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Abstract— The parametric classifiers trained with the
Bayesian rule are usually more accurate than the non-
parametric classifiers such as nearest neighbors, neural net-
work and support vector machine, when the class-conditional
densities of distribution models are known except for some of
their parameters and the training data is abundant. However,
the parametric classifiers would perform poorly if these class-
conditional densities are unknown and the assumed distribution
models are inaccurate. In this paper, we propose a hybrid
classification method for the data with partially known dis-
tribution models where only the distribution models of some
classes are known. For this partial models case, the proposed
hybrid classifier makes the best use of knowledge of known dis-
tribution models with Bayesian interference, while both purely
parametric and non-parametric classifiers would lose a specific
predictive capacity for classification. Theoretical proofs and
experimental results show that the proposed hybrid classifier
has much better performance than these purely parametric and
non-parametric classifiers for the data with partial models.

I. INTRODUCTION

IN classification problems, generative and discriminative

classification methods are two well-known classifiers. The

generative classification approach learns the joint probability

p(x, y), where x is the input data vector and y is the

corresponding class label, and makes a classification decision

based on the posterior probability p(y|x) which is calculated

with Bayesian rule in Eq. (1). In contrast, the alternative dis-

criminative approach directly model the posterior probability

p(y|x) from the input training data set. Both generative and

discriminative methods make predictive decision based on

the posterior probability and choose the most likely class

label for the input data x. In practice, both of them provide

outstanding performance and are widely used for various

classification problems.

p(y|x) = p(y)p(x|y)
∑N
i=1 p(Ci)p(x|Ci)

(1)

To make a predictive decision, the generative approach

needs to model the class-conditional density p(x|y) which

can be obtained for prior knowledge or learnt from the data,

while the discriminative approach need to model the posterior

probability p(y|x) which has to be learnt from data directly.

In generative approach, the class-conditional density function

p(x|y) usually has a parametric form, for example, one com-

mon assumption of p(x|y) is Gaussian or Gaussian mixture
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model for which their parameters, such as mean vector and

covariance matrix, are unknown and need to be estimated. In

discriminative approach, the posterior probability p(y|x) is

usually modeled with a non-parametric form estimated from

the data directly, such as nearest neighbors, neural network,

and support vector machine, to name a few.

Given a specific classification problem, if the class-

conditional density functions p(x|y) of all classes are known,

a parametric classifier with Bayes’ theorem achieves the best

performance, while non-parametric classifiers would lose

some performance because they do not make any use of

these knowledge. Even when p(x|y) is known to be within a

family of probability density functions (PDFs) parameterized

by some unknown parameters, it also has been proved that

the parametric classifiers can asymptotically approximate the

optimal classifier replacing the unknown parameters with

their maximum likelihood estimations (MLEs) [1]. In many

practical cases, the forms of class-conditional density p(x|y)
are difficult to obtain, and thus a parametric classifier usually

lays down a strong assumption of the underlying data model.

It would perform poorly if such an assumption is inap-

propriate. For a non-parametric classifier, there is no such

assumption or no density estimation for class-conditional

distributions. In this paper, to the best of our knowledge, we

are the first time to address the classification problem when

the distribution models of some classes are available, i.e.

the form of p(x|y) is obtainable except for their parameters,

while the distribution models of other classes are completely

unknown. For the partially known distribution models, both

purely parametric and non-parametric classifiers would lose

a specific predictive capacity for classification. To solve this

problem, we propose a hybrid classification method in which

we combine both parametric and non-parametric classifiers

to build a powerful decision maker.

The remaining paper is organized as follows. We first

present the related works in Section II. In Section III, we

formulate the problem of partially known distribution mod-

els, propose a hybrid classification method, and theoretically

prove its effectiveness. In Section IV, we apply the proposed

classification method on synthetic Gaussian distribution data

and power quality disturbance data and compare the per-

formance with purely non-parametric classifiers. Finally, a

conclusion is given in Section V.

II. RELATED WORKS

The comparison of the generative and discriminative ap-

proaches is a long-standing debate in machine learning area.

