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Abstract— This paper provides an adaptive event-triggered
method using adaptive dynamic programming (ADP) for the
nonlinear continuous-time system. Comparing to the tradi-
tional method with fixed sampling period, the event-triggered
method samples the state only when an event is triggered and
therefore the computational cost is reduced. We demonstrate
the theoretical analysis on the stability of the event-triggered
method, and integrate it with the ADP approach. The system
dynamics are assumed unknown. The corresponding ADP
algorithm is given and the neural network techniques are
applied to implement this method. The simulation results verify
the theoretical analysis and justify the efficiency of the proposed
event-triggered technique using the ADP approach.

I. INTRODUCTION

IN literature, digital control are relying on the periodic

transmitted data using the fixed sampling period. How-

ever, huge number of the transmitted data may cause sub-

sequent tremendous computation, especially when the com-

putation bandwidth or sensor power sources are constrained.

In recent years, the event-triggered control method has been

studied for its capability of computation efficiency [1], [2]. In

the event-triggered control algorithm, the controller is only

updated when an event is triggered, and thus the computation

is significantly saved [3], [4], [5]. Currently, the event-

triggered control methods are based on the accurate system

function or model [6], [7]. In many cases, the complete

knowledge of the system function is either infeasible or very

difficult to obtain. Recently, neural-network-based event-

triggered optimal control approaches were proposed and

demonstrated with the promising performance in [8], [9],

[10].

Adaptive dynamic programming (ADP) have been studied

and adopted for the solution seeking for the Hamilton-

Jacobi-Bellman (HJB) equation in recent years [11], [12],

[13]. Extensive efforts and promising results have been

achieved over the past decades, such as the special issue

on feedback control provided well-known feedback control
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problems with new techniques of ADP [14]. Higher level

exploration, like [15], [16], showed the deeper thinking for

the future development on ADP community. In addition,

ADP methods demonstrated the control capabilities in many

real applications, like the power system stability/transient

control in [17], [18], the looper system control in the iron

and steel company in [19], [20], the engine torque and

air-fuel control in [21] and among others [22], [23], [24].

Stability analysis of the ADP control on dynamic systems

were provided under certain conditions in [25], [26], [27].

The performance index function and the control law were

studied and demonstrated in [28], [29]. The robust con-

troller with the ADP technique was also presented in [30].

More recently, a series of new ADP frameworks, namely

the three-network ADP/goal representation adaptive dynamic

programming (GrADP) were proposed and demonstrated

in [31], [32], [33]. A novel tracking scheme was studied

and demonstrated with stability analysis with this GrADP

approach in [34], [35]. The maze navigation example was

also tested and compared with this GrADP approach and

many other reinforcement learning approaches in [36], [37].

In this paper, we integrate the event-triggered control

technique into the ADP approach for the unknown nonlinear

continuous-time system. We first study the stability analysis

for the event-triggered method. The event-triggered controller

is then implemented with the neural network techniques. That

is, we use an action network to approximate the control

law based on the event-triggered sample data (with event-

triggered techniques), and use a critic network to evaluate

the control performance with the value function. The pseudo-

code for the event-triggered algorithm is provided and the

weights updating rules are subsequently derived. The weights

evolution in the learning process are provided to show the

achieved learned/optimal policy. For comparative studies, we

also provide the performance of both the traditional ADP

approach and the proposed event-triggered ADP approach

in the simulation studies. The theorem is verified with

simulation results. During the simulation, the system function

is assumed to be unknown and only the input/output data are

measured.

The rest of this paper is organized as follows. In Section

II, we provide the problem formulation of the event-triggered

ADP approach on the continuous-time system. The stability

analysis of the event-triggered control law is provided in

Section III. Section IV first presents the integration of the

event-triggered technique into the ADP approach. Then the

neural networks, namely the adaptive critic networks, are

introduced to implement this ADP scheme. In Section V,
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a single link robot arm is studied with two settings to

demonstrate the control performance of the proposed method.

The conclusion is provided in the section VI.

