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Abstract—Derivation of models of complex nonlinear systems 
usually incorporates a number of simplifications in modeled 
phenomena with the level of these simplifications being dictated 
primarily by its intended purpose. If the overall model accuracy 
is insufficient, it might be helpful to use the powerful 
approximation capabilities of universal approximators like 
neural networks which are capable of approximating certain 
types of functions to arbitrary degree of accuracy. On the other 
hand, using black-box modeling techniques can impair the 
resulting extrapolation qualities of the model as well as eliminate 
its physical interpretation. Here an improved dynamic modeling 
of one-DOF pneumatic muscle actuator using recurrent neural 
network is proposed. The proposed method preserves the 
physical meaning of the model while improving its accuracy 
compared to the original analytic model. System and model 
responses are compared in closed-loop (using conventional PD 
controller) and all unmodeled dynamics is treated as disturbance 
which is identified using Elman neural network. It is shown that 
the resulting model is applicable for model-based control system 
design with greater precision. 

Keywords—pneumatic actuator, recurrent neural network, 
disturbance, structural dynamics, PD controller 

I. INTRODUCTION  
Pneumatic artificial muscles (PAM) can be considered 

a class of special actuators with elastic construction and 
specific characteristics that make them distinctive from 
traditional actuators. Due to their light and compliant nature 
they are suitable for biomedical applications where contact 
with patients is of high importance [1]–[3]. Their use in 
industrial applications where the systems based on this type of 
actuator could possibly be used as an alternative to costly and 
human-nonfriendly industrial robots (for special tasks where 
lower precision would be acceptable) was also proposed [4]–
[6]. When a control for a PAM-based system is designed, it is 
advantageous to have a model of such a system so that its 
performance under various conditions can be predicted. Some 
basic properties and approaches useful for modeling PAMs and 
systems based on them were described in [7]–[11]. Rather 
detailed dynamic modeling of PAM including braid effects on 
contractile range and friction modeling can be found in works 
[12], [13]. In [14] the development of analytical dynamic 
model of PAM (FESTO MAS-20) using quick-release 
experiment can be found. Different approach with fuzzy logic 

used for developing a dynamic predictive model was taken in 
[15]. In [16] a modified Hill’s muscle model was used for 
deriving a dynamic model of Fluidic muscle for resistive 
training device. 

Most of these works concentrate on development of 
analytical model of PAM. Such a model preserves physical 
interpretation of all variables and allows for better evaluation 
of the PAM-based system properties. On the other hand, PAM-
based systems feature a number of complex phenomena which 
are difficult to model precisely and are well-suited for 
application of universal approximators (like neural networks 
and fuzzy systems). Hence it is proposed here to use basically 
an analytical model of PAM-based actuator with one rotational 
joint and use a complementary neural model for identification 
of disturbance term incorporating unmodeled effects. 

II. USED METHODS 

A. Dynamic Model of Pneumatic Muscle Actuator 
The dynamic model of the used muscle actuator was 

derived in [17]-[19] using the results of our own research and 
experiments and some general principles presented in the 
works of other researchers. The model was derived for an 
actuator with one rotational axis driven by a pair of FESTO 
MAS-20 pneumatic muscles moving in a horizontal plane. 
From the physical point of view, the actuator model represents 
a multi-domain model with three distinctive physical domain 
parts: electrical, mechanical and pneumatic (Fig. 1). 

 

Fig. 1. Multi-domain physical representation of the pneumatic muscle 
actuator 
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To develop a dynamic model of the system, only pneumatic 
(valves) and mechanical parts (muscles and rotational axis) 
were taken into account. It can be observed from Fig.1 that the 
muscles are represented as parallel connection of nonlinear 
spring and nonlinear damper. This representation corresponds 
to a phenomenological model approach presented in [16]. The 
dynamics of pneumatic muscle can be described using the 
following nonlinear differential equation (in accordance with 
Newton’s second law) [14]: 

                  [ ]),(),()/1( mnsmndE PFPFFm χχξ −−=            (1) 

where ξ is muscle displacement [m], m is moved mass [kg], 
FE is external force [N], Fnd is nonlinear damper force [N], Fns 
is nonlinear spring force [N], χ is muscle contraction [-], Pm is 
absolute muscle pressure [Pa]. 