It is still hard to give a right answer as both ways of

predicating class label are based on the posterior probability

p(y|x) [2]. In many practical cases, the conditional class
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density is unknown and need to be estimated from data

for a generative approach. To estimate the conditional class

density, the assumption of distribution model for each class is

made, such as naive Bayes where it assumes that all classes

have a Gaussian distribution. Ng and Jordan in [3] com-

pared the predictive performance of generative naive Bayes

classifier and discriminative logistic regression algorithm.

They showed that the discriminative methods would perform

better than the naive Bayes classifier over several real-life

datasets in which there are enough training data. They also

presented that the naive Bayes classifier would outperform

the discriminative approaches if the size of training data is

small.
To take advantages of both approaches, several hybrid

classification methods have been proposed [4]–[9]. Tong

and Koller in [4] proposed a restricted Bayes classifier in

which a Bayes optimal classifier is built by minimizing the

estimated Bayes error within a certain class. The proposed

hybrid classifier would increase classification performance

when training data set contains samples with missing feature

values. In [5], every input feature vector is divided into

several subvectors with which different hypotheses based on

naive Bayes classifier are built. A final discriminative hypoth-

esis is built by combining these subgenerative models. In [6],

the authors proposed a hybrid approach to semi-supervised

classification in which generative and bias correction models

are combined with the maximum entropy principle. It is

worth noticing that, for these hybrid classification methods,

the conditional class density for each class could be unknown

and they made a strong assumption of the distributions under

each class. Unlike the existing hybrid classification methods,

in this paper, we consider the classification problem with

partially known distribution models, i.e. only distribution

models of some classes are known.

III. HYBRID CLASSIFICATION METHODS

For the classification problems in which only the distribu-

tion models under some classes are known, both parametric

and non-parametric classifiers would lose some predictive

capacity. In this partially known distribution model, we

propose a hybrid classification method to make the best use

of the knowledge of known distributions and build a powerful

decision maker. The underlying idea of hybrid classification

method is that we separate the classification into two steps:

grouping identification and sub-classifications. Given a new

test data to be classified, in the grouping identification step,

we first classify the test data x into two groups: the group C
′
1

of known distribution models and the group C
′
2 of unknown

distribution models. For the data belongs to C
′
1, we apply

a parametric classifier h1(x) to make a final classification

among the classes whose distribution models are known.

In contrast, if the data belongs to C
′
2, we apply a non-

parametric classifier h2(x) to make a final classification

among the classes whose distribution models are unknown.

For the parametric classifier h1(x), we calculate the posterior

probability p(y|x) in Eq. (1) and replace the parameter θ in

the class-conditional density p(x|y,θ) by its MLE θ̂. For

Fig. 1. The framework of hybrid classification method

the non-parametric classifier h2(x), common non-parametric

classifiers, such as nearest neighbor, neural network or

support vector machine (SVM), could be used to build a

classification hypothesis. The general framework of hybrid

classification method is shown in Fig. 1.

Consider the classification problem with N
classes, let Y = {C1, C2, · · · , CN} classes, we

assume the first p class models are known, i.e.

p(x|C1,θ1), p(x|C2,θ2), · · · , p(x|Cp,θp) are known

except that the parameters θ1,θ2, · · · ,θp are unknown, and

the remaining N − p class models are unknown. Let there

are n training data X = {(x1, y1), (x2, y2), · · · , (xn, yn)}
with their corresponding class labels. In the grouping

identification step, we firstly identify which type of model

it has: known or unknown data model. To do that, we

group the training data into two categories: the group

C
′
1 = C1∪C2∪· · ·∪Cp including these classes with known

data model, and the group C
′
2 = Cp+1 ∪ Cp+2 ∪ · · · ∪ CN

including these classes with unknown data model. To be

clearly understood, in hybrid classification method, we

refer the classes C1, C2, · · · , Cp in C
′
1 and the classes

Cp+1, Cp+2, · · · , CN in C
′
2 as classes, and C

′
1 and C

′
2 as

groups. For the new two groups, we build a parametric

or non-parametric classifier h0(x) in which p(C
′
1|x) and

p(C
′
2|x) could be obtained for any input data vector x. Given

the test data x, if p(C
′
1|x) > p(C

′
2|x), x are considered as

from the group C
′
1 with known data model. Otherwise, x are

considered as from the group C
′
2 with unknown data model.

