
Applying Neural-Symbolic Cognitive Agents
in Intelligent Transport Systems

to reduce CO2 emissions
Leo de Penning, Artur S. d’Avila Garcez, Luis C. Lamb, Arjan Stuiver, and John-Jules Ch. Meyer

Abstract—Providing personalized feedback in Intelligent
Transport Systems is a powerful tool for instigating a change
in driving behaviour and the reduction of CO2 emissions. This
requires a system that is capable of detecting driver character-
istics from real-time vehicle data. In this paper, we apply the
architecture and theory of a Neural-Symbolic Cognitive Agent
(NSCA) to effectively learn and reason about observed driving
behaviour and related driver characteristics. The NSCA archi-
tecture combines neural learning and reasoning with symbolic
temporal knowledge representation and is capable of encoding
background knowledge, learning new hypotheses from observed
data, and inferring new beliefs based on these hypotheses.
Furthermore, it deals with uncertainty and errors in the data
using a Bayesian inference model, and it scales well to hundreds
of thousands of data samples as in the application reported in
this paper. We have applied the NSCA in an Intelligent Transport
System to reduce CO2 emissions as part of an European Union
project, called EcoDriver. Results reported in this paper show
that the NSCA outperforms the state-of-the-art in this application
area, and is applicable to very large data.

Index Terms—Neural-Symbolic Learning and Reasoning,
Driver modelling, Deep Learning, Restricted Boltzmann Ma-
chines (RBM),

I. INTRODUCTION

RESEARCH has shown that providing feedback is a
powerful tool for instigating a behaviour change (e.g.

[1], [2], [3]). As part of an EU project on the reduction of
CO2 emissions, called EcoDriver, we focused on innovations
in feedback advice strategies and Human-Machine Interface
(HMI) solutions to maximize system effectiveness and accept-
ance of an Intelligent Transport System that supports drivers
to reduce their CO2 emissions. For example, we applied an
adaptive feedback strategy to tailor the feedback and HMI,
based on the driving style of the driver (see Figure 1). This
requires an automated driver type detection system that is
able to reason online about observed driving behaviour and
classify this behaviour in terms of several characteristics of the
driver (e.g. learning vs. performance oriented, social vs. self
oriented) using large amounts of real-time and noisy vehicle

Leo de Penning is with the Department of Earth, Life and Social Sciences,
TNO, Soesterberg, The Netherlands, e-mail: leo.depenning@tno.nl.

Artur S. d’Avila Garcez is with the Department of Computer Science, City
University London, UK, e-mail: a.garcez@city.ac.uk.

Luis C. Lamb is with the Instituto de Informatica, UFRGS, Porto Alegre,
RS, Brazil, e-mail: LuisLamb@acm.org.

Arjan Stuiver is with the Department of Earth, Life and Social Sciences,
TNO, Soesterberg, The Netherlands, e-mail: arjan.stuiver@tno.nl

John-Jules Ch. Meyer is with the Department of Information and Computing
Sciences, Universiteit Utrecht, Netherlands, e-mail: J.J.C.Meyer@uu.nl.

data (e.g. steering angle, speed, rpm, gear, brake). Although
the use of semi-controlled environments, like an instrumented
car, simplifies the data and knowledge acquisition, the building
of a model or intelligent autonomous agent that is capable
of dealing with the many complex temporal relations in the
observed data is a very difficult task, in particular in dynamic
and non-stationary environments [4], [5].

Figure 1. EcoDriver human-machine interface for personalized feedback on
CO2 emissions.

In this paper, we address the problems by applying the
architecture and theory of the Neural-Symbolic Cognitive
Agent (NSCA) described in [6], [7] to develop a robust
model for driver type detection from real-time vehicle data.
We will show the NSCA is capable of deep learning and
reasoning about complex dynamic temporal relations, but
also represent an agent’s knowledge in symbolic form for
explanation and validation purposes, describing its decisions
and providing feedback to the user. This is achieved by
taking advantage of neural-symbolic integration [8], using the
networks for performing robust learning and adaptation, and
symbolic knowledge extraction for representing the temporal
relations explicitly and for qualitative reasoning. We also
provide additional proof showing the NSCA is capable of
modelling any temporal logic program. The result is an agent
model that is capable of efficient online learning and reasoning
in complex, dynamic and non-stationary environments. We
discuss the effective use and results of the NSCA as part of the
driver type detection system, and refer to several other real-
world applications of the NSCA (e.g. automated assessment

2014 International Joint Conference on Neural Networks (IJCNN)
July 6-11, 2014, Beijing, China

978-1-4799-1484-5/14/$31.00 ©2014 IEEE 55

mailto:leo.depenning@tno.nl
mailto:a.garcez@city.ac.uk
mailto:LuisLamb@acm.org
mailto:arjan.stuiver@tno.nl
mailto:J.J.C.Meyer@uu.nl

in driver training, behaviour recognition in video), to show
that NSCA can be useful at performing online learning and
explanation in different real-world domains, indicating the
reach of the approach.