The nonlinear spring force term in (1) is a function of two 
variables (contraction and muscle pressure) which was 
approximated using fifth-order polynomial according to data 
available in manufacturer’s specifications (Fig. 2). The second 
nonlinear term in (1) was a function of contraction speed 
χ and muscle pressure Pm [14]: 

                                    mmnd PRPF χχ =),(                            (2) 

where R is damping coefficient [m2·s], χ is contraction 
speed [s-1] and Pm is muscle pressure [Pa]. 

The pneumatic part is described using a differential 
equation for muscle pressure: 
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where Patm is atmospheric pressure [Pa], atmV is volume air 
flow through the valves [m3·s-1], Vm is muscle volume [m3] and 

mV  is rate of muscle volume [m3·s-1]. 

The term for muscle volume was approximated using third-
order polynomial in the following form (including the rate of 
change of muscle volume): 

 

Fig. 2. Approximation of nonlinear spring force term in muscle dynamics 
equation 
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where a, b, c, d are empirical coefficients determined using 
Curve Fitting Toolbox in Matlab. 

The term for volume air flow was modeled according to 
equations given in [20]: 
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where P1 is upstream pressure [Pa], P2 is downstream 
pressure [Pa], C is sonic conductance [m3·s-1·Pa-1], T0 is 
reference temperature [K], T1 is upstream temperature [K] and 
ψ  is critical ratio. 

To derive the dynamics of rotational axis, Lagrangian 
mechanics approach was used. According to [21] it is possible 
to write: 
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where K is kinetic energy, P is potential energy, qi is 
generalized variable, τi is generalized force. Since the actuator 
used a single rotational axis (one degree-of-freedom), 
generalized variable corresponded to joint (arm) angle β [o]. 
Furthermore, as only changes in potential energy are relevant 
and actuator moved in horizontal plane, P was set to zero. 
Therefore, (when friction is neglected) the following holds: 
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where J is moment of inertia [kg·m2], T is torque [N·m], 
F1,2 are muscle forces [N] and r is chainwheel diameter [m]. 

B. Elman Network for Improved Dynamic Modeling 
The model presented in previous paragraph captures the 

dynamics of PAM-based actuator quite well under nominal 
conditions. If, however, higher accuracy is required there is a 
number of effects that might be difficult to describe 
analytically (static and dynamic hysteresis, structural 
dynamics etc.). Since the model was intended to be used for 
model-based design of a hybrid controller (PD-fuzzy), closed-
loop performance of derived model was of high importance.  
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According to [21] a general vector equation for dynamics 
of n link robot can be expressed in the following form: 
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where q – generalized variable vector, M(q) is inertia 
matrix, ( )qqqV , is Coriolis/centripetal forces term, ( )qT is 
friction forces term, G(q) is gravity term, F – generalized force 
vector and τP is disturbance term. 

The equation expressed in (8) reduces to a simple form for 
our case as only one joint was used and the actuator moved in 
horizontal plane (term G(q) was dropped). The aforementioned 
effects of unmodeled dynamics were incorporated into τP term. 
Due to the powerful approximation capabilities of neural 
networks, it is proposed here to use recurrent neural network to 
identify the disturbance term. 

In Fig. 3 the scheme of identification of disturbance term in 
closed-loop is depicted. In this scheme PAM-based Actuator 
block corresponds to a complete closed-loop control of 
actuator using PD controller with β∗ being desired joint angle 
and βs being actual joint angle. The desired joint angle is also 
an input into a model of PAM-based actuator output of which 
is labeled βm. The difference between actual and model joint 
angle corresponds to a modeled disturbance term τP, which 
incorporates all the effects not included in analytical model of 
PAM actuator. This term was to be approximated using neural 
network so that a disturbance term error eτ (defined as 
difference between actual disturbance term τP and neural 
network disturbance term τPnn) was minimal. Since the 
complete model was intended for simulation of PAM-based 
actuator in model-based control system design, the input into 
the neural network had to be provided by the primary 
analytical model (labeled as Um). 

