 hour

17 min1
tP Min Barometric Pressure of past 1 hour

18 max1
tP Max Barometric Pressure of past 1 

hour19
tRS Rainy Status (0-nonrainy, 1-rainy)
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B. Multilayer Perceptron 
The most popular neural network architec

is perhaps the multi-layer perceptron for bo
and regression [20]. The basic MLP equat
follows, 
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As a heavily parameterized model, ML
largely depends on the number of hidden 
complexity of MLP can be flexibly control
proper number of hidden nodes. The universa
property is perhaps the greatest breakthr
credence to the capacity of neural network [
Under certain mild conditions on the hidden 
function, any given continuous function on a 
be approximated as close as arbitrarily given 
with a finite number of hidden nodes. Fo
important to avoid over-parameterization, 
large amount of noise is contained in in
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to select the proper number of hidden nodes.  

During training process, the most well-
algorithm, based on the steepest descent conc
propagation algorithm. Another famous 
optimization method called Levenberg Marq
regarded to be more efficient than the basic b
algorithm [25]. Also this second order algorith
experiment implementation. (Matlab function 

C. Elman Recurrent Neural Network 
Elman Recurrent Neural Network is o

famous recurrent neural networks proposed b
[17]. It utilizes the well-known back-prop
algorithm and feedbacks connections from th
its inputs. Therefore the input of the recurr
consists of two parts: the true input from the
the context input, a copy of the activations of
from previous time step. For this reason, the 
neural network is able to store the temporal i
to any previous states. Different from th
connections, the weights of feedback recurren
usually fixed as 1 and are not subject to w

cture in use today 
oth classification 
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Sigmoid function serves as the 
hidden layer and the activation func
linear. The number of output nodes
of hidden nodes by S1, input nodes
Elman recurrent neural network is 
time step t, the output of jth hidden
Vj(t) and can be computed using for
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Fig.1. Architecture of Elman Recurrent N
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where η  is the learning rate, and the α  represents the 
momentum parameter, m the number of layers of network, N 
the number of input data samples. In the two-layer Elman 
recurrent neural network example, hidden layer is represent by 
m=1, output layer by m=2. δ can be computed using formula 
(7) and (8) 

 

       2
2(t) (t) (t), 1, 2, ...,m

i i iT O i Sδ = = − =           (7) 

      1 2 2 2
1(t) [1 (V (t)) ] , 1,2,...,m m m

j j ij ii
W j Sδ δ= = == − =∑     (8) 

 

, where Ti(t) is the prediction true target and Oi(t) is the neural 
network output. The momentum parameter α and learning 
rate η will be automatically adjusted and obtained during 
training process based on the Hertz adaptive learning 
algorithm [26] shown by formula (9) 

               
0, ;

, 0;
, 0.

otherwise
a if E
b if E

η η
η

⎧
⎪Δ = − Δ >⎨
⎪+ Δ <⎩

                        (9) 

, where the EΔ  is the cost function change, and a, b are 
constant positives.  

D. A system of Neural Networks for Predicting Humidity 
Value 
For predicting humidity values, we train one neural 

network for each month of the year.   Each month, a neural 
network is trained.  NNi represents the neural network trained 
using the features shown in Table 1.  The training data is 
historical weather data collected for the month before and 
after i, and the ith month of the same year period.  Figure 2 
illustrates the data used to train a neural network to predict 
humidity measures in the month of January. 

III. EXPERIMENTS 
In this section, three neural network systems were 

developed to estimate the ambient specific humidity in three 
USA cities, Detroit, Houston, and Phoenix, and three systems 
were further evaluated using year 2012’s testing data. There 
are basically two objectives in performing ambient specific 
humidity estimation using downloaded weather station data. 

 

 

 

 

 

 

 
Fig.2.  Illustration of data used to train a humidity sensor. 

The primary objective is to prove the concept that an in-
vehicle physical humidity sensor can be replaced with a 
software module. In another word, with free weather station 
data in hand, we design experiments to test the feasibility of 
estimating the specific humidity signal using only signals that 
are available in a vehicle’s CAN (Controller Area Network) 
bus system. The secondary objective is that the accurately 
estimated local ambient specific humidity can be further 
employed as an input signal to improve the performance of the 
vehicle intake air specific humidity estimation system, 
considering the fact that vehicle intake air specific humidity is 
usually highly correlated with local ambient specific humidity. 

A brief introduction about the data source is summarized 
in the “Data Collection” subsection; the details about the 
estimation system’s input features, structure, and algorithms 
are included in the “Method” subsection. In the last 
subsection, we present the experiment design and results.  

A. Data Collection 
The weather data from three local weather stations, 

Detroit, Houston, and Phoenix, were collected from NOAA 
official website [27]. The time span and resolution of the 
dataset is shown in Table 2. A variety of signals, such as 
station number, date, visibility, temperature, barometric 
pressure, wind speed, et al, are included in the raw dataset. 
Signal preprocessing was performed to handle the data 
missing and invalidity problem due to the reported station 
sensor malfunctions during certain periods.  

B. Specific Humidity Calculation and System Performance 
Metric 
Both of the downloaded weather station data and collected 

real vehicle data contain relative humidity signal instead of 
specific humidity signal , so an equation is used to calculate 
specific humidity at every data sample given relative 
humidity, temperature and barometric pressure.   