II. PRELIMINARIES

The construction of effective cognitive agent models is
a long standing research endeavour in artificial intelligence,
cognitive science, and multi-agent systems [4], [9]. One of
the main challenges toward achieving such models is the
provision of integrated cognitive abilities, such as learning,
reasoning and knowledge representation. Recently, cognitive
computational models based on artificial neural networks have
integrated inductive learning and deductive reasoning, see e.g.
[8], [10]. In such models, neural networks are used to learn and
reason about (an agent’s) dynamic knowledge about the world,
represented by symbolic logic. In order to do so, algorithms
map logical theories (or knowledge about the world) T into a
neural network N which computes the logical consequences
of T . This provides also a learning system in the network that
can be trained by examples using T as background knowledge.
In agents endowed with neural computation, induction is typ-
ically seen as the process of changing the weights of a network
in ways that reflect the statistical properties of a data set,
allowing for generalizations over unseen examples. In the same
setting, deduction is the neural computation of output values as
a response to input values (stimuli from the environment) given
a particular set of weights. Such network computations have
been shown equivalent to a range of temporal logic formalisms
[6]. The NSCA architecture described in this paper is based
on this approach and uses temporal logic as theory T and a
Restricted Boltzmann Machine (RBM) as neural network N
[11].

An RBM represents a stochastic neural network with vis-
ible units v, that represent input variables (or hidden-unit
activations of lower-layer RBMs), and hidden units h, that
represent the likelihood of certain activation patterns in v.
There are symmetric weighted connections between the hidden
and visible units with weights W , but no connections within
the hidden units or visible units. The weights can be trained
to model a joint probability distribution over h and v (see
Equation 1, where b and c denote the biases of the hidden
and visible units and σ(x) the logistic sigmoid function).
This particular configuration makes it easy to compute the
conditional probability distributions, when v or h is fixed
(Equation 2), enabling the reconstruction of input data v’
based on partial information in v. This is done by sampling
the conditional probability distribution in Equation 2, where
h′j = 1 with p(hj |v) (and h′j = 0 otherwise), and calculating
the reconstructed data v’, where v′i = P (vi|h’).

− logP (v,h) ∝ E(v,h) = −cT v− bT h− hTWv (1)
P (hj |v) = σ(bj + wT

j v) (2)

The RBM can be trained using Contrastive Divergence
learning [12]. This learning algorithm tries to minimize the
difference between v and v′ by changing the weights using a

Hebbian-like learning rule such that 4W ∼= v · h − v′ · h′,
with the network in the long run learning to approximate the
joint probability distribution P (v,h).

III. NEURAL-SYMBOLIC COGNITIVE AGENT

In its core, the NSCA uses a Recurrent Temporal Restricted
Boltzmann Machine (RTRBM) for online learning and reason-
ing (see Figure 2). An RTRBM is an RBM where each hidden
unit has recurrent connections to the hidden unit activations at
time t−1 [13]. This enables the NSCA to model hypotheses H ,
that are represented by the hidden units, on temporal relations
between beliefs B, that are represented by visible units, by
setting the weights of the RTRBM [7]. A major benefit of the
NSCA is that these hypotheses can both be modelled by hand
as prior knowledge, similar to other logic-based reasoning
systems (e.g. see [14]), as well as learned from observation,
allowing the refinement of prior knowledge. For example, the
NSCA can model a rule r like ’When it rains, the grass will
get wet’ by defining a hypothesis H1, represented by a hidden
unit, that implies a temporal relation between the beliefs B1

(i.e. ’it rains’) and B2 (i.e. ’grass is wet’), represented by
visible units. Since B1 at time t will result in B2 at a later
time t + n (i.e. the grass will get wet and remain wet for a
while after it started raining), another hypothesis H2 is used
to denote that it is currently raining. Both H1 and H2 are
represented by hidden units with recurrent connections in the
RTRBM and are used to establish the desired temporal link
between B1 and B2. As described in section IV, this can be
expressed by two temporal logic rules: H1 ↔ B2 ∧ •H2 and
H2 ↔ B1 ∧ •H2 (where • means ’at time t − 1’; everything
else happens at time t).