As an approximator, recurrent neural network type with 
feedback from hidden layer (Elman network) was chosen. This 
was preferred over external dynamics approach using input 
dynamic filter and static neural approximator (nonlinear 
autoregressive model with exogenous input). 

 

Fig. 3. Identification of disturbance term of PAM-based actuator using 
neural network 

 
Fig. 4. State diagram of Elman network (left) and its structure for 
disturbance term identification (right) 

This approach was selected due to the relaxed requirement 
on the knowledge of dynamic order as well as its better 
suitability for simulation [22]. State equations for Elman 
network in Fig. 4 can be written as follows: 
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where f is vector of nonlinear (tanh) functions, CW is 
context layer weight matrix, x(k) is state vector in time step k, 
IW is input layer weight matrix, u(k) is input vector in time step 
k, LW is hidden layer weight matrix and b is bias vector. By 
substituting (9) into (8) we get: 

          ( ) τebkkfP ++++= )2()1()()( buIxCLτ WWW       (10) 

where eτ  is approximation error of neural network.  

III. RESULTS 
Experiments for verification of the proposed approach were 

carried out in closed-loop for position control with 
a conventional PD controller. So far only the joint angle was 
taken into account in improved model validation as this was 
the main control variable in intended control scheme. The 
model was validated using the MAE (Mean Absolute Error) 
criterion defined as follows: 

                                  ∑
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where k is time step, n is number of samples, yk is actuator 
output in k-th time step and kŷ is model output in k-th time 
step. 

To validate the model, the responses of model and actuator 
to a sequence of reference joint angle steps (with alternating 
sign) are compared (Fig. 5 and Fig. 6). This was done for both 
nominal moment of inertia (Jn = 0.014 kg·m2) and its 6.4 
multiple (J = 6.4·Jn = 0.0896 kg·m2). Good representation of 
the actuator dynamics for changes in moment of inertia was 
important for control system design. 
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Fig. 5. Model and actuator responses to a sequence of step changes in 
reference joint angle in closed loop with PD controller for J = Jn 

 
Fig. 6. Model and actuator responses to a sequence of step changes in 
reference joint angle in closed loop with PD controller for J = 6.4Jn 

What is readily observable from both figures is the 
difference in oscillations of responses associated with the 
change of moment of inertia. This is increase in oscillatory 
nature of responses can be linked to the manifestation of 
structural dynamics that is not incorporated in the model. 
Quantitatively, for nominal moment of inertia model error 
expressed in MAE was 1.1708 and for 6.4 multiple MAE was 
1.2887. The error for nominal case could be decreased by 
modifying model parameters which would, however, have 
increased model error for other model variables (the values of 
these parameters were selected so that the error for all variables 
that could be measured was minimal). On the other hand, the 
same approach for non-nominal case did not produce responses 
with similar oscillations as were measured for real actuator. 
The effect of structural dynamics thus was not well represented 
in the model and could be treated as an external disturbance 
expressed in term τP. 

To improve the dynamic performance of the model, an 
Elman network with the structure shown in Fig. 4 was used. 
The number of neurons was set to N = 10 which was the upper 
limit for using an enhanced training algorithm with much 
shorter training times [23]. For training, Levenberg-Marquardt 
algorithm with Bayesian regularization was utilized. 

As was mentioned in previous paragraph, the input into 
Elman network (Um) was provided from the analytical model. 
The best results were obtained for five variables in Um: 
reference angle, PD control signal, joint angle, joint angular 
velocity and joint angular acceleration. In order to obtain good 
representation of underlying nonlinear function in terms of 
experimental data used for training, it was necessary to excite 
the actuator as richly as possible. Due to this reason, APRBS 
(Amplitude Pseudo-Random Binary Sequence) signal was 
chosen consisting of steps with random height and width 
within the range of [-40o,40o] (Fig. 7 grey line). Using the 
difference between measured and modeled joint angle for 
J = 6.4Jn, an error signal was produced and used as a target 
sequence (actually τP) for Elman network (Fig. 7 black line). 

