
 

Abstract— In this paper a forecasting method for the 
Next Day’s energy production forecast is proposed with 
respect to photovoltaic plants. A new hybrid method 
PHANN (Physical Hybrid Artificial Neural Network) based 
on Artificial Neural Network (ANN) and basic Physical 
constraints of the PV plant, is presented and compared with 
an ANN standard method. Furthermore, the accuracy of the 
two methods have been studied in order to better 
understand the intrinsic error committed by the PHANN, 
reporting some numerical results. This computing-based 
hybrid approach is proposed for PV energy forecasting in 
view of optimal usage and management of RES in future 
smart grid applications. 
 
 

I.  INTRODUCTION 
The sustainable usage of renewable sources has 

become a critical issue which will represent a key 
challenge in the next future. The increase in demand due 
to developing countries and the likely recovery of 
economy in developed countries, even in Europe, 
promises to stimulate new research on renewable energy 
resources (RES), especially oriented to advanced grids 
able to optimally manage the energy delivery in a 
distributed system. The number of plants producing 
electricity has been enormously increased and most of the 
installations are decentralized. Thus  the old centralized 
model of electric generation tends towards a mixed 
system. Challenges of controlling and maintaining energy 
from intermittent sources involve many research topics 
like efficiency, reliability, safety and stability of the grid: 
all these aspects can take advantage of the ability to 
forecast energy flows [1, 2]. 

In this context evolutionary computation and 
optimization algorithms can be extremely useful in the 
next smart grid development. Besides, forecasting tool 
related to neural systems and computational intelligence 
can play a fundamental role both in energy production 
and demand side consumption. The predictive task is 
surely challenging but the relative technical and 
economic benefit cannot be neglected for dynamic 
optimization of grid operations and market transactions.  

In recent years several short-term power forecasting 
models related to PV plants have been presented and they 
can be generally classified into physical, statistical and 
hybrid methods. Some of these models started to predict 
solar radiation [3-5],  some others have been focused on 
hourly power generation forecasting [6-9]. The most 

applied techniques in these forecasting models are 
Artificial Neural Networks (ANNs) [10] even if some 
works use simple physical methods. The authors 
previously started to evaluate artificial intelligence 
methods for PV plant production for integration in smart 
energy systems [11] with a different perspective. 

In this paper the aim is to present a novel hybrid model 
that combines a soft-computing model based on ANN 
and a physical model short-term power forecasting of a 
PV plant. The paper is organized as follows: in Section 2 
a brief review of the hourly energy production forecasting 
methods is presented. In Section 3, the new proposed 
hybrid methods is described. In Section 4 some error 
indexes that can be used to evaluate the performances of 
the forecasting models are defined. In Section 5 the 
power prediction, in terms of hourly error is presented. 

Finally, we conclude and outline additional research 
directions for next future work. 

II.  ENERGY FORECAST MODELS 
RES energy production forecasting methods are 

commonly divided in different categories: Physic, 
Stochastic and Hybrid. An analysis of state-of-the-art 
approaches is proposed in [12] but it is also important to 
further develop methods based on weather forecast [13].  

In physical models the ability of a RES plant to 
convert the introduced meteorological resources into 
electrical power are summarized by a physical-analytical 
model. Statistical methods are based on the concept of 
persistence, or stochastic time series. Nowadays the most 
common approach to forecast a time series' future values 
approach is the use of machine learning methods. These 
methods learn to recognize patterns in data using training 
data sets. Any combination of two or more of the 
previously described methods can be defined as an hybrid 
model. 

III.  THE NEW PROPOSED HYBRID METHOD 
In order to make the hourly prediction of the 

production of a RES plant more accurate, a new Hybrid 
forecasting system based on ANN that incorporates some 
of the physical model constraints (see Fig. 1) was 
developed and it was called PHANN (Physical 
Hybridized Artificial Neural Network). In particular it 
includes a theoretical model of the solar radiation 
mathematically computed according to the geographical 
coordinates of the PV plant site (Clear Sky Solar 
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Radiation Model) [14]. 
The block diagram of Fig. 2 illustrates the different 

phases carried out for the proposed procedure. It shows 
the main blocks (input, process and analysis) [15,16] and 
the fine-tuning activity performed retrospectively in order 
to refine and further to improve the quality of the 
prediction. 

