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Abstract—In This paper, by using the theory of calculus on
time scales and constructing some suitable Liapunov functions,
we obtained the existence, uniqueness and global exponential
stability of equilibrium point of delayed Hopfield neural net-
work with impulses on time scale.The conditions can be easily
checked in practice by simple algebraic methods.

I. INTRODUCTION AND SYSTEM DESCRIPTION

HOPFIELD proposed Hopfield neural networks (HNNs)
model based on the assumption that the elements in

the network communicate with each other instantaneously
without time delays in 1980s [1-2]. During the past several
years, the convergence dynamics of HNNs have been exten-
sively studied because of the wider application in information
processing, optimization problems, etc. Stability results that
impose constraint conditions on the network parameters will
be dependent on the intended applications in investigating
the stability properties of neural networks.
The theory of time scale was initiated by S. Hilger

in 1988, which has recently received a lot of attention.
The books on the subject of time scale, by Agarwal [3],
Bohner and Peterson [4-5], summarize and organize much
of time scale calculus. Its novel and fascinating type of
mathematics is more general and versatile than the traditional
theories of differential and difference equations as it can,
under one framework, mathematically describe continuous
and discrete hybrid processes and hence is the optimal way
forward for accurate and malleable mathematical modelling.
As well known, both continuous and discrete systems are
very important in implementing and applications. So, it is
very meaningful to study the stability of neural networks. In
recent years, dynamic equations on time scale have received
much attention. Several authors have expounded on various
aspects of this new theory(see [3, 6-8] and the references
cited therein).
In this paper, we study a new Hopfield neural network

on time scale, which is defined by the following system of
dynamic equation on time scale.

x�i (t) = −cixi(t)+

n∑

j=1

aijfj(xj(t−τij))+Ji i = 1, 2, · · · , n

(1.1)
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for t ∈ T
+
0 , T

+
0 is the T-interval {t ∈ T, 0 ≤ t}, where T

denotes a time scale, which is an arbitrary nonempty closed
subset of the real number R with the topology and ordering
inherited from R and with bounded graininess μ. For the
simplicity, we assume that 0 ∈ T and T is unbounded above,
i.e., sup T =∞. τij is positive constants such that the delay
function τij(t) := t− τij < t and satisfies τij(t) := T→ T

and for all t ∈ T.

In (1.1), x�i expresses the delta derivative of the function
xi(t) (see Definition 3). ci represents the rate with which
the ith neuron will reset their potential to the resting state in
isolation when they are disconnected from the network and
the external inputs. n corresponds to the number of neurons in
layers, xi(t) is the activations of the ith neuron on time scale
T, respectively. aij is the connection weight, Ji denotes the
external input. fj is the input-output function (the activation
function). Time delay τij on time scale T correspond to finite
speed of axonal signal transmission, τ = max1≤i,j≤n(τij)

The initial condition associated with (1.1) is given

xi(s) = φi(s), s ∈ [−τ, 0]
⋂

T, (1.2)

where φi ∈ Crd([−τ, 0]
⋂
T,R) is rd-continuous which are

defined in Section 2 (see Definition 5).
We denote, by C0

rd := Crd([−τ, 0]
⋂
T × ... ×

[−τ, 0]
⋂
T −→ R

n), the space of rd-continuous function
φ = (φ1, ..., φn)

T , which is equipped with the norm ‖
φ ‖

∞
= Σn

i=1 supt∈[−τ,0]
⋂

T | φi(t) |, then (C0
rd, ‖ . ‖∞

) forms a Banach space (see Ref. [6, Example 9]). For
any φ ∈ C0

rd, we say that x(t) is a solution of (1.1) on
[0,∞]

⋂
T through φ and denote by x(t, φ), if x(t) is a rd-

continuous function defined on [0,∞]
⋂
T such that x(t) = φ

on [0,∞]
⋂
T respectively, and x(t) satisfies (1.1) for t ∈

[0,∞]
⋂
T, where x(t) = x(t, φ) = (x1(t, φ), ..., xn(t, φ))

T .