After that, the sub-classification step is employed to further

decide which class it belongs to. For the group C
′
1 with

p classes, the parameter for each class could be estimated

by the MLEs θ̂1, θ̂2, · · · , θ̂p. Hence, the class-conditional

density for each class p(x|C1), p(x|C2), · · · , p(x|CN ) could

be replaced as p(x|C1, θ̂1), p(x|C2, θ̂2), · · · , p(x|CN , θ̂N ).
If the x is classified as C

′
1 in the grouping identification

step, we decide the x belongs to the class i as following

h1(x) = argmax
i=1,2,··· ,p

p(Ci|C ′
1)p(x|Ci, θ̂i, C

′
1)

= argmax
i=1,2,··· ,p

p(Ci|C ′
1)p(x|Ci, θ̂i) (2)

The above equations are equal because Ci ⊂ C
′
1. For the
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group C
′
2 with N−p classes, we train another non-parametric

classifier h2(x) to further identify the class it belongs to if

x is classified as C
′
2 in the grouping identification step. The

hybrid classification method is summarized in Table I.

TABLE I

THE HYBRID CLASSIFICATION METHOD

Input:
Training data set X = {(x1, y1), (x2, y2), · · · , (xn, yn)}, where yi ∈

Y = {C1, C2, · · · , CN}
The first p class’s distributions p(x|C1,θ1), · · · , p(x|Cp,θp), where

θ1,θ2, · · · ,θp are unknown.
Training Step:

1. Estimate the unknown parameters θ1,θ2, · · · ,θp as θ̂1, θ̂2, · · · , θ̂p

with MLE.

2. Group the data from p classes as group C
′
1

, and the remaining data

as group C
′
2

.

3. Build a non-parametric hypothesis h0(x) for C
′
1

and C
′
2

.

4. Build a Bayesian rule h1(x) for the p classes within C
′
1

.
5. Build a non-parametric hypothesis h2(x) for the N−p classes within

C
′
2

.
Testing Step: Given a test data xz ,

1. Apply xz to h0(x)

2. If h0(xz) == C
′
1

, apply h1(xz) for a final classification: h1(xz) =
1, 2, · · · , p.

3. Else, apply h2(xz) for a final classification: h2(xz) = p + 1, p +
2, · · · , N .

Definition 1: The Bayes’ minimum error for this N classes

classification problem can be defined by

R = p(error) =
N
∑

i=1

p(error|Ci)p(Ci)

=
N
∑

i=1

p(Ci)

∫

Ω−Ωi
p(x|Ci)dx (3)

where the integral is taken over Ω − Ωi, the region of

measurement space outside Ωi, where Ω =
∑N
j=1 Ωj , and

Ω − Ωi means the complement operator, i.e.
∑N
i=j,j �=i Ωj .

The region Ωi is the classification region for which p(Ci|x)
is the largest over all classes.

Similarly, the Bayes’ minimum error for the identification

classifier h0(x) could be defined by R∗0 as

R∗0 =

2
∑

i=1

p(error|C ′
i)p(C

′
i)

= p(C
′
1)

∫

Ω
′
2

p(x|C ′
1)dx+ p(C

′
2)

∫

Ω
′
1

p(x|C ′
2)dx (4)

where Ω
′
1 =

∑p
i=1 Ωi and Ω

′
2 =

∑N
i=p+1 Ωi.

Theorem 1: The Bayes’ minimum error R∗0 of grouping

identification classifier for Ng groups classification problem

is less than the Bayes’ minimum error R for N classes

classification problem.