II. PROBLEM STATEMENT

Consider a nonlinear continuous-time system with the

form

ẋ(t) = f(x(t)) + g(x(t))u(t) (1)

where x(t) ∈ Rn denotes the system state variable with the

initial state x(0) = x0 and u(t) ∈ Rm is the control input.

f(x(t)) and g(x(t)) are the unknown system functions.

Assume that f(x(t)) + g(x(t))u(t) is Lipschitz continuous

on a set Ω ⊆ Rn, and f(0) = 0, g(0) = 0. In order

to save resources, this paper introduces a sampled-data

system that is characterized by a monotonically increasing

sequence of sampling instants {δj}∞j=0, where δj < δj+1 for

j = 0,1,2,⋯,∞. The time δj denotes the jth consecutive

sampling instant. The output of the sampled-data system is

a sequence of the sampled states which can be described by

x̂j = x(δj). (2)

For simplicity, we assume that the sampled-data system has

zero task delay. Define the gap function for ∀t ∈ [δj , δj+1)
as

ej(t) = x̂j − x(t) (3)

which is the difference between the sampled state and the

current state. It is obvious that at the beginning of the interval[δj , δj+1), the gap in (3) is equal to zero. After that, one

expects the norm of the gap to increase. When the gap is

larger than a threshold eT , then the system state is again

sampled by setting x̂j = x(t), thereby forcing the gap to

zero again.
We are interested in the state-feedback controller γ(x̂j),

which maps the sampled state onto a control vector. Assume

that γ(x̂j) is a Lipschitz continuous function. The obtained

control sequence {γ(x̂j)}∞j=0 becomes a continuous-time

signal through a zero-order hold (ZOH). In particular, this

control signal can be seen as a piecewise constant function

and within any time interval [δj , δj+1), the controller is

u(t) = γ(x̂j), j = 0,1,2,⋯,∞.
Rewrite equation (3) as x̂j = x(t)+ej(t), so that the closed

loop dynamics can be described as

ẋ(t) = f(x(t)) + g(x(t))γ(x(t) + ej(t)), ∀t ∈ [δj , δj+1).
(4)

Similar to the traditional ADP problem, it is desired to

find a controller u(t) that minimizes the performance index

given as

V (x0) = ∫ ∞

0
U(x(τ), u(τ))dτ

= ∑
⋃
j
[δj ,δj+1)=[0,∞)

∫ δj+1

δj
U(x(τ), γ(x̂j))dτ (5)

where U(x(τ), γ(x̂j)) is the utility function with U(0,0) =
0. In this paper, the utility function is given by

U(x(t), γ(x̂j)) = xT (t)Qx(t) + γT (x̂j)Rγ(x̂j) (6)

in which Q and R are symmetric and positive definite

matrices with appropriate dimensions. Moreover, they can

be described by

Q = q ⋅ qT
R = r ⋅ rT (7)

Definition 1: A law u(t) is said to be an admissible

control with respect to (5) on Ω, if u(t) is continuous on

Ω and can stabilize system (1) for all x0 ∈ Ω, u(t) = 0 if

x(t) = 0, and V (x0) is finite, ∀x(t) ∈ Ω.

Equation (5) can be expanded as follows

V (x0) = ∑
⋃
j
[δj ,δj+1)=[0,δ1)

∫ δj+1

δj
U(x(τ), γ(x̂j))dτ

+ ∑
⋃
j
[δj ,δj+1)=[δ1,∞)

∫ δj+1

δj
U(x(τ), γ(x̂j))dτ

=∫ δ1

0
U(x(τ), γ(x̂j))dτ + V (x(δ1)).

(8)

After transformation, equation (8) becomes

lim
δ1→0
[V (x(δ1)) − V (x0)

δ1
]

= − lim
δ1→0

1

δ1
∫ δ1

0
[xT (τ)Qx(τ) + γT (x̂j)Rγ(x̂j)]dτ.