Throughout the whole paper, we assume that the activation
function fj possesses the following property:
(H): The function fj(j = 1, 2, ..., n) is bounded function and
Lipschitz continuous on R with the Lipschitz constant Lj ,
respectively, i.e.,

| fj(x) − fj(y) |≤ Lj | x− y |

System (1.1) is quite general and it includes several well
known neural networks model as its special cases such as
delay differential equations [9-12]:

ẋi(t) = −cixi(t) +

n∑

j=1

aijfj(xj(t− τij)) + Ji (1.3)
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i = 1, 2, · · · , n, for t ∈ [t0,∞], and delay difference
equation :

�
xi(t) = −cixi(t) +

n∑

j=1

aijfj(xj(t− τij)) + Ji (1.4)

i = 1, 2, · · · , n, for t ∈ {n0, n0 + 1, ..., }, where �xi(t) =
xi(t+1)−xi(t) is the forward difference operator. Eqs.(1.3)
and (1.4) are extensively investigated by many authors and a
variety of computing result have accumulated in the literature
concerning the global exponential stability in the past decade
. To the best of our knowledge, no paper in the literature has
investigated neural network on time scale. In this paper, we
use the calculus theory on time scale to unify and improve
discrete-time and continuous-time Hopfield neural networks
(1.3) and (1.4) establish some sufficient conditions to ensure
existence and global exponential stability of equilibrium of
Eq. (1.1). This work offers the method to study (1.3) and
(1.4) under one framework.
The paper is organized as follows: In Section 2, we

present some basic definitions concerning the calculus on
time scale. In Section 3, we develop Liapunov functions
technique on time scale to give some sufficient conditions
of global exponential stability for Eq. (1.1). In Section 4, an
example is given to illustrate the effectiveness of our results.
In Section 5, we give some conclusions.

II. SOME PRELIMINARIES

In this section, we will introduce some standard defini-
tions(see [1-3,7,8]).
Definition 1: A time scale T is arbitrary nonempty closed
subset of the real set R with the topology and ordering
inherited from R.
Definition 2: On any time scale T, we define the forward
and backward jump operators by

σ(t) := inf{s ∈ T : s > t}, ρ(t) := sup{s ∈ T : s < t},

we put inf ∅ := supT and sup ∅ := inf T , where ∅ denotes
the empty set. A point t is said to be left-dense if t > inf T
and ρ(t) = t, right-dense if t < supT and σ(t) = t,
left-scattered if ρ(t) < t and right-scattered if σ(t) > t.
The graininess function m for a time scale T is defined by
μ(t) := σ(t)− t. If T has a left-scattered maximum m, then
we defined T

k to be T−m. Otherwise T
k = T.

Definition 3: For a function f : T −→ R (the range R

of f may be actually replaced by Banach space) the (delta)
derivative is defined by

f� =
f(σ(t)) − f(t))

σ(t) − t

if f is continuous at t and t is right-scattered. If t is not
right-scattered then the derivative is defined by

f� = lim
s−→t

f(σ(t))− f(s))

σ(t) − s
= lim

s−→t

f(t)− f(s)

t− s

provided this limit exists.
Definition 4: A function F : Tk

−→ R is called a delta-
antiderivative of f : T −→ R provided F� = f holds for

all t ∈ T
k. In this case we define the integral of f by

∫ t

a

f(s)�s = F (t)− F (a)

for t ∈ T and we have the following formula
∫ σ(t)

t

f(s)�s = μ(t)f(t)

for t ∈ T
k

Definition 5: A function f : T −→ R is called right-dense
continuous provided it is continuous at right-dense points of
T and the left sided limit exists (finite) at left-dense point
of T. The set of all right-dense continuous functions on T is
defined by Crd = Crd(T) = Crd(T,R).
Definition 6: We say that a function p : T −→ R is regressive
provided 1 + μ(t)p(t) 	= 0 for all t ∈ T. The set of all
regressive functions on a time scale T forms an Abelian
group under the addition ⊕ defined by

p⊕ q := p+ q + μpq

The additive inverse in this group is denoted by �p :=

−

p

1 + pq
. We then define subtraction � on the set of re-

gressive functions by

p� q := p⊕ (�q).