When the NSCA then observes B1 (i.e. activating the
related visible unit with some probability or real value), it can
calculate the probability that it is raining (i.e. the activation
of H2) by forward propagation of the belief activation to the
hidden unit representing H2. Similarly, this can be done for
H1 at time t + 1 using the probability of H2. We refer to
this as deduction in the NSCA. Deduction (Figure 2, right)
is similar to Bayesian inference, where for all hypotheses H ,
the probability is calculated that the hypotheses are true given
the observed beliefs b and the previously applied hypotheses
Ht−1 (i.e. P (H|B = b,Ht−1)). From the posterior probability
distribution, the RTRBM selects the most likely hypotheses h′

using random sampling, denoted as h′ ∼ P (H|B = b,Ht−1),
whereby at each time, a random number ni is generated for
each hypothesis Hi in the interval [0,1]. If h′(i) > ni, where
h′(i) is the activation value of hidden unit hi, then hypothesis
Hi is selected (i.e. the activation value of hi is set to 1);
otherwise, hi is set to zero.

So based on the probability of H1, NSCA can assume this
hypothesis is actually true and applicable to the current obser-
vation by setting the activation of the related hidden unit to
1.0. Then, using backward propagation to the visible units and
recurrent connections, NSCA can calculate the probabilities of
all beliefs and previous activations of the hidden units, given
the assumptions made. As it already observed that it is raining
(H2), it will infer that the grass is wet (B2). We refer to

56

Figure 2. Neural-Symbolic Cognitive Agent architecture that combines robust learning from observation and probabilistic temporal reasoning using an RTRBM
and enables symbolic knowledge encoding and extraction based on its Bayesian inference model. A complete cycle (e.g. deduction, abduction and induction)
is performed online (in near real-time) and includes updating the RTRBM based on the difference between the observed beliefs P (B = b) and abduced
beliefs P (B|H). Adaptation in the RTRBM is controlled by a learning parameter that controls the training and testing ratios in the NSCA.

this process as abduction in NSCA. Via abduction (roughly,
the process of finding a posteriori the best explanations for
an observation; see Figure 2, bottom), NSCA can infer the
most likely beliefs B based on hypothesis H by calculating
their conditional probability b (or real value in case of real-
valued beliefs) from the RTRBM, i.e. b = P (B|H). The
differences between the observed and inferred beliefs are then
used by NSCA to determine the implications of the observed
beliefs and applied hypotheses (e.g. an assessment of high-
order driving skills based on observed driving behaviour or
detection of human behaviour in video).

Finally, suppose NSCA observes that the grass is wet
(B2) every time it observed H2, and these observations of-
ten triggered H1 through forward propagation. The weights
between the related visible and hidden units will be updated so
that these concepts will become strongly correlated, possibly
forming a new relation. We refer to this as induction in NSCA.
Learning of new relations through induction can be achieved
by using the differences between the observed and inferred
beliefs to strengthen the correlation between the selected
hypotheses H and the observed beliefs B (Figure 2, left).
NSCA does so by updating the weights in the RTRBM using

both Contrastive Divergence and Backpropagation-Through-
Time as done in [13].

The NSCA architecture also enables the construction of
multiple NSCAs in a kind of multi-agent system that is capable
of deep learning and reasoning, where each NSCA can learn
and represent higher-order temporal relations on hypotheses
of other NSCAs by observing the probabilities on these
hypotheses (depicted as the current state of ’mind’ in Figure
2). Such a layered approach results in a Deep Belief Network
(or Deep Boltzmann Machine when RBMs are used), and is
capable of meta-level learning and reasoning [15]. Also the
rules extracted from higher-order NSCAs represent meta-level
rules on lower-order hypotheses (e.g. Hmeta

1 ↔ H1 ∧ ¬H3

denotes that there is a disjunctive relation between occurrences
that the the grass is wet, because it has rained, or that it is
wet, because the sprinkler was on).

So far, we have explained the bottom part of the model in
Figure 2, showing how beliefs and hypotheses are modelled in
the RTRBM. In the next section, we will explain the top part
of the model, showing how symbolic rules can be encoded
and extracted from the RTRBM.

57

IV. TEMPORAL KNOWLEDGE REPRESENTATION

Temporal knowledge can be encoded in the RTRBM in
the form of temporal logic clauses that describe equivalences
between hypotheses and beliefs over time. Therefore, they
are adequate for representing non-stationary and dynamic
knowledge, as will be exemplified later. In NSCA, H1 ↔
B1 ∧B3 ∧ •H1 is used to denote that hypothesis H1 holds at
time t if, and only if, beliefs B1 and B3 hold at time t and
hypothesis H1 holds at time t− 1, where we use the previous
time temporal logic operator • to denote t− 1.