(9)

Then, we obtain the infinitesimal version of (5) as

V T
x (f(x(t)) + g(x(t))γ(x̂j , t)) + xT (t)Qx(t)

+γT (x̂j , t)Rγ(x̂j , t) = 0 (10)

where Vx = ∂V (x(t))
∂x(t)

is the partial derivative of the per-

formance index with respect to the state and γ(x̂j , t) is

the continuous-time signal of the event-triggered control law

γ(x̂j). Given that u(t) = γ(x̂j , t) is an admissible control

law, if V (x(t)) satisfies (10) and Q ≥ 0, R ≥ 0, then

V (x(t)) is a Lyapunov function for the system (1) with the

control law u(t) = γ(x̂j , t). Note that, in order to simplify

the expression, we use γ(x̂j) to represent γ(x̂j , t) in the

following presentation.

According to Bellman’s optimality equation, the optimal

performance index V ∗(x(t)) satisfies

min
γ(x̂j)
[V ∗Tx (f(x(t)) + g(x(t))γ(x̂j)) + xT (t)Qx(t)

+γT (x̂j)Rγ(x̂j)] = 0.
(11)

Assume that the minimum on the left-hand side of the

equation (11) exists and is unique. Therefore, the optimal

control γ∗(x̂j) satisfies the first-order necessary condition,

which is given by the gradient of (10) with respect to γ(x̂j).
Note that, in the event-triggered method, the controller is

only updated when an event is triggered. In other words, the

controller is designed based on the event-triggered sampling

state x̂j rather than the real state x(t). Hence, we have

g(x(t)) = g(x̂j) and Vx = Vx̂j , where Vx̂j = ∂V (x̂j)

∂x(t)
is the

partial derivative of the event-triggered performance index
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with respect to the state. Therefore, we obtain the event-

triggered optimal control as

u∗(t) = γ∗(x̂j) = −1
2
R−1gT (x̂j)V ∗x̂j

. (12)

By substituting (12) into (10), we obtain the HJB equation

under event-triggered method as follows

V ∗Tx f(x(t)) − 1

2
V ∗Tx g(x(t))R−1gT (x̂j)V ∗x̂j

+1
4
V ∗Tx̂j

g(x̂j)R−1gT (x̂j)V ∗x̂j
+ xT (t)Qx(t) = 0 (13)

with V ∗(0) = 0.

In the next section, we will show the event-triggered

control (12) is admissible and can stabilize the nonlinear

continuous-time system (1).

III. STABILITY ANALYSIS OF THE EVENT-TRIGGERED

METHOD

Assumption: The controller γ(x) is Lipschitz continuous

with respect to the gap,

∥γ(x(t))−γ(x̂j)∥ = ∥γ(x(t))−γ(x(t)+ej(t))∥ ≤ L∥ej(t)∥
(14)

where L is a positive real constant.

The stability analysis of the event-triggered controller is

provided as follows.

Theorem 1: Consider the nonlinear continuous-time sys-

tem (1). For ∀t ∈ [δj , δj+1), the control law is given by (12)

and assume V ∗(x(t)) is the solution of the event-triggered

HJB equation (13). If the triggered condition is defined as

follows

∥ej(t)∥2 ≤ ∥eT ∥2 = (1 − α2)
L2∥r∥2 λ(Q)∥x(t)∥2 + 1

L2
∥γ∗(x̂j)∥2

(15)

where λ(Q) is the minimal eigenvalue of Q, α ∈ (0,1) is

the designed parameter, and eT is the threshold of the gap

between the sampled and the real state, then the following

conditions hold.

(1) The event-triggered control law (12) is an admissible

control.

(2) The event-triggered control law (12) can asymptotically

stabilize the nonlinear system (1).

Proof: Let us start with the admissibility part. From

equation (12), we know when the state x̂j = 0, then g(x̂j) =
0 and hence γ∗(x̂j) = 0. The continuity assumption on

f(x(t)) + g(x(t))u(t) and γ∗(x̂j) implies that γ∗(x̂j) is

continuous and the system (1) cannot jump to infinity by

any one step of finite control. Moreover because f(0) = 0,

g(0) = 0, when the system state x(t) reaches the equilibrium

state, γ∗(x̂j) becomes zero and the state is kept at zero.