It can be shown that p⊕ q(�q) = −
p− q

1 + pq
.

The set of all regressive and right-dense continuous functions
will be denoted by � = �(T) = �(T,R).
Definition 7: We define the set �+ of all positively regressive
elements of � by

�

+ = �+(T,R) = {f ∈ � : 1+μ(t)f(t) > 0 for all t ∈ T}

Next we give the definition of the exponential function and
list some of its properties.
Definition 8: For h > 0, we define the function ξh(x) =
1

h
log(1 + xh)for any real number x except

− 1

h
where Log

is the principle Logarithm function. If h = 0, we define
ξ0(x) = x.

Definition 9: If p(t) ∈ �, we define the generalized expo-
nential function as

ep(t, s) = exp(

∫ t

s

ξμ(τ)(p(τ))
�
τ)

= exp(

∫ t

s

log(1 + μ(τ)p(τ))

μ(τ)

�
τ)

for τ ∈ T. Alternately, we can define the exponential
function ep(·, t0) to be the unique solution of the IVP

x� = p(t)x, x(t0) = 1 for p(t) ∈ �

Lemma 1: If p, q ∈ � then
(i) e0(t, s) ≡ 1 and ep(t, t) = 1;
(ii) ep(σ(t), s) = (1 + μ(t)p(t))ep(t, s);
(iii) ep(t, s)ep(s, r) = ep(t, r);
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(iv) ep(t, s) = 1/ep(s, t) = e
�p(s, t);

(v) ep(t, s) > 0, for p ∈ �+;
(vi) ep(t, s)eq(t, s) = ep⊕q(t, s);
(vii) ep(t, s)/eq(t, s) = ep�q(t, s).
Lemma 2: ([13]) Assume that f, g : T → R are delta
differential at t ∈ T

k. then

(fg)�(t) = f�(t)g(t) + f(σ(t))g�(t)
= f(t)g�(t) + f�(t)g(σ(t))

Lemma 3: ([14-15]) IfH(x) ∈ C(Rn,Rn) satisfies following
conditions
(i) H(x) is injective on R

n

(ii) ‖ H ‖→ +∞ as ‖ x ‖→ +∞
then H(x) is a homeomorphism of Rn onto itself.

III. MAIN RESULTS

Firstly, by means of homeomorphism theory, we will
study the existence and uniqueness of the equilibrium point
of system (1.1). An equilibrium point of system (1.1) is
a constant vector (x∗1, · · · , x

∗

n) ∈ Rn which satisfies the
equation

−cix
∗

i +

n∑

j=1

aijfj(x
∗

j ) + Ji = 0

the existence of equilibrium point of system (1.1) is easily
obtained by Brouwer’s fixed point theorem.
Theorem 1: Assume that (H) hold, suppose further that for
each i=1...n, following inequality is satisfied

ci >

n∑

j=1

|aji|Li, i = 1, · · · , n, (3.1)

then there exists a unique equilibrium point of system (1.1)
Proof: Consider a mapping Φ : Rn

→ R
n defined by

Φi(x) = −cixi +
n∑

j=1

aijfj(xj) + Ji (3.2)

where x = (x1, · · · , xn)
T

∈ R
n, Φ(x) =

(Φ1(x), · · · ,Φn(x))
T
∈ R

n. First, we want to show that Φ
is an injective mapping on R

n. By contradiction, suppose
that there exists distinct x, x̄ ∈ R

n such that Φ(x) = Φ(x̄),
Where x = (x1, · · · , xn)

T and x̄ = (x̄1, · · · , x̄n)
T . then it

follows from (3.2) that

cixi − cix̄i =

n∑

j=1

aij(fj(xj)− fj(x̄j)) (3.3)

It follows from (H) and (3.3) that

ci|xi − x̄i| = |

n∑

j=1

aij [fj(xj)− fj(x̄j)]|

≤

n∑

j=1

|aij ||fj(xj)− fj(x̄j)|

≤

n∑

j=1

Lj|aij ||xj − x̄j |

Then we have
n∑

i=1

(ci −

n∑

j=1

Li|aji|)|xi − x̄i| ≤ 0 (3.4)