We consider a broad set of past and future temporal logic
operators. The past operators include the usual representation
of previous time (denoted by •), always in the past (�),
sometimes in the past (�), and since (S). The dual operators
in the future are, respectively, the next time operator (denoted
by ◦), always in the future (�), sometimes in the future (♦)
and until (U). A logical expression α is called a temporal
formula if and only if one of the following is true: (i) α is
a propositional variable, (ii) α = •β, α = �β, α = �β or
α = βSδ, where β and δ are temporal formulas, (iii) α = ◦β,
α = �β, α = ♦β or α = βUδ, where β and δ are also
temporal formulas. A literal λ is either a temporal formula
(α) or the negation of a temporal formula (¬α). A temporal
clause is an expression of the form λ1 ∧ λ2 ∧ ... ∧ λn → α,
where α is a temporal formula and λi(1 ≤ i ≤ n) are literals.
A temporal logic program R is a set of temporal clauses.

A fixed-point semantics for the temporal programs R as
defined above was provided in [6], following the natural
intuition of the temporal operators. Each formula containing
any of the above operators can be translated into an equivalent
formula containing only the previous-time operator. The reader
is referred to [16], [6] for the details and translations of the
operators into formulas containing the previous-time operator
only. As an example, the proposition αSβ denotes that a
proposition α has been true since the occurrence of proposition
β. This can be translated into the following propositions:
β → αSβ and α∧•(αSβ)→ αSβ, where αSβ is a literal. In
the RTRBM, α and β are modelled by visible units, αSβ by a
hidden unit and •(αSβ) is modelled by a recurrent connection
to the hidden unit activation at time t− 1. Given network N
and program R, we say that N computes R if N approximates
the fixed-point semantics for R upon the application of the rule
encoding algorithm described below.

A general method for encoding and extracting symbolic
rules from symmetric connectionist networks has been pro-
posed in [17]. This method maps logical rules to the energy
function of such networks by adding a penalty to the rules, as
follows. An energy function E(x) can be shown equivalent to
sets of pairs of logic formulas and real numbers < pi, fi >.
The real number pi is called a “penalty" and the set of pairs
of formulas and penalties is known as a penalty logic well-
formed formula or PLOFF. A connectionist system and a rule
set are equivalent if and only if there exists a ranking function
Vrank for the latter such that Vrank(x) = E(x) + c, where
c is a constant. In the case of an RBM with a visible unit
vi and a hidden unit hj , a corresponding PLOFF would be
(〈wij , vi ∧ hj |wij > 0〉, 〈−wij ,¬(vi ∧ hj)|wij < 0〉), where

wij is the value of the weight between vi and hj , with as
ranking function the sum of the penalties of the pairs whose
formulas are violated given truth-values for h and v. As can
be seen, the penalty pi is directly related to the weight of the
connections between the beliefs and hypotheses.

NSCA extends the Penalty Logic approach to the case of
RTRBMs in order to encode and extract rules from these
networks. The penalties can be seen dually as the strength
or confidence value of a rule. For clarity, we use the term
confidence and normalize this value so that each rule will
have a confidence between 0 and 1. Because NSCA uses
a Restricted Boltzmann Machine, in which hidden units are
conditionally independent of each other, we can optimize the
rule insertion and extraction algorithms to make them simpler
and much more efficient. Due to this conditional independence,
we can treat each hidden unit as a separate rule (i.e. as an
expert on some feature of the belief space). This means that
our extraction and encoding can be applied to each hidden unit
separately, as follows.

A. Extraction Algorithm

NSCA can extract temporal knowledge acquired through
inductive learning, from a trained RTRBM in the form of
symbolic rules R obtained directly from the network’s weights
W . To extract a temporal logic program Ψ from an RTRBM
N we need to find the states of N that lower the total
energy in its energy function. Such extraction can help explain
the computation and provide feedback to the user about the
learning process, as exemplified later. This means finding
the states in the network N that maximize the likelihood
of each clause r encoded in N . Once N is stable we can
extract these clauses one at a time by clamping the maximum
probability of hypothesis Hr to the related hidden unit hr in
N , and inferring the associated beliefs B and previous-time
propositions Ht−1 from the RTRBM using random sampling
of the conditional probability distribution, i.e. br = P (B|Hr)
and ht−1r = P (Ht−1|Hr), where br is a vector containing
the probabilities of each belief associated with Hr, and ht−1

r

is a vector containing the probabilities of each previous-time
hypotheses associated with Hr.