Therefore, according to Definition (1), we obtain event-

triggered control law γ∗(x̂j) is an admissible control which

proves the part (1).

Now we will show that γ∗(x̂j) can asymptotically stabi-

lize the nonlinear continuous-time system (1). Let γ∗(x̂j(t))
and V ∗(x(t)) be the optimal event-triggered control law and

the optimal performance index obtained in equation (12) and

(13), respectively. From equation (5), we know V ∗(x(t)) is

a positive definite function, namely, V ∗(x(t)) > 0 for any

x(t) ≠ 0 and V ∗(x(t)) = 0 when x(t) = 0. Hence, V ∗(x(t))
can be seen as a Lyapunov function.

With the event-triggered controller, the derivative of

V ∗(x(t)) along the system trajectory can be obtained as,

V̇ ∗(x(t)) = (∂V ∗(x(t))
∂x(t) )

T

⋅ ẋ
= V ∗Tx f(x(t)) + V ∗Tx g(x(t))γ∗(x̂j)

(16)

Here, we recall the control law and the HJB equation in

the traditional ADP method as

u∗(t) = −1
2
R−1gT (x)V ∗x(t) ≡ γ∗(x(t)) (17)

and

V ∗Tx f(x(t)) − 1

4
V ∗Tx g(x(t))R−1gT (x(t))V ∗x

+xT (t)Qx(t) = 0. (18)

Therefore,

gT (x(t))V ∗x = −2Rγ∗(x(t)) (19)

V ∗Tx f(x(t)) =1
4
V ∗Tx g(x(t))R−1gT (x(t))V ∗x
+ xT (t)Qx(t) (20)

Substitute (19) and (20) into (16), we have

V̇ ∗(x(t)) =1
4
V ∗Tx g(x(t))R−1gT (x(t))V ∗x + xT (t)Qx(t)
+ V ∗Tx g(x(t))γ∗(x̂j)
=γ∗T (x(t))Rγ∗(x(t)) − xT (t)Qx(t)
− 2γ∗T (x(t))Rγ∗(x̂j)

(21)

Because R = r ⋅ rT , we obtain

γ∗T (x(t))Rγ∗(x(t)) − 2γ∗T (x(t))Rγ∗(x̂j)
=∥rT γ∗(x(t)) − rT γ∗(x̂j)∥2 − ∥rT γ∗(x̂j)∥2. (22)

By substituting (22) into (21) and using the Lipschitz

condition from Assumption 1, we have

V̇ ∗(x(t)) =∥rT γ∗(x(t)) − rT γ∗(x̂j)∥2 − ∥rT γ∗(x̂j)∥2
− xT (t)Qx(t)
≤L2∥r∥2∥ej(t)∥2 − ∥rT γ∗(x̂j)∥2 − xT (t)Qx(t)
≤L2∥r∥2∥ej(t)∥2 − ∥rT γ∗(x̂j)∥2 − λ(Q)∥x(t)∥2
= − α2λ(Q)∥x(t)∥2 + [ − (1 − α2)λ(Q)∥x(t)∥2
+L2∥r∥2∥ej(t)∥2 − ∥rT γ∗(x̂j)∥2]

(23)

since −xT (t)Qx(t) ≤ −λ(Q)∥x(t)∥2, where λ(Q) is the

minimal eigenvalue of Q.
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Based on the condition (15), we know that the last three

terms in (23) is guaranteed negative. Therefore, (23) can be

modified as follows

V̇ ∗(x(t)) ≤(1 − α2)λ(Q)∥x(t)∥2 + ∥r∥2∥γ∗(x̂j)∥2
− ∥rT γ∗(x̂j)∥2 − λ(Q)∥x(t)∥2
= − α2λ(Q)∥x(t)∥2
<0

(24)

for any x(t) ≠ 0. Thus, u∗(t) = γ∗(x̂j) can asymptotically

stabilize the nonlinear continuous-time system (1). The con-

clusion holds. ∎
It can be seen that the controller is guaranteed stable

(under certain conditions) with the event-triggered sample

data. In the next section, we are applying the neural network

methods to implement the event-triggered ADP approach.