It follows from (3.1) and (3.4) that |xi − x̄i| = 0, i = 1...n.
That is x = x̄, which leads to a contradiction. Therefore,Φ is
an injective on Rn. So we shall prove Φ is a homeomorphism
on R

n. For convenience, we let Φ̃(x) = Φ(x)−Φ(0),Where

Φ̃i(x) = −cixi +

n∑

j=1

aij(fj(xj)− fj(0)), i = 1, · · · , n

We assert that ‖Φ̃‖ → ∞ as ‖x‖ → ∞
Clearly,

‖Φ̃‖ =

n∑

i=1

| Φ(x) |=

n∑

i=1

| −cixi +

n∑

j=1

aij(fj(xj)− fj(0)) |

≥

n∑

i=1

| ci | xi | − |

n∑

j=1

|aij |(fj(xj)− fj(0)) ||

≥

n∑

i=1

| ci | xi | −

n∑

j=1

|aij |Lj |xj | |

≥

n∑

i=1

| (ci −
n∑

j=1

|aji|Li)|xi| |

So,it follows that Φ satisfies ‖Φ‖ → ∞ as ‖x‖ → ∞. By
Lemma 3, Φ is a homeomorphism on R

n and there exists a
unique point x∗ = (x∗1,··· ,x

∗

n)
T such that Φ(x∗) = 0.From

the definition of Φ, we know that x∗ = (x∗1,··· ,x
∗

n)
T is the

unique equilibrium point of Eq.(1.1).
Secondly, we study the global exponential stability of the
unique equilibrium for Eq. (1.1) on time scale by using
Liapunov method.
Theorem 2: Suppose that system (1.1)-(1.2) satisfies (H), if
there exist constants λi and p > 0 such that

λi{p+ [c2iμ(t)− 2ci +
n∑

j=1

| aij | Lj(1 + ciμ(t))]

×(1 + pμ(t))} +

n∑

j=1

λj | aji | Li[1 + cjμ(t+ τji)

+n | aji | Li](1 + pμ(t+ τji))ep(t+ τji, t) < 0
(3.5)

for all i, j = 1, 2, ..., n, t ∈ T
+
0 , then the equilibrium x∗ =

(x∗1,··· ,x
∗

n)
T of system (1.1)-(1.2) is globally exponentially

stable for every J, i.e., every solution x = (x1, · · · , xn)
T of

system (1.1)-1.2) satisfy
n∑

i=1

(xi(t)−x
∗

i )
2
≤

M

ep(t, 0)

n∑

i=1

sup
s∈[−τ,0]

(xi(s)−x
∗

i )
2 (3.6)

for all t ∈ T
+
0 , where M ≥ 1 is a constant.

Proof: Condition (3.5) implies that

−2ciλi +

n∑

j=1

(λi | aij | Lj + λj | aji | Li) < 0, (3.7)
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i = 1, 2, · · · , n. By using the theorem 1, we can prove
system (1.1)-1.2) possesses a unique equilibrium x∗ =
(x∗1,··· ,x

∗

n)
T . Let ui(t) = xi(t) − x∗i , i = 1, 2, ..., n. Then

we can rewrite Eq. (1.1) into

ui(t)� = −ciui(t) +
∑n

j=1 aij
(
fj(xj(t− τij))− fj(x∗j )

)
,

(3.8)
i = 1, 2, · · · , n, for all t ∈ T

+
0 . To prove Eq. (3.6) is

equivalent to prove

n∑

i=1

ui(t)
2
≤

M

ep(t, 0)

n∑

i=1

sup
s∈[−τ,0]

ui(s)
2 (3.9)

for all t ∈ T
+
0 , where M ≥ 1 is a constant.

Now, we construct the Liapunov functional V (t) as follows

V (t) = V1(t) + V2(t)

V1(t) =

n∑

i=1

λiui(t)
2ep(t, 0),

V2(t) =

n∑

i=1

n∑

j=1

λiLj | aij |

∫ t

t−τij

(1 + ciμ(s+ τij)

+n | aij | Lj)(1 + pμ(s+ τij))

×uj(s)
2ep(s+ τij , 0)

�
s.