The sampling period used in simulation as well as during 
the measurements and control was set to 3 ms. Thus the 
number of samples in 200 s sequence was 66667. This 
sequence of samples was used as a training set while 3334 
samples used as an excitation signal in Fig. 5 and Fig. 6 were 
used as a test set (this sequence was not used during the 
training). The validation set was not used due to the utilization 
of Bayesian regularization (instead of early stopping method). 

 
Fig. 7. Amplitude pseudo-random binary sequence (APRBS) signal used for 
actuator excitation and error signal used for supervised network training (the 
amplitude of both signals was normalized into [-1,1] interval) 

 
Fig. 8. The training plot (first 1000 iterations) for Elman network training 
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The progress of training for the first 1000 iterations is 
shown in Fig. 8 with the results of training after 5000 
iterations being shown in Table I. 

TABLE I.  NETWORK TRAINING RESULTS 

iter time MSE grad μ γ 
5000 36101 0.0015 1.43 5x105 156 

 
It is of note that the resulting MSE (0.0015) applies to 

signals normalized into [-1,1] range. This can be considered a 
good result as this translates to 0.075% mean relative error 
(when the whole normalized range is taken into account). In 
Tab. I the symbols μ and γ denote Levenberg-Marquardt 
algorithm conditioning (or damping) factor and number of 
effective parameters respectively.  

Limiting value for μ was set to 1010 which was not reached 
during the training implying that the extremum might not have 
been attained. Nevertheless, the decrease in MSE in the last 
1000 iterations was very slow and thus the minimum of error 
function was not possibly very much different from the 
obtained value. The final value for γ (which means the number 
of network parameters effectively used for decreasing the error 
function [24]) was relatively close to the number of all 
parameters of the network (equal to 171). In that case the 
number of neurons should be increased to test whether the 
original network is capable of sufficiently represent the 
underlying function. As the final MSE was considered good 
enough and increasing the number of neurons would lead to 
very long training times (due to the training without enhanced 
training algorithm), this method was not yet tested. 

In Fig. 9 the results of validation of neurally enhanced 
analytical model are shown. The test was carried out using the 
alternating step sequence for reference joint angle (3334 
samples). It can be observed that compared to Fig. 6 the model 
now also captures oscillating character of the response for 
increased moment of inertia. Higher discrepancy between the 
model and the actuator can be seen in the beginning which can 
be possibly attributed to zero network initialization. 

 
Fig. 9. Validation of neurally enhanced model performance on test data for 
J = 6.4Jn 

The accuracy is quickly improved from the second positive 
reference angle step on. The value of MAE criterion for the 
response shown in Fig. 9 was decreased from 1.2887 to 0.9793 
which is almost exactly 24% improvement in the mean 
absolute error. It is assumed that it would be possible to 
decrease MAE by further modifications of the neural model. 
More precisely, three possible factors can be considered for 
improving the accuracy of neurally enhanced model: increasing 
the richness of excitation signal (hence increasing the size of 
training data set), modifying or enlarging network input vector 
Um and increasing the number of neurons. The last two of these 
approaches are currently prevented by the impossibility to use 
enhanced training algorithm. 

IV. CONCLUSION 
In this paper we presented an enhancement of analytical 

dynamic model of one-DOF pneumatic muscle actuator using 
the recurrent neural network. It was shown that while the basic 
actuator dynamics is captured by the original analytical model, 
it failed to account for most of the effects associated with hard-
to-model phenomena present in PAM-based actuators (as well 
as the specific actuator construction). Neural networks as 
universal approximators have powerful approximation 
capabilities and they are thus suitable for identifying such 
complex phenomena. To preserve the physical interpretation of 
the model, it was proposed here to use neural network only to 
identify unmodeled dynamics treated as an external 
disturbance. Recurrent neural network was preferred over more 
usual NARX model with input filter due to the better long-term 
prediction capabilities. It was shown that such an approach is 
viable solution for improving the accuracy of PAM-based 
system model. Even though this approach was presented only 
for joint angle modeling enhancement, it is assumed that it is 
equally well suitable for modeling enhancement of other 
system variables provided that relevant training data are 
available. In further work, we assume to extend the approach to 
model enhancement for different changes in moment of inertia 
as well as to increase its accuracy. 
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