For the training phase, both the input and the output 
historical data of the PV plant are required in order to 
lead a supervised learning of the PHANN. Once the 
PHANN is trained and tuned, it can be used to provide 
predictions of the PV system output power by supplying 
only the weather forecasts as input. In this context also 
partial shading effects can be taken into account [17]. 

After this phase, the final accuracy assessment of the 
results should be carried out. 

 

A.  Pre-Processing and raw data Validation 
About the training of the neural network and the 

analysis of the forecast errors, historical measured data 
acquired must always be validated. In fact the use of not 
reliable data generally imply an increase of the error in 
the prediction. Data validation is performed by evaluating 
the reliability of each fifteen minutes average measured 
and data provided by the Meteorological Service on the 
basis of comparisons between solar radiation, power 
output and theoretical radiation predicted by a 
mathematical model, the “Clear Sky” solar radiation [14].  

 
Fig. 1.  Illustrative diagram of the new method applied. 

 

 

 
Fig. 2.  Block diagram of the hybrid method used for forecasting. 
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B.  The forecasting process  
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C.  Error Assessment 
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D.  Fine tuning 
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Normalized root mean square error nRMSE, based on 
the maximum observed power output Pm,h [A]: 
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V.  CASE STUDY 
This section describes the forecast achieved by 

comparing the results of the two models:  
 

i. ANN: Artificial Neural Network without Clear 
Sky and Fine Tuning (Physical Constraints) 

ii. PHANN: Physical Hybridized Artificial Neural 
Network. 

The performed simulations had the main objective to 
compare the accuracy of the forecasts first using the ANN 
method alone and then combined with the physical 
constraints in the PHANN. Moreover the error of the two 
methods has been estimated by replacing the forecast 
values with the actual solar radiation samples measured 
by the monitoring system. Finally the results of some 
significant days are presented. The procedure has been 
then developed varying both iterations and training period 
to improve the effectiveness of the proposed technique. 
 

A.  Characteristics of data and models 
While the PV plant hourly electric power generation 

data are recorded with measurement equipment placed in 
its location, the Meteo variables data are obtained by a 
weather forecasting service with 72hours in advance. 

With reference to the prediction of hourly production 
relative to twenty-four hours the analysis is performed 
using an ANN with 10 months dataset, 9 neurons in the 
first hidden layer and 7 neurons in the second hidden 
layer, which is the configuration that proved to be a good 
compromise in terms of effectiveness and time-
efficiency. For each forecasting simulation, 10 trials have 
been performed.  

 

B.  Evaluation criteria and tests 
To evaluate the performance of the forecasting ANN 

and PHANN models the NMAE, WMAE and nRMSE 
errors are calculated. Table I provides just some of the 
most important ones. The results refer to different ANN 
training settings, namely: 

 
CASE A. ANN without Physical Constraints. 
CASE B.  PHANN with these Physical Constraints: 

a. Gf > 50W/m² and Pm > 0 kW with this forecast 
irradiance condition it is assumed to have a 
positive PV plant production, in order to make the 

forecast for this hour. 
b. 0 > Gt > 1W/m² those samples with positive 

nearly zero theoretical irradiance condition are 
rounded to 1W/m². 

c. Affihour ≥ 0.75 only those samples with the hourly 
average reliability more than 0.75 are considered. 

CASE C. ANN In this case, the input dataset has Gf = 
Gm as if the solar radiation forecast is replaced by the 
actual solar radiation measured by the monitoring 
system. 
CASE D. PHANN with the same Physical Constraints 
of case A. In this one, the input dataset has Gf = Gm as 
if the solar radiation forecast is replaced by the actual 
solar radiation measured by the monitoring system. 
 

The aim of the last two cases (C and D) is to assess the 
robustness of the methods according to the weather 
forecast accuracy given by the Meteo service. 
 

VI.  RESULTS 
They main results of the analysis are summarized in the 
Table I, comparing the efficiency of the PHANN method 
and the ANN alone. 