17.623801 exp( )
243.5

17.626.112 exp( )
243.5

t
t

t
t

t
t t

t

TRH
TSH TP RH

T

×× ×
+= ×− × ×

+

            (10) 

The formula (10) illustrates the conversion equation, where 
the tSH  (g/Kg) is the calculated specific humidity at time t, 

the tRH  (g/Kg) is the relative humidity at time t, tT  (Celsius) 

is the ambient temperature at time t, and the tP  (hPa) is the 
barometric pressure at time t. Contact authors for ‘Ford 
Engineering Specification for a Physical Specific Humidity 
Sensor’ for the raw conversion formula and detailed 
explanation. (Document is not allowed to be disclosed due to 
the confidential clause) 

Number of out of bound estimatesError Rate
Number of all estimates

− −=         (11) 

                    1Accuracy Error Rate= −                         (12) 

 

Training data 
(2000 – 2011) 
December   
January 
February  weather data 

 

Neural network 
for January
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TABLE II. DATA SUMMARY OF LOCAL AMBIENT HUMIDITY ESTIMATION 
SYSTEM 

Location Time Span Resolution

Detroit(DTW) Jan 2000 to Feb 2013 5 minutes

Houston(HOU) Mar 2005 to Feb 2013 5 minutes

Phoenix(PHX) Jan 2000 to Feb 2013 5 minutes

 

The formula (11) and (12) illustrate the definition of 
system “error rate” and “accuracy” respectively. If the 
absolute value of the difference between a system estimated 
specific humidity and the truth value is greater than 2.5g/Kg, 
then this estimate is defined as an “out-of-bound” estimate. 
This accuracy concept instead of the ‘mean square error’ is 
used to evaluate system performance in this paper because it is 
consistent with the current auto industry development 
specification. Contact authors for ‘Ford Engineering 
Specification for a Physical Specific Humidity Sensor’ for 
more details. (Document is not allowed to be disclosed due to 
the confidential clause) 

C. Training and Testing Data Partition Strategy 
A humidity detection system consists of 12 neural 

networks to estimate ambient specific humidity, one for each 
month of the year. The systems were trained using the weather 
data recorded every 5 minutes between 2000 and 2011 for two 
cities, Detroit and Phoenix, between 2005 and 2011 for one 
city, Houston. The systems were evaluated using the weather 
data recorded in the year of 2012.  Also, to train and test a 
neural network for one city and one month, only historical 
adjacent months’ data for that city were used as training data. 
For example, when developing a neural network for December 
of Detroit, we would train the system using November, 
December, and January’s data between 2000 and 2011 in 
Detroit as the training data, and test the system using 2012 
December’s data in Detroit.  

D. Experiment Design and Results 
For MLP algorithm, different numbers of hidden nodes, 5, 

10, 15, and 20, were experimented. Epoch and learning rate 
were set as 5000 and 0.1 respectively after trials and errors. 
For ERNN algorithm, different numbers of hidden nodes, 5 
and 10, were experimented. Epoch, learning, and delayed 
feedback steps were set as 5000, 0.1, and 2 respectively after 
trials and errors. The system performance is illustrated in 
Table 3. The algorithm by using which system produced 
greater testing accuracy was deemed as optimal one, and was 
therefore displayed under the “optimal algorithm” column. In 
estimating the ambient specific humidity in the Detroit area, 
with the 11 months of available test data, the system reached 
2-sigma accuracy requirement (95.4%) for nine months, and 
3-sigma accuracy requirements (99.7%) for seven months.  In 
the Houston and Phoenix area, with the 12 months weather 
data in 2012, the system reached 2-sigma accuracy 
requirement for eleven and ten months respectively, and 3-
sigma accuracy requirements for four and two months 
respectively. 

Figures 3 to 5 show 3 examples of ERNN prediction 
example.  

TABLE III. PERFORMANCE SUMMARY OF LOCAL AMBIENT HUMIDITY 
ESTIMATION SYSTEM 

  
Houston Detroit Phoenix

Testing 
Accur. 

Optimal 
Algor. 

Testing 
Accur. 

Optimal 
Algor. 

Testing 
Accur. 

Optimal 
Algor. 

Jan. 97.47% ERNN 100% ERNN 99.17% ERNN

Feb. 98.18% ERNN 100% ERNN 100% ERNN

Mar. 97.09% ERNN 99.83% MLN 97.90% ERNN

Apr. 97.60% ERNN 100% ERNN 98.67% ERNN

May 99.47% MLN 93.42% ERNN 100% MLN

Jun. 99.84% MLN 91.88% MLN 95.97% ERNN

Jul. 100% MLN NA NA 73.93% MLN

Aug. 100% MLN 97.35% MLN 97.76% MLN

Sep. 97.18% MLN 95.49% ERNN 93.39% MLN

Oct. 92.26% MLN 100% ERNN 96.37% ERNN

Nov. 96.84% ERNN 100% ERNN 96.11% ERNN

Dec. 100% ERNN 100% ERNN 97.89% ERNN

 

 

 
Fig.3. ERNN prediction performance for Houston January data 

 

 

 

 
Fig.4. ERNN prediction performances for Detroit May data 
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Fig.5. ERNN prediction performances for Phoenix April data 

 

IV. CONCLUSION REMARKS 
In this paper, MLP and ERNN algorithms are studied and 

utilized respectively to develop a weather station specific 
humidity forecasting system. We evaluated the neural network 
architectures using the weather data downloaded from the 
web.  The results of our experiments show that the ERNN 
algorithm has great potential and can generally beat MLP 
during winter time when the data noise is relatively small. On 
the other hand, ERNN may not perform as good as a MLP 
when larger amount of noise is contained in the training and 
test data, since errors are accumulated through recurrent feed-
back connections. Other state-of-art time series forecasting 
methods will be further studied and experimented in the future 
work.  
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