IV. EVENT-TRIGGERED CONTROLLER DESIGN BY

NEURAL NETWORK TECHNIQUES

In this section, an ADP approach is provided to solve

the event-triggered HJB equation (13) and approximate the

optimal event-triggered control law (12). The neural net-

work techniques are employed to implement this approach.

Two subsections are included. The first one shows the

even-triggered online learning ADP algorithm for nonlinear

continuous-time system. The neural network implementation

is presented in the second subsection.

A. ADP Approach to Approximate the Event-Triggered Con-
trol Law

Set the initial triggered state as x̂0 = x0. Note that if

we use equation (12) to calculate the event-triggered control

law, the system function g(x̂j) is required which is unknown

in this paper. Hence, we provide a method to approximate

the control updating equation (12). The algorithm can be

described as Algorithm 1.

Algorithm 1 Event-triggered Algorithm with unknown sys-

tem dynamics.

Set i = 0, j = 0, x̂0 = x0, x(t) = x0

Approximate γ(x̂j) = arg min
γ(x̂j)
{V (x0)}

for all i < Nrun do
Policy evaluation:

V (x(t)) = min
γ(x̂j)

∫ ∞0 U(x(τ), γ(x̂j))dτ
if x̂j − x(t) = ej(t) > eT then

Set j = j + 1, x̂j = x(t)
Update γ(x̂j) = arg min

γ(x̂j)
{V (x̂j)}

end if
Update state ẋ(t) = f(x(t)) + g(x(t))γ(x̂j)
Set i = i + 1

end for

From Algorithm 1, we know that by estimation of the

control law, no system information is required during the

learning process. In the next subsection, we will provide

the approximation process by neural network techniques in

detail.

B. Neural-Network-based Implementation

The neural networks are employed in this subsection to

approximate the event-triggered control law. The architecture

of this event-triggered method is shown in Fig.1. A critic

network and an action network are built to approximate the

performance index and the control law of the event-triggered

method, respectively. We can observe that a sampled-data

system is used during this process with the sampling instants{δj}∞j=0. As we provided above, {δj}∞j=0 are based on the gap

(ej(t)) which is the difference between the current and the

sampled state. When ej(t) is larger than the threshold eT ,

the system state is sampled by x̂j = x(δj), and the action

network is updated based on the event-triggered sample

state. Then through the ZOH, the control law sequence is

transformed into a continuous-time control signal. Assume

that the sampling period for the discretization is △t. We set

both the critic and the action network used in this paper

be the three-layer networks. In the following part, we will

provide the online learning rules for both networks.

1) Critic Network: The critic network is used to ap-

proximate the performance index V (x(t)) which can be

formulated as

V (x(t)) = ωTc2(t)Φ(h(t)) (25)

where ωTc2(t) is the weight matrix between the hidden

and the output layer of the critic network and h(t) =
ωTc1[xT (t), γT (x̂j)], to which ωc1 denotes the weight matrix

between the hidden and the input layer. Note that ωc1 is

randomly chosen as initial and is kept constantly during the

implementation process in this paper.

Φ(x) is a sigmoid function that can be described as

Φ(x) = 1 − e−x
1 + e−x . (26)

The purpose of the sigmoid function is to constrain the output

into [−1,1]. Here the sigmoid function is applied on the

hidden to output nodes.

Define the error function for the critic network by

ec(t) = V (x(t)) − [V (x(t −△t)) −U(x(t), γT (x̂j)] (27)

where △t is the sampling period during discretization.

Therefore, to update the weight matrix is to minimize the

following objective function

Ec(t) = 1

2
e2c(t). (28)

Hence, we obtain the critic network weights adjustments

for the hidden to the output layer

ωc2(t +△t) = ωc2(t) − βc ( ∂Ec(t)
∂ωc2(t)) (29)

where βc > 0 is the learning rate of the critic network.