PROOF. Considering the case with Ng = 2, according to

the Bayesian theorem, we have

R∗0 = p(C
′
1)

∫

Ω
′
2

p(x|C ′
1)dx+ p(C

′
2)

∫

Ω
′
1

p(x|C ′
2)dx

=

∫

Ω
′
2

p(C
′
1|x)p(x)dx+

∫

Ω
′
1

p(C
′
2|x)p(x)dx

=

∫

Ω
′
2

p(C1 ∪ C2 ∪ · · · ∪ Cp|x)p(x)dx+
∫

Ω
′
1

p(Cp+1 ∪ Cp+2 ∪ · · · ∪ CN |x)p(x)dx

(5)

Because

p(x ∪ y) ≤ p(x) + p(y) (6)

Eq. (5) can be written as

R∗0 =

∫

Ω
′
2

p(C1 ∪ C2 ∪ · · · ∪ Cp|x)p(x)dx+
∫

Ω
′
1

p(Cp+1 ∪ Cp+2 ∪ · · · ∪ CN |x)p(x)dx

≤
p

∑

i=1

p(Ci)

∫

Ω
′
2

p(x|Ci)dx+

N
∑

i=p+1

p(Ci)

∫

Ω
′
1

p(x|Ci)dx

(7)

Since Ω
′
1 =

∑p
i=1 Ωi and Ω

′
2 =

∑N
i=p+1 Ωi, we have

R∗0 ≤
p

∑

i=1

p(Ci)

∫

Ωi

p(x|Ci)dx+

N
∑

i=p+1

p(Ci)

∫

Ωi

p(x|Ci)dx

=
N
∑

i=1

p(Ci)

∫

Ωi

p(x|Ci)dx = R (8)

Proof done.

We can also easily extend Theorem 1 to the case that

the training data are grouped into more than two classes,

i.e. Ng > 2. Theorem 1 indicates that we can obtain better

classification performance if we group multiple classes into

one class. This also can be explained with the straightforward

way: the misclassifications between the grouping classes are

gone in the new constructed classes.

We further examine the Bayes’ minimum error of hybrid

classification method in comparison with the original one

without grouping identification and sub-classifications.

Definition 2: The Bayes’ minimum error of hybrid classifi-

cation method with any classifier for N classes classification

problem can be defined by

R∗1 = p(error) =
N
∑

i=1

p(error|Ci)p(Ci)

=

p
∑

i=1

p(Ci)p(Ω
′
2 ∪ (Ω

′
1 ∩ (Ω

′
1 − Ωi))

︸ ︷︷ ︸

error events

|Ci)+

N
∑

i=p+1

p(Ci)p(Ω
′
1 ∪ (Ω

′
2 ∩ (Ω

′
2 − Ωi))

︸ ︷︷ ︸

error events

|Ci) (9)
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where p(Ω
′
j |Ci) denotes the probability that x which

belongs to Ci class locates in the area Ω
′
j with the following

form:

p(Ω
′
j |Ci) =

∫

Ω
′
j

p(x|Ci)dx (10)

Theorem 2: The hybrid classification method with any

classifier h0(x), h1(x), and h2(x) has the same Bayes’

minimum error as the original one, i.e. R∗1 = R.

PROOF. We first consider two groups hybrid classification,

and the proof can be easily extended to any Ng groups hybrid

classification. Because Bayes’ minimum error is the optimal

error rate which only depends on the underlying distributions

of each class, it provides the upper bound of error rate for

any classifier h0(x), h1(x), and h2(x) in hybrid classification

method. In R∗1, for each sub-class which belongs to C
′
1, we

have the following error probability

p(error|C1) = p(Ω
′
2 ∪ (Ω

′
1 ∩ (Ω

′
1 − Ω1))|C1)

= p(Ω
′
2|C1) + p(Ω

′
1 ∩ Ω

′
1 − Ω1|C1)

= p(Ω
′
2|C1) + p(Ω

′
1 − Ω1|C1)

= p(Ω− Ω1|C1) =

∫

Ω−Ω1

p(x|C1)dx (11)

In the same way, for each sub-class which belongs to C
′
2,

we have the following error probability

p(error|C2) =

∫

Ω−Ω2

p(x|C2)dx (12)

Hence, according to Eq. (3), we have

R∗1 =

N
∑

i=1

p(error|Ci)p(Ci)

=
N
∑

i=1

p(Ci)

∫

Ω−Ωi
p(x|Ci)dx = R (13)

Proof done.