If we repeat the above process for each hidden unit, we
can construct a temporal logic program Ψ using the following
equations (where k is the number of beliefs, m the number of
hypotheses and wir is the weight of the symmetric connection
between the related visible unit vi and hidden unit hr, and w′lr
is the weight of the recurrent connection between the previous
hidden unit activation ht−1l and hidden unit hr in the RTRBM).

Ψ = {〈cr : Hr ↔
k∧

i=1

θ(i)r

m∧
l=1

ρ(l)r 〉,∀r ∈ R} (3)

θ(i)r =

 Bi if wir > 0 ∧ br(i) > 0.5
¬Bi if wir < 0 ∧ br(i) > 0.5
∅ otherwise

(4)

ρ(l)r =

 •Hl if w′lr > 0 ∧ ht−1r (l) > 0.5
•¬Hl if w′lr < 0 ∧ ht−1r (l) > 0.5
∅ otherwise

(5)

58

cr = P (Hr|B = br, H
t−1 = ht−1

r) (6)

The literals in θ
(i)
r associated with the beliefs in clause r,

are calculated using Equation 4 and depend on the weight wir.
A negative weight wir makes the probability of Hr increase
when the probability of Bi decreases and thus the probability
of ¬Bi increases. The inverse applies to a positive weight.
When wir is 0 or b(i) < 0.5, belief Bi has no significant
influence on the hypothesis and can be left out. A similar
approach is used to extract the literals in ρ(l)r for Ht−1

r . Finally,
Eq. 6 shows how we calculate the confidence value cr of
rule r, denoting the strength or "penalty" of the equivalence
relation, as done in [17]. This confidence value is based on
the notion of Bayesian credibility described in [18] and is
calculated in a similar way.

In case of beliefs with continuous values, literals in θ
(i)
r

can be extracted using the same approach in the form of
Bi < br(i) when wir < 0 and Bi > br(i) when wir > 0.
This is general enough to account for the use of linguistic
variables, like weather = good, where a threshold value is
used to define if Bi should be true or false, and when a variable
is naturally associated with a range in the real numbers,
like temperature = high if B1 > 40◦C. Notice that, for
efficiency, intervals are represented by the combination of two
beliefs, like temperature = mild if temperaturemin >
15◦C ∧ temperaturemax < 25◦C.

B. Encoding Algorithm

The NSCA can also encode prior knowledge in the form of
symbolic rules R into the weights of the RTRBM by translat-
ing the rules into a joint probability distribution on beliefs B,
hypotheses Hr for each rule r ∈ R and their probabilities at
a previous time Ht−1. To encode a set of temporal clauses R
containing the entire range of temporal operators above into
an RTRBM, first we rewrite each temporal clause r ∈ R into
a rule that uses only the previous-time temporal operator •, as
done in [6]. Then, for each r, we assume that its completion
holds and write it as an equivalence relation between a so-
called hypothesis for that rule, Hr, and the literals that denote
beliefs B and previous-time propositions •H . This creates a
rule in the form shown in Equation 3, where θ’s are beliefs
and ρ’s are previous-time propositions, to which a confidence
value cr can be attached (if available); otherwise, a confidence
value of 1 is used.

To translate a set of temporal logic clauses R in the form
of Ψ into an RTRBM, we use the Contrastive Divergence
learning algorithm [13] and perform the following steps for
each r ∈ R:

1) Add hidden units hr, h1..m to the RTRBM (if they
do not exist already) to represent hypothesis Hr and
previous-time propositions •H1..m.

2) Add visible units v1..k to the RTRBM (if they do not
exist already) to represent each belief literal B1..k in the
clause.

3) For any positive literal Bi, set visible unit vi = 1. For
any negative literal ¬Bi in the clause, set visible unit

vi = 0. Similarly, set previous hidden unit ht−1l = 1,
for any •Hl in the clause, and ht−1l = 0, for any •¬Hl.

4) Randomize the weights connecting the visible units v
and hidden units h to initialize the encoded clause with
a random probability distribution.

5) Apply the contrastive divergence algorithm [13] to op-
timize the joint probability distribution P (Hr = cr, B =
v, Ht−1 = ht−1) and update the weights accordingly
with a single shot update (i.e. learning rate = 1.0)
assuming non-conflicting clauses. In case of conflicting
or ambiguous clauses use a lower learning rate and
iterate a couple of times over all clauses to find an
optimum.

Theorem 1. For any temporal logic program R there exists
an RTRBM N such that N computes R.