According to the chain-backpropagation rules, we derive the

tuning formula as

∂Ec(t)
∂ωc2(t) =

∂Ec(t)
∂V (x(t))

∂V (x(t))
∂ωc2(t) (30)
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Fig. 1. Architecture of the event-triggered method based on the ADP approach.

2) Action Network: The purpose of the action network

is to estimate the optimal event-triggered control law. As

we discussed, the action network is only updated when an

event is triggered. Therefore, the estimated control law can

be formulated as

γT (x̂j) = Φ(ωTa2(δj)g(δj)) (31)

g(δj) = Φ(ωTa1(δj)x̂j) (32)

where ωa1(δj) and ωa2(δj) are the weight matrices of the

input-to-hidden and the hidden-to-output layer at the sampled

time δj , respectively. Sigmoid function is applied on both

hidden and the output side. x̂j is the sampled state and is

also the input of the action network. The same as above, we

fix the input-to-hidden layer weight matrix ωa1(δj) which is

chosen initially at random. Therefore, only the weight matrix

ωa2(δj) between the hidden and the output layer is needed

to be updated.

We know the objective for the action network is to

minimize the total future cost, hence we define the error

function here by

ea(δj) = V (x̂j) −Uc (33)

where Uc is the ultimate utility function. The value of Uc
is critical in ADP design and it could be variant in different

application. In this paper, we choose Uc = 0.

The objective function of the action, therefore, can be

written as

Ea(δj) = 1

2
e2a(δj) (34)

The gradient descent method is also applied to minimize

the approximation error (34) as

ωa2(δj+1) = ωa2(δj) − βa ( ∂Ea(δj)
∂ωa2(δj)) (35)

where βa > 0 is the learning rate of the action network. From

the chain backpropagation rule, we obtain

∂Ea(δj)
∂ωa2(δj) =

∂Ea(δj)
∂V (x̂j)

∂V (x̂j)
∂γT (x̂j)

∂γT (x̂j)
∂ωa2(δj) (36)

V. SIMULATION RESULTS

Consider a single link robot arm with the following

dynamic function

θ̈(t) = −MgH

G
sin(θ(t)) − D

G
θ̇(t) + 1

G
u(t) (37)

where θ(t) is the angle position of robot arm, and u(t) is

the control input. Moreover, M is the mass of the payload,

G is the moment of inertia, g is the acceleration of gravity,

H is the length of the arm and D is the viscous friction,

where g, H , D are the system parameters and M , G are the

design parameters. Set the values of the system parameters

as g = 9.81, D = 2, and L = 0.5, and the design parameters

M and G are alterable. Assuming x1(t) = θ(t) and x2(t) =
θ̇(t), the dynamic function (37) can be rewritten by

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ẋ1(t) = x2(t)
ẋ2(t) = − 2

G
x2(t) + 1

G
u(t) − 4.905M sin(x1(t))

G
.

(38)

We use the event-triggered method proposed in this paper

to solve the problem. Choose the threshold according to

condition (15) with L = 3, α = 0.95. Set Q, R and r are the

identity matrices with appropriate dimensions. Therefore, the

threshold is

∥eT ∥2 = (1 − α2)
L2∥r∥2 λ(Q)∥x(t)∥2 + 1

L2
∥γ(x̂j)∥2

= 1 − 0.952
9

∥x(t)∥2 + 1

9
∥γ(x̂j(t))∥2.

(39)

When the gap ej(t) = x̂j − x(t) satisfies the condition∥ej(t)∥2 > ∥eT ∥2, then the system state is again sampled

by setting x̂j = x(t).
Two three-layer neural networks are built as the critic and

the action network. The neuron structures of the critic and

the action network are 3−8−1 and 2−6−1, respectively. Set

the learning rates of both networks as βc = βa = 0.01, and

the sampling period for discretization as △t = 0.03s. The

initial weights of both networks are chosen randomly within
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Fig. 2. Comparisons of system responses by the event-triggered and the
traditional ADP method with M = 1 and G = 1.
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Fig. 3. Inter-event instants during the learning process with M = 1 and
G = 1.
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and G = 1.
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Fig. 5. Learning weights of the critic and the action network from the
hidden to the output layer with M = 1 and G = 1.