Theorem 2 demonstrates that the proposed hybrid classifi-

cation method has the same lower bound of error rate which

always is considered as the optimal error rate.

Definition 3: For a classification hypothesis h, the gener-

alization error is defined as

Rg(h) = Pr[h(x) �= y] = E[1h(xi)�=yi ] (14)

where 1w is the indicator function of the event w, h(xi)
denotes the label which is assigned to the data xi in classifier,

and yi is the true class label it belongs to.

Theorem 3: The hybrid classification method provides

lower generalization error rate R∗g(h) than purely non-

parametric classifiers Rg(h) which don’t make any use of

the knowledge of known distribution models, i.e. R∗g(h) ≤
Rg(h).

PROOF. In hybrid classification method, the classifier in-

cludes two steps: identification and sub-classification. Hence,

the hypothesis h(x) in Eq. (14) is the combination of

identification decision h0(x) and sub-classification decision

h1(x) or h2(x). We have,

R∗g(h) = E[1h0(x)�=C′
1||(h0(x)=C

′
1∧h1(x)�=y))|C

′
1]

+ E[1h0(x)�=C′
2||(h0(x)=C

′
2∧h2(xi)�=yi))|C

′
2]

= E(1h0(x)�=C′
1
|C ′

1] + E[1(h0(x)=C
′
1∧h1(x)�=yi))|C

′
1]

+ E[(1h0(x)�=C′
2
|C ′

2] + E[1(h0(x)=C
′
2∧h2(x)�=yi))|C

′
2]

(15)

For purely non-parametric classifiers with identification

and sub-classification steps, the available known information

of class models are disregarded. However, in hybrid classifi-

cation method, we build the parametric classifier h1(x) for

sub-classification based on the known class models, which

indicates

Pr(h1(x) �= y) ≤ Pr(hs(x) �= y) (16)

where hs(x) is the sub-classification classifier in purely non-

parametric classifiers which don’t make use of the available

known data model. We have

R∗g(h) ≤E[1h0(x)�=C′
1
|C ′

1] + E[1(h0(x)=C
′
1∧hs(x)�=yi))|C

′
1]

+ E[(1h0(x)�=C′
2
|C ′

2] + E[1(h0(x)=C
′
2∧h2(x)�=yi))|C

′
2]

= Rg(h) (17)

IV. SIMULATIONS

A. Multivariate Gaussian Distributions

First, we consider four classes classification problem (N =
4) in which all of them C1, C2, C3 and C4 satisfy standard

bivariate Gaussian distributions. The simulation parameters

are shown in Table II, where I2×2 is the 2× 2 identity matrix.

The snapshot of data distribution is shown in Fig. 2. For the

partial model, we further assume that the distribution of C1

and C2 classes are known except their distribution parame-

ters, while the distribution of C3 and C4 are unknown. The

parameters of distribution for class C1 and C2 are estimated

with Expectation-Maximization (EM) method. In spite of the

available known information of two class’s distributions, it

is hard to embedded these information to improve predic-

tive capability for non-parametric classifiers. We compare

the performance of proposed hybrid classifiers with purely

non-parametric classifiers including nearest neighbors and

neural network, and with the optimal maximum a posteriori

probability (MAP) rule in which all class’s distributions are

fully known. Given the distribution of all the classes, the

MAP rule is the most optimal classifier which provides the

upper bound classification accuracy while the size of training

data goes to infinity. In the MAP rule, given the same prior

distribution for each class, the testing data xz is assigned the

class label when the following target function is maximized

over i

ln p(x|Ci) = −1

2

3
∑

k=1

αi,k[(x− μi,k)
TΣ−1i,k (x− μi,k)

+ ln detΣi,k] (18)
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TABLE II

THE PARAMETERS OF DISTRIBUTION FOR CLASS C1 , C2 , C3 AND C4

Class Distribution Parameters

C1

∑
3

i=1
α1,iN (μ

1,i,Σ1,i)