Proof: The translation of temporal formulas into clauses
containing only the previous-time operator • is sound w.r.t.
a fixed-point semantics for R [8], [16], [6]. For each rule r
of the form shown in Eq. 3, assume that a first time point
t = 0 exists without loss of generality. Given an assignment
of truth-values to H1..m at time t = 0 and an assignment of
truth-values to the beliefs B1..k in r, we have that Hr will
hold with probability cr at time t = 1. Inductive step: at time
t = n, either N is stable in which case Hr has probability cr of
being activated, or a value for Hr is inferred from B and •H .
At time t = n+ 1, from the encoding algorithm and network
symmetry, •H will be inferred and Hr will be activated with
arbitrary confidence level cr. This holds for any Hr in the set
of rules with an arbitrary chain from •H (through ht−1) to
Hr. Hence, N computes R with arbitrary confidence

∑
cr.

This completes the proof.

V. DRIVER TYPE DETECTION

The NSCA has already been applied for the modelling,
recognition, description and explanation of human behaviour
in various real-world applications. For example, the NSCA
has been shown capable of assessing high-order driving skills
(e.g. safe driving) by learning from observations of real-
time dynamic simulation data (e.g. position and orientation of
vehicles, gear, steering wheel angle, etc.) [7], and is capable
of detecting useful human behaviour (e.g. chase, exchange,
jump, etc.) observed in video streams given low-level visual
features (e.g. bounding box properties of detected objects), and
provide a meaningful temporal logic-based description of the
behaviours in terms of these features [19].

In this paper we discuss the application of the NSCA in an
intelligent transport system to reduce CO2 emissions as part
of a large scale EU project, called EcoDriver. Here the NSCA
was used to classify the driving behaviour of a driver in terms
of several driver type indicators (i.e. learning vs. performance
oriented, social vs. self oriented, and sportive driving) based
on the observation of real-time vehicle data from the CAN-bus
of an instrumented car (e.g. speed, gear, indicators, steering
angle, etc.). This information is used by the system to select
among predefined feedback strategies in order to make drivers
more aware on the use of fuel and CO2 emissions based on

59

their driving style. Therefore we applied two NSCAs in a
multi-agent configuration (see Figure 3). One agent to detect
low-level driving behaviour (e.g. making a right turn, taking an
exit, passing a car on the highway) from temporal relations in
observed vehicle data (i.e. normalized between 0 and 1), and
another agent to detect the driver type indicators from temporal
relations in the low-level driving behaviour detected by the
first agent (i.e. activation in the hidden units that reflect the
conditional probabilities of specific driving behaviour based
on observed vehicle data).

Figure 3. Multi-agent NSCA configuration for adaptive driver type detection.

Both models were trained sequentially (driving behaviour
first) on vehicle data, collected using an instrumented car, and
driver type indicators, determined from a questionnaire, for
29 different drivers (i.e. 70% male and 30% female between
age 20 and 70 and driving experience between 5 and 50
years) driving a predefined route of 11km with urban, rural
and highway parts. This resulted in 513,365 samples on 18
vehicle parameters and 3 related driver type indicators for
25 drivers (i.e. 4 drivers were left out because of incorrect
data). After 2.5 hours of training the system reached a mean
accuracy (i.e. F1-measure1 measured per sample at 10Hz)
for each participant and driver type of 0.528 (i.e. average
precision and recall are resp. 0.720 and 0.733). Compared to
other work on classification of driver behaviour, the module
performs very well on the collected data. For example, [20]
reports an average accuracy for driver identification of 0.295
using a Hidden-Markov Model (HMM) and [21] reports an
average accuracy of 0.502 using K-means clustering. Figure 4
shows the F1-measure for each driver and driver type indicator
separately. As can be seen the NSCA is able to detect driver
types very accurately for some drivers (∼ 0.9), showing the
performance of applying multiple NSCAs in a multi-agent
deep network configuration.

As can be seen in figure 4, the system had difficulty
classifying certain drivers correctly. Especially the detection
of social and sportive behaviour was difficult. Main reason for
this is the limited dataset (i.e. only 25 drivers), where minor
inconsistencies in the data (e.g. driver type indications from
the questionnaire contradicted with the actual observed driving
behaviour) can have a huge impact on the model performance.
To improve the system and overcome these problems, we can
use the online learning capability of the NSCA to further adapt
the models based on new data gathered during operation (e.g.

1F1-measure = 2 x precision x recall / (precision + recall)

during field-tests or even commercial use). Another approach
would be to let a group of experts on driving behaviour valid-
ate and modify the models directly, using the NSCA extraction
and encoding algorithms (see section IV). The benefit of using
an NSCA is that both approaches can complement each other
in an iterating process, combining the robustness and flexibility
of online learning with the expressive power of a symbolic
knowledge representation.