[−1,1]. The initial state is set to x0 = [1,−0.5]. The input

of the action network is the sampled state.

In the first case, we set the design parameters as M = 1,

G = 1. By employing the event-triggered method proposed

in this paper, we obtain the system responses in Fig.2. Note

that, in order to demonstrate the performance of our method,

we also conduct this example under the traditional ADP

method with the same initial weights which is also presented

in Fig.2. From the comparison, we know that the event-

triggered control law keeps the same at period [δj , δj+1)
and is only updated when an event is triggered. The control

law evolution and the state trajectories of the event-triggered

method are very close to those of the traditional ADP

method. This means efficiently reducing the sampled times

does not influence the system performance. The sampling

period during the event-triggered learning process is provided

in Fig.3 which shows that the sampling period is up to 0.27s.

The relationship between the gap ∥ej(t)∥ and the threshold∥eT ∥ is shown in Fig.4. The learning weights of the critic

and the action network from the hidden to the output layer is

provided in Fig.5. We know the weights converge after 3s. In

particular, comparing the event-triggered and the traditional

ADP method, the event-triggered controller uses 161 samples

of the state while the traditional ADP controller uses 500
samples, which means the even-triggered method improved

the learning process.

In the second case, we conduct the example with the

design parameters M = 5, G = 5. The comparison of the

system responses by the event-triggered and the traditional

ADP method with the same initial weights is presented in

Fig.6. We can observe that the event-triggered method also

works with the high design parameters. The sampling period

during the learning process of the event-triggered method is

provided in Fig.7. We know the sampling period is up to

0.39s in this case. The relationship between the gap ∥ej(t)∥
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Fig. 6. Comparisons of system responses by the event-triggered and the
traditional ADP method with M = 5 and G = 5.
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Fig. 7. Inter-event instants during the learning process with M = 5 and
G = 5.
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Fig. 8. Response of the gap ∥ej(t)∥ and the threshold ∥eT ∥ with M = 5
and G = 5.
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Fig. 9. Learning weights of the critic and the action network from the
hidden to the output layer with M = 5 and G = 5.
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Fig. 10. The average number of the samples used by the event-triggered
controller for each parameters pair within [1,20].

and the threshold ∥eT ∥ is shown in Fig.8. Moreover, the

learning weights of the critic and the action network from

the hidden to the output layer is provided in Fig.9. From the

simulation, we obtain that the event-triggered controller uses

291 samples of the state while the traditional ADP controller

uses 800 samples. This means our method makes an great

improvement in this case comparing to to the traditional ADP

method, which indicates that our method is effectiveness.

Additionally, without loss of generality, we choose the

values of the design parameters as M = 1,2,⋯,20 and

G = 1,2,⋯,20. For each pair of the design parameters, we

conduct the simulation based on the proposed method for

100 times. The sampling period for discretization is set as△t = 0.03s and each simulation lasts 25s. This means the

traditional ADP controller will use 800 samples to stabilize

the system. However, from Fig.10, we know the average

number of the samples used by the event-triggered controller

for each parameters pair is around 300, which is significantly

less than the samples used by the traditional ADP controller.

This indicates that our method is effective.
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VI. CONCLUSION

We designed an event-triggered controller for nonlinear

continuous-time system using ADP approach. The system

function was assumed to be unknown. The controller was

updated only based on the triggered state. A zero-order hold

was used to transform the control sequence into a continuous-

time signal. The threshold for triggering an event was dis-

cussed and the stability of this event-triggered controller was

analyzed. Neural network techniques were used to approx-

imate the performance index and the controller in event-

triggered method, respectively. The stability of the designed

controller is analyzed in this paper. The simulation results

demonstrate the effectiveness of the designed controller and

also verify the theoretical analysis.
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