Calculating V (t)�-derivative of V (t) along the solution of
Eq.(3.8), we have

V1(t)
�

=
n∑

i=1

λi[(ui(t)
2)�ep(σ(t), 0) + ui(t)

2(ep(t, 0))
�]

=

n∑

i=1

λi

[(
2ui(t)(−ciui(t)

+
∑n

j=1 aij(fj(xj(t− τij))− fj(x
∗

j )))

+μ(t)(−ciui(t) +

n∑

j=1

aij(fj(xj(t− τij))

−fj(x
∗

j )))
2
)
ep(σ(t), 0) + ui(t)

2pep(t, 0)
]

≤

n∑

i=1

[
λiep(σ(t), 0)(−2ci(ui(t))

2

+2

n∑

j=1

| aij | Lj | xj(t− τij)− x
∗

j || ui(t) |

+μ(t)((ci)
2(ui(t))

2 + 2ci | ui(t) |

×

n∑

j=1

| aij | Lj | xj(t− τij)− x
∗

j |

+n

n∑

j=1

(aij)
2L2

j(xj(t− τij)− x
∗

j )
2))

+λi(ui(t))
2pep(t, 0)

]

≤

n∑

i=1

[
λi(ui(t))

2pep(t, 0)

+λiep(σ(t), 0)((c
2
i μ(t)− 2ci)(ui(t))

2

+

n∑

j=1

| aij | Lj(1 + ci)(uj(t− τij)
2

+(ui(t))
2) + n

n∑

j=1

aij)
2L2

j(uj(t− τij))
2))
]

=

n∑

i=1

λi

[
p+ (c2iμ(t)− 2ci

+
n∑

j=1

| aij | Lj(1 + ciμ(t)))(1 + pμ(t))
]

×ep(t, 0)(ui(t))
2

+

n∑

i=1

n∑

j=1

λi | aij | Lj(1 + ciμ(t)

+n | aij |
2 L2

j)(1 + pμ(t))

×(uj(t− τij))
2ep(t, 0).

V2(t)
�

=
( n∑

i=1

n∑

j=1

λi | aij | Lj

∫ t

t−τij

(1 + ciμ(s+ τij)

+n | aij | Lj)(1 + pμ(s+ τij))

×(uj(s))
2ep(s+ τij , 0)

�
s
)�

=
n∑

i=1

n∑

j=1

λi | aij | Lj(1 + ciμ(t+ τij)

+n | aij | Lj)
×(1 + pμ(t+ τij))(uj(t))

2ep(t+ τij , 0)

−

n∑

i=1

n∑

j=1

λi | aij | Lj(1 + ciμ(t) + n | aij |

×Lj)(1 + pμ(t))(uj(t− τij))
2ep(t, 0).

V (t)�

= V1(t)
� + V2(t)

�

≤

n∑

i=1

ep(t, 0)
{
λi

[
p+ (c2iμ(t)− 2ci

+

n∑

j=1

| aij | Lj(1 + ciμ(t)))(1 + pμ(t))
]

+

n∑

j=1

λj | aji | Li(1 + cjμ(t+ τji) + n | aji |

×Li)(1 + pμ(t+ τji))ep(t+ τji, t)
}
(ui(t))

2

By using (3.5), we can conclude that V (t)� ≤ 0, for t ∈ T
+
0 ,

which implies that V (t) ≤ V (0) ,for t ∈ T
+
0 .

V (0)

= V1(0) + V2(0) =

n∑

i=1

λiui(0)
2ep(0, 0)

+

n∑

i=1

n∑

j=1

λiLj | aij |

∫ 0

−τij

(1 + ciμ(s+ τij)

+n | aij | Lj)

×(1 + pμ(s+ τij))uj(s)
2ep(s+ τij , 0)

�
s

≤ max
1≤i≤n

[
λi +

n∑

j=1

λjLi | aji | (1 + cjμ+ n | aji |

×Li)(1 + pμ)τep(τ, 0)
] n∑

i=1

sup
−τ≤s≤0

ui(s)
2.