To demonstrate this approach we have applied the extraction
algorithm in section IV-A to extract symbolic rules on low-
level driving behaviour from the Driver Behaviour NSCA (see
Figure 3). Figure 5 shows a visual representation of these
rules in the form of a matrix that represents the temporal
relations between learned hypotheses and observed beliefs.
This provides a more compact representation compared to
a temporal logic program and thus suitable for models with
many temporal relations. In Figure 5, the vertical axis depicts
the beliefs (i.e. vehicle parameters and temporal relations •H),
and the horizontal axis depicts the hypotheses H , where red
denotes a high positive correlation and blue denotes a high
negative correlation. The bottom row depicts the confidence c
of the hypotheses (i.e. Bayesian credibility) as calculated by
Eq. 6. A similar representation can also be extracted from the
Driver Type Detection NSCA, supporting the validation of the
complete driver type detection system using human-readable
symbolic rules. In this case the rules describe temporal rela-
tions between hypotheses on driving behaviour (as modelled
by the Driving Behaviour model depicted in Figure 5) and the
driver types. For sake of completeness we also provide two
examples of rules on driving behaviour in temporal logic form
(see Eqs. 7 and 8; we only provide the first few •H literals
for the sake of conciseness):

0.99 : H26 ↔ RAWR > 0.81∧RelativeV elocity > 0.58∧
aLat < 0.4∧acceleration > 0.65∧•H1∧•¬H2∧•¬H3∧...

(7)

1.00 : H27 ↔ RAWR > 0.85∧RelativeV elocity < 0.57∧
aLat > 0.4∧acceleration < 0.62∧•H1∧•H2∧•¬H3∧...

(8)

Based on the extracted knowledge, experts on driving be-
haviour may conclude for example, that these rules denote
the difference between taking a right exit from the highway
(i.e. Eq. 7), where the right indicator is on (RAWR > 0.81),
there is a high relative velocity (RelativeV elocity > 0.58)
and acceleration (acceleration > 0.65), but not so much
lateral acceleration (aLat < 0.4), and taking a right turn
in an urban area (i.e. Eq. 8), where the right indicator is
on (RAWR > 0.85), but there is no high relative velocity
(RelativeV elocity < 0.57) or acceleration (acceleration >
0.65), but more lateral acceleration (aLat > 0.4). To
strengthen these rules they can add an additional constraint to
Eq. 8 on the maximum speed in a right turn (e.g. speed < 50
in km/h) and then encode this rule back in the NSCA, thus
adding expert knowledge to the driving behaviour model
and hopefully improving its performance. Vice versa, the
NSCA can also be used to fine-tune or even falsify existing

60

Figure 4. Model accuracy (i.e. F1-measure) per driver type for all participants with overall mean.

expert knowledge based on real-world data, by encoding the
knowledge first and then training it on the new data, effectively
combining human expertise and statistical data analysis in a
uniform model for online learning and reasoning.

VI. CONCLUSIONS AND FUTURE WORK

The Neural-Symbolic Cognitive Agent (NSCA) model and
architecture presented in this paper offers an unified model
capable of online learning, reasoning, and dynamic adaptation
in complex real-world applications. The increasing need for
multi-agent models and systems capable of learning and
adaptation in dynamic environments demand novel learning
algorithms, methods and tools. Our approach allows the mod-
elled agents to learn rules about observed data in complex,
data-intensive real-world scenarios (e.g. expert behaviour for
training and assessment, visual intelligence, and driver type
detection). Learned behaviour can be extracted to update
existing domain knowledge for validation, reporting, mainten-
ance, evolution and feedback. Furthermore the approach allows
domain knowledge to be encoded in the model and deals with
uncertainty in real-world data. The results described in this
paper show that the NSCA is a generic agent model that can
be applied to various domains, including Intelligent Transport
Systems. In this domain the NSCA has proven to be a useful
tool for the modelling of complex driving behaviour and driver
type detection to support the reduction of CO2 emissions. Part
of future work will be the improvement of the driver type
detection models in EcoDriver, by further training the NSCAs
in a larger field test and validation of the encoded knowledge
by human experts.

In summary, the NSCA provides an integrated model for
learning, knowledge representation and reasoning capable of

producing a realistic computational cognitive agent model. The
NSCA seeks to address the challenge put forward in [4], [9],
and contributes to the development of algorithms and tools
for multi-agent deep learning and adaptation in dynamic and
non-stationary environments.

REFERENCES

[1] C. Fischer, “Feedback on household electricity consumption: a tool for
saving energy?” Energy Efficiency, vol. 1, pp. 79–104, 2008.