In particular table shows in the first two columns how 
all values of the errors, calculated according to the 
definitions applied to the whole period with 150 days of 
training, are lowered using the Hybrid method. The most 
affected one is WMAE that is reduced by 42%, while, in 
this forecasting scenario, NMAE and nRMSE show 
smaller decreases. 

TABLE I 
ERROR DEFINITIONS APPLIED TO THE WHOLE PERIOD FORECAST 

WITH DIFFERENT ANN SETTINGS 

Tr. days:  
150 

2000 
Iterations 

5000 
iterations 

CASE A B C D 

NMAE% 10.7 8.95 6.52 5.51 

WMAE% 46.8 27 24.1 19 

nRMSE% 22.70 18.13 13.51 11.66 

 
Table II shows the relative errors, and in this case they 
are lowered again using the Hybrid method and the most 
affected one is WMAE while NMAE and nRMSE show 
smaller decreases. 
 

TABLE II 
ERROR DEFINITIONS APPLIED TO THE WHOLE PERIOD FORECAST 

WITH DIFFERENT ANN SETTINGS 

Tr. days:  
240 

2000  
iterations 

5000  
iterations 

CASE A B C D 

NMAE% 8.07 6.11 7.23 4.24 

WMAE% 32.7 25.9 22.3 15.3 

nRMSE% 14.52 10.51 14.59 10.54 
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According to reported results the hybrid forecast based on 
the most accurate solar radiation forecasts did not show 
any specific improvement. 

Besides some significant days (namely Sunny Day, 
Partially Cloudy Day and Cloudy Day) have been 
preliminarily taken into account in order to evaluate the 
Hybrid method forecast accuracy applied to a reduced 
number of hourly samples. Fig. 5 shows the accuracy of 
the hybrid forecast, with the same settings listed before, 
applied to a sample day with sunny weather condition.  

 

 
 

Fig. 5. Error definitions applied to the forecasts in a sunny day. 
 

The trends of the PV plant Power output in each of the 
considered days shows the same behavior of the Hybrid 
forecasting effectiveness highlighted in the whole 
presented period with some different features gathered in 
Table III.  

These figures show the remarkable importance the 
weather forecasts reliability plays on the energy 
production forecasting activity. Besides it can be noticed 
how the new hybrid method proposed here is more 
effective than traditional ones. With a focus on the first 
and the fourth days proposed in Table III, it can be seen 
that both NMAE and WMAE are significantly reduced by 
using this new hybrid method. 

 

TABLE III 
ERROR DEFINITIONS APPLIED TO THE FORECAST OF FOUR SIGNIFICANT 

DAYS WITH DIFFERENT ANN SETTINGS AND WEATHER CONDITIONS 

SAMPLE FORECASTING 
METHOD NMAE% WMAE% 

Sunny Day 
PHANN 2.70 6.13 

ANN 4.58 10.38 

Partially 
Cloudy 

Day 

PHANN 5.70 14.52 

ANN 6.58 16.77 

Cloudy 
Day 1 

PHANN 23.61 108.82 

ANN 23.05 106.25 

Cloudy 
Day 2 

PHANN 11.66 52.16 

ANN 16.04 71.74 

 

VII.  CONCLUSION 
In this paper a new hybrid forecasting method, by 

means of artificial neural network with physical 
constraints is presented. The results from the error 
assessment, according to the error definitions here 
explained, lead to the conclusion that PHANN method is 
more accurate than the ANN one even if the quality of the 
data in the training set is still a key parameter to be taken 
in account. Besides it has been emphasized that the 
accuracy of these methods is strictly related to the 
historical data preprocess phase and to the accuracy of the 
historical weather forecasting data used for the training 
phase. The errors trend clearly shows how the accuracy in 
the sunny days is higher with PHANN in comparison to 
ANN method, while in cloudy days the overall efficiency 
is slightly different.  

Some future improvements are therefore connected to 
the reliability of the weather forecasting and a more in 
depth study is required in order to evaluate the best 
suitable training time span to optimize the new procedure 
performance. 
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