(3.10)
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where μ(t) ≤ μ. Observe that

V (t) ≥ min
1≤i≤n

λi

n∑

i=1

ui(t)
2ep(t, 0) (3.11)

Then it follows from (3.10) and (3.11) that
n∑

i=1

ui(t)
2
≤

M

ep(t, 0)

n∑

i=1

sup
s∈[−τ,0]

ui(s)
2

for t ∈ T
+
0 , where M ≥ 1 is constant. This completes the

proof.
Remark 1: If the time scale T = R, μ(t) = 0 .Then , from
Theorem 2, we can immediately derive the following result
which is similar to the proof of Ref. [16].
Corollary 1: Suppose that system (1.3) satisfies condition
(H) and if there exist constants λi > 0, i = 1, 2, ..., n such
that

λi(−2ci +

n∑

j=1

| aij | Lj) +

n∑

j=1

λj | aji | Li < 0

then the equilibrium x∗ = (x∗1, ..., x
∗

n)
T of Eq. (1.3) is

globally exponentially stable for every J.
Remark 2: If the time scale T = Z, then μ(t) = 1 and Eq.
(1.1) becomes Eq. (1.4). From Theorem 2, we can obtain the
following result.
Corollary 2: Suppose that Eq.(1.4) satisfies condition (H)
and if there exist constants λi > 0, i = 1, 2, ..., n such that

λi[c
2
i − 2ci +

n∑

j=1

| aij | Lj(1 + ci)]

+

n∑

j=1

λj | aji | Li(1 + λj + n | aji | Lj) < 0

then the equilibrium x∗ = (x∗1, ..., x
∗

n)
T of Eq. (1.4) is

globally exponentially stable for every J.
Remark 3: The result of Theorem 2 unifies the previous
literatures on Hopfield neural networks of discrete-time and
continuous-time, and reveals the discrepancies of results of
continuous-time (μ(t) = 0) and discrete-time (μ(t) = 1)
Hopfield neural network.

IV. AN EXAMPLE

In this section, an example is shown to verify the effective-
ness of the result obtained in the previous section. Consider
the following simple Hopfield neural network with delays on
time scale T:

x�i (t) = −cixi(t)+

n∑

j=1

aijfj(xi(t−τij))+Ji i = 1, 2, · · · , n

(4.1)
for t ∈ T

+
0 , (c1, c2) = (0.1, 0.1) τij =

1
2 Ji = 2(i, j = 1, 2),

where
[
a11 a12
a21 a22

]

=

[
0.01 0.02
0.03 0.04

]

Taking fj(x) = 1
2 (| x+ 1 | − | x− 1 |),we have Li = Lj =

1(i, j = 1, 2). Again choosing λi = λj = 1(i = 1, 2),
we can easily verify that the conditions of Corollary 1 and
2 are all satisfied, respectively:

λ1(−2c1 +

2∑

j=1

| a1j | Lj) +

2∑

j=1

λj | aj1 | L1 < −0.13

λ2(−2c2 +

2∑

j=1

| a2j | Lj) +

2∑

j=1

λj | aj2 | L2 < −0.07

λ1[c
2
1 − 2c1 +

2∑

j=1

| a1j | Lj(1 + c1)]

+
2∑

j=1

λj | aj1 | L1(1 + λj + 2 | aj1 | Lj) < −0.858

λ2[c
2
2 − 2c2 +

2∑

j=1

| a2j | Lj(1 + c2)]

+

2∑

j=1

λj | aj2 | L2(1 + λj + 2 | aj2 | Lj) < −0.736

Thus, it follows from Corollary 1 and 2 that system (4.1) has
a unique equilibrium point which is globally exponentially
stable.

V. CONCLUSIONS

In this letter, Global exponential stability of delayed
Hopfield neural network on time scale have been studied.
Some sufficient conditions for global exponential stability of
the equilibrium point have been established.The conditions
possess highly important significance and are easily checked
in practice by simple algebraic methods. These obtained re-
sults are new and they complement previously known results.
Moreover,an example is given to illustrate the effectiveness
of our results.
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