[2] H. Alcott and S. Mullainathan, “Behavior and energy policy,” Science,
vol. 327, pp. 1204–1205, 2010.

[3] P. Stern, “Contributions of psychology to limiting climate change.”
American Psychologist, vol. 66, no. 4, pp. 303–3014, 2011.

[4] L. G. Valiant, “Three problems in computer science,” Journal of the
ACM (JACM), vol. 50, no. 1, pp. 96–99, 2003.

[5] R. Borges, A. S. d’Avila Garcez, and L. C. Lamb, “Learning and Repres-
enting Temporal Knowledge in Recurrent Networks,” IEEE Transactions
on Neural Networks, vol. 22, no. 12, pp. 2409–2421, 2011.

[6] L. C. Lamb, R. Borges, and A. S. d’Avila Garcez, “A connectionist
cognitive model for temporal synchronisation and learning,” in Proc. of
the AAAI Conference on Artificial Intelligence. AAAI Press, 2007, pp.
827–832.

[7] L. de Penning, A. S. d’Avila Garcez, L. C. Lamb, and J.-J. C. Meyer, “A
Neural-Symbolic Cognitive Agent for Online Learning and Reasoning,”
in International Joint Conference on Artificial Intelligence, Barcelona,
Spain, 2011, pp. 1653–1658.

[8] A. S. d’Avila Garcez, L. C. Lamb, and D. M. Gabbay, Neural-Symbolic
Cognitive Reasoning. Springer-Verlag New York Inc, 2009.

[9] M. Wooldridge, An introduction to multiagent systems, 2nd ed. Wiley,
2008.

[10] J. Lehmann, S. Bader, and P. Hitzler, “Extracting reduced logic programs
from artificial neural networks,” Applied Intelligence, vol. 32, no. 3, pp.
249–266, 2010.

[11] P. Smolensky, “Information processing in dynamical systems: Founda-
tions of harmony theory,” in Parallel Distributed Processing: Volume 1:
Foundations, D. E. Rumelhart and J. L. McClelland, Eds. Cambridge,
MA: MIT Press, 1986, vol. 1, pp. 194–281.

[12] G. E. Hinton, “Training products of experts by minimizing contrastive
divergence,” Neural computation, vol. 14, no. 8, pp. 1771–1800, Aug.
2002.

61

Figure 5. Visual representation of all temporal relations between hypotheses on driving behaviour and vehicle data, where the vertical axis depicts the beliefs
on vehicle data and temporal relations •H , and horizontal axis depicts the hypotheses H , where red denotes a high positive correlation and blue denotes a
high negative correlation. Bottom row depicts the confidence c of the hypotheses (i.e. Eq. 6).

[13] I. Sutskever, “The recurrent temporal restricted boltzmann machine,” in
Advances in Neural Information Processing Systems (NIPS), 2008.

[14] A. Heuvelink, “Cognitive Models for Training Simulations,” Ph.D. dis-
sertation, Vrije Universiteit Amsterdam, Vrije Universiteit Amsterdam,
2009.

[15] R. Salakhutdinov and G. E. Hinton, “Deep boltzmann machines,” in
Proceedings of the International Conference on Artificial Intelligence
and Statistics, 2009, pp. 448–455.

[16] M. Fisher, D. M. Gabbay, and L. Vila, Handbook of temporal reasoning
in artificial intelligence. Elsevier, 2005.

[17] G. Pinkas, “Artificial Intelligence Reasoning , nonmonotonicity and
learning in connectionist networks that capture propositional know-
ledge,” Artificial Intelligence, vol. 77, pp. 203–247, 1995.

[18] P. M. Lee, Bayesian statistics: an introduction. John Wiley & Sons,
2012.

[19] L. de Penning, R. J. den Hollander, H. Bouma, G. J. Burghouts, and
A. S. d’Avila Garcez, “A Neural-Symbolic Cognitive Agent with a
Mind’s Eye,” in Workshop on Neural-Symbolic Learning and Reasoning
at AAAI, Toronto, 2012.

[20] S. Choi, J. Kim, and D. Kwak, “Analysis and classification of driver
behavior using in-vehicle can-bus information,” in Biennial Workshop
on DSP for In-Vehicle and Mobile Systems, 2007.

[21] M. Lu, J. Wang, K. Li, T. Yamamura, and N. Kuge, “Classification
of Longitudinal Driving Behaviour based on Simulator Study,” in
International Co-operation on Theories and Concepts in Traffic Safety

(ICTCT), Leeds, UK, 2009, pp. 1–11.

62