μ
1,1 = [4 0], Σ1,1 = I2×2

μ
1,2 = [0 4], Σ1,2 = 2I2×2

μ
1,3 = [0 − 4], Σ1,3 = 3I2×2

C2

∑
3

i=1
α2,iN (μ

2,i,Σ2,i)

μ
2,1 = [0 4], Σ2,1 = I2×2

μ
2,2 = [4 0], Σ2,2 = 2I2×2

μ
2,3 = [−4 0], Σ2,3 = 3I2×2

C3

∑
3

i=1
α3,iN (μ

3,i,Σ3,i)

μ
3,1 = [−4 0], Σ3,1 = I2×2

μ
3,2 = [0 − 4], Σ3,2 = 2I2×2

μ
3,3 = [0 4], Σ3,3 = 3I2×2

C4

∑
3

i=1
α4,iN (μ

4,i,Σ4,i)

μ
4,1 = [0 − 4], Σ4,1 = I2×2

μ
4,2 = [−4 0], Σ4,2 = 2I2×2

μ
4,3 = [4 0], Σ4,3 = 3I2×2

Note: α1 = α2 = α3 = α4 = [0.6 0.3 0.1].
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Fig. 2. A data distribution of four classes

In this simulation, we consider 1000 data samples for each

class, and we use half of them as training data and the other

half as test data. To evaluate the performance, we examine

the classification results between the hybrid classification

method with three purely non-parametric classifiers: nearest

neighbor and neural network. The detailed comparison of

classification performance is shown in Table. III where Poc
is the average of classification accuracy. It shows that,

classification accuracy of hybrid classifiers is better than

purely non-parametric classifiers and is close to the optimal

Bayesian classifier (75.85%) where all class’s distributions

are completely known beforehand.

B. Power Quality Disturbance

We further apply the hybrid classification method for an

important issue of power delivery and power industry: power

quality (PQ) disturbance classification. Poor PQ may cause

electricity blackouts, equipment failures or malfunctions, and

financial loss. A quick identification of PQ disturbance could

help to make a control decision which may avoid the sub-

TABLE III

THE CLASSIFICATION PERFORMANCE FOR GAUSSIAN DISTRIBUTION

WITH HYBRID CLASSIFICATION METHODS COMPARED TO PURELY

NON-PARAMETRIC CLASSIFIERS.

Hybrid neural network Pure neural network

C1 C2 C3 C4 C1 C2 C3 C4

C1 352 68 6 64 C1 348 72 6 64

C2 66 384 42 8 C2 78 372 42 8

C3 4 76 381 38 C3 1 79 381 38

C4 37 13 71 390 C4 33 17 71 390

Poc 75.35% Poc 74.55%

Hybrid nearest neighbor Pure nearest neighbor

C1 C2 C3 C4 C1 C2 C3 C4

C1 340 63 18 69 C1 334 69 18 69

C2 58 352 74 16 C2 78 332 74 16

C3 7 95 315 82 C3 15 87 315 82

C4 70 11 65 365 C4 69 12 65 365

Poc 68.60% Poc 67.30%

sequent influence. A study conducted by Lawrence Berkeley

National Laboratory estimates that electric power outages

and blackouts cost the U.S. about $80 billion annually [10].

The PQ disturbance signal is characterized by parameters

that express amplitude swell or sag, harmonic pollution,

reactive power, load unbalance, among others. This char-

acterization of PQ disturbance indicates that the underlying

data distribution for some classes may be modeled, while the

others may be not. However, most existing power quality

disturbances classifiers are based on the features selected

from the raw data for which some obtainable class’s distri-

butions are disregarded, such as Self Organizing Learning

Array (SOLAR) system based on wavelet transformation

[11], inductive inference approach [12], SVM classification,

etc. In contrast to these non-parametric classifiers, a Bayesian

classifier can take advantage of the PQ disturbance model

and use the raw measurements directly. Because of the use

of all distribution models, the proposed Bayesian classifier

is a generative classier with the analytic form of posterior

probability for all classes without suffering from “curse of

dimensionality”. However, in practice, we have to mention

that some distribution models are unknown, hence the purely

Bayesian classifier wouldn’t work.

In our simulation, we consider the same PQ disturbance

models with seven different classes (C1−C7) shown in Table

IV, which includes normal, swell, sag, harmonic, outage, sag

with harmonic, swell with harmonic [11] [12]. We assume the

distribution models of classes C1, C2, C3 and C4 are known,

while the distribution models of remaining classes C5, C6

and C7 are unknown. We compare the hybrid classifiers with

these non-parametric classifiers including SOLAR and SVM.

The SOLAR classification method is a self organization

learning array system based on wavelet transformation. In

[11], the classification performances based on SVM are also

reported. In this simulation, we directly combine the SOLAR

method and SVM into the hybrid classifier. The hybrid

classification method with SOLAR based on wavelet trans-

formation obtains 96.84% and the purely SOLAR method

has 94.93%, while the hybrid classification method with C-
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TABLE IV

THE CATEGORIES OF POWER QUALITY DISTURBANCE.

PQ Disturbance Type Class Symbol Signal Model Parameters

Normal C1 s1 = A sin(ω0t) N/A

Swell C2

s2 = A(1 + α(u(t− t1)− u(t− t2))) sin(ω0t)

u(t) =

{
1 if t ≥ 0

0 otherelse

0.1 ≤ α ≤ 0.8, T ≤ t2 − t1 ≤ 9T

Sag C3 s3 = A(1− α(u(t− t1)− u(t− t2))) sin(ω0t) 0.1 ≤ α ≤ 0.8,T ≤ t2 − t1 ≤ 9T

Outrage C4 s4 = A(1− α(u(t− t1)− u(t− t2))) sin(ω0t) 0.9 ≤ α ≤ 1,T ≤ t2 − t1 ≤ 9T

Harmonic C5

s5 = A(α1 sin(ω0t) + α3 sin(3ω0t)+

α5 sin(5ω0t) + α7 sin(7ω0t))

0.05 ≤ α3 ≤ 0.15, 0.05 ≤ α5 ≤ 0.15

0.05 ≤ α7 ≤ 0.15,
∑

α2

i = 1

Sag with Harmonic C6

s6 = A(1− α(u(t− t1)− u(t− t2)))

(α1 sin(ω0t) + α3 sin(3ω0t) + α5 sin(5ω0t))

0.1 ≤ α ≤ 0.9, T ≤ t2 − t1 ≤ 9T

0.05 ≤ α3 ≤ 0.15, 0.05 ≤ α5 ≤ 0.15,
∑

α2

i = 1

Swell with Harmonic C7

s7 = A(1 + α(u(t− t1)− u(t− t2)))

(α1 sin(ω0t) + α3 sin(3ω0t) + α5 sin(5ω0t))

0.1 ≤ α ≤ 0.9, T ≤ t2 − t1 ≤ 9T

0.05 ≤ α3 ≤ 0.15, 0.05 ≤ α5 ≤ 0.15,
∑

α2

i = 1

A: the amplitude of sine
ω0: the angular frequency of sine
u(t): the step function

SVM obtains 96.80% and the purely C-SVM gets 94.89%. It

shows that the hybrid classifiers outperform the purely non-

parametric classifiers for power quality disturbance classifi-

cation.

V. CONCLUSION AND FUTURE WORKS

In this paper, a novel classification framework is pro-

posed to address a new classification problem where only

the distribution model of some classes are known. In-

stead of disregarding these important information directly

in non-parametric classifiers, the proposed hybrid classifica-

tion framework combines the Bayesian classifier and non-

parametric classifier to make classification. It makes the

best use of the knowledge of known distribution models

to improve classification performance. Theoretically proofs

and experimental results show that the proposed hybrid

classifier has a better performance than these purely non-

parametric classifiers for the data with partial models. Cur-

rently, we demonstrate the effectiveness of proposed hybrid

classification method in the partially known models. We plan

to apply the hybrid classification method into the real-life

classification problems with partially known models in which

only the non-parametric classification methods are employed.

With the knowledge of known distributions of some classes,

we expect that we can obtain much better classification

performance.
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