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Abstract—This paper presents a novel application of 
Recurrent HONN to forecast the future index of temperature 
time series data. The prediction capability of Recurrent HONN, 
namely the Recurrent Pi-Sigma Neural Network was tested on a 
five-year temperature data taken from Batu Pahat, Malaysia. 
The performance of the network is benchmarked against the 
performance of Multilayer Perceptron, and the standard Pi-
Sigma Neural Network. The predictions demonstrated that 
Recurrent Pi-Sigma Neural Network is capable in predicting the 
future index of temperature series in comparison to other 
models. It is observed that the network is able to find an 
appropriate input output mapping of the chaotic temperature 
signals with a good performance in learning speed and 
generalization capability. 

Keywords—Multilayer Perceptron, Recurrent Pi-Sigma Neural 
Network, temperature forecasting 

I. INTRODUCTION  
Multilayer Perceptrons (MLP) is a feedforward network 

which is formed by a collection of summing units that are 
connected by their associated weights. The network has a 
hierarchical structure of several perceptrons, and has the 
ability to overcome the shortcomings of single-layer networks. 
Due to its capability in learning a rich variety of nonlinear 
decision surfaces, the highly popularized MLP models have 
been successfully applied in meteorological forecasting [1]-
[3]. However, MLP utilizes computationally intensive training 
algorithms such as the error back-propagation and can get 
stuck in local minima. In addition, the network has problems 
in dealing with large amounts of training data, while 
demonstrating poor interpolation properties, when using 
reduced training sets. On the other hand, High Order Neural 
Networks (HONNs) are type of feedforward neural networks 
which have the ability to transform the nonlinear input space 
into higher dimensional space where linear separability is 
possible [4].  

HONNs have been used in various applications such as 
image compression [5], time series prediction [6]-[8], system 
identification [9], function approximation [10], and pattern 
recognition [10]-[12]. HONNs are simple in their architectures 
and require fewer numbers of weights to learn the underlying 
equation. This potentially reduces the number of required 
training parameters. As a result, they can learn faster since 

each iteration of the training procedure takes less time. This 
makes them suitable for complex problem solving where the 
ability to adapt to new data in real time is critical [13]-[15]. 
However, they suffer from the combinatorial explosion of the 
higher-order terms and demonstrate slow learning, when the 
order of the network becomes excessively high. 

Considering the limitations of standard HONNs, Pi-Sigma 
Neural Network (PSNN), a class of HONN, has been 
introduced [16]. PSNN is able to perform high learning 
capabilities that require less memory in terms of weights and 
nodes, and at least two orders of magnitude less number of 
computations when compared to the MLP for similar 
performance levels, and over a broad class of problems. In 
conjunction with the benefits of PSNN, a new model called 
Recurrent Pi-Sigma Neural Network (RPSNN) which posses a 
Jordan Neural Network architecture [17] is proposed to 
perform the non-linear mapping of input-output data. 

On another side, a great interest in developing methods for 
more accurate predictions for temperature forecasting has led 
to the development of several methods which employ the use 
of physical methods, statistical-empirical methods and 
numerical-statistical methods [18-19]. These methods, 
however, constitutionally complex, limited and restricted to 
that of numerical weather prediction products. Considering the 
downside of those methods, in this paper, we propose the 
extended version of PSNN, namely the Recurrent PSNN, for 
the application of temperature time series prediction. The 
Recurrent PSNN (RPSNN) has a feedback link from the output 
layer back to the input layer, therefore giving the network the 
capability of storing previous memory of the network’s output 
that can be used for current input processing. RPSNN 
maintains the fast learning property and powerful mapping of 
single layer HONNs whilst avoiding the explosion of weights 
and processing units required as the number of input increases.  

II. THE NETWORKS 

A. Pi-Sigma Neural Network (PSNN) 
PSNN was first introduced by Shin and Ghosh [16]. It is a 

feedforward network with a single ‘hidden’ layer and product 
units in the output layer. PSNN calculates the product of 
summing units at the output layer and pass it to a nonlinear  
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function. The network is able to learn in a stable manner even 
with fairly large learning rates. 

Previous research found that PSNN is a good model for 
various applications. Shin and Ghosh [16] investigated the 
applicability of the network for shift, scale and rotation 
invariant pattern recognition. Results for both function 
approximation and classification were extremely encouraging 
when compared to the MLP for achieving similar quality of 
solution. Ghosh and Shin [20] argued that PSNN requires less 
memory (weights and nodes), and at least two orders of 
magnitude less number of computations when compared to 
MLP for similar performance level, and over a broad class of 
problems.  

The output of the PSNN is computed as follows: 
 

 

 
where kjw  is the adjustable weight, kx is the input vector, K 
is the number of summing unit, N is number of input nodes, 
and σ  is a suitable nonlinear transfer function. PSNN 
demonstrated competent ability to solve many scientific and 
engineering problems. 
 

A. The Proposed Recurrent Pi-Sigma Neural Network 
(RPSNN) 

     The structure of RPSNN is quite similar to the ordinary 
PSNN. The main difference is the architecture of RPSNN is 
constructed by having a recurrent link from output layer back 
to the input layer. This structure gives the temporal dynamics 
of the time-series process that allows the network to compute 
in a more parsimonious way [21]. The architecture of the 
proposed RPSNN is shown in Figure 1 below. 
 

 

 
Fig. 1. RPSNN with 1 output node 

 
where 

( )tx  - the input nodes at  t-th time 

kjw  - the trainable weights 

( )1+thk
 - the summing unit 

( )1+ty  - the output at time 1+t  
( )ty   the output at time t  
( )⋅f   the activation function 

    Weights from the input layers ( )tx  to the summing units’ 
layer are tunable, while weights between the summing unit 
layers and the output layer are fixed to 1. The tuned weights 
are used for network testing to see how well the network 
model generalizes on unseen data. 1−Z  denotes time delay 
operation.  
    Let the number of external inputs to the network be M  and 
the number of the output be 1.  Let ( )tx m

 be the m -th 
external input to the network at time t.  The overall input at 
time t is the concatenation of ( )ty  
and ( ) ( )Mkwheretxk ,...,1, = , and is referred to ( )tz  where: 
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Meanwhile, weights from ( )tz to the summing unit are set to 
1 in order to reduce the complexity of the network.  

     The proposed RPSNN combines the properties of both 
PSNN and Recurrent Neural Network (RNN) so that better 
performance can be achieved. When utilizing the newly 
proposed RPSNN as predictor for one-step-ahead prediction, 
the previous input values are used to predict the next elements 
in the data.  Since network with recurrent connection holds 
several advantages over ordinary feedforward MLP especially 
in dealing with time-series problems, therefore, by adding the 
dynamic properties to the PSNN, this network may outperform 
the ordinary feedforward MLP and also the ordinary PSNN. 
Additionally, the unique architecture of RPSNN may also 
avoid from the combinatorial explosion of higher-order terms 
as the network order increases.  

III. TRADITIONAL APPROACH TO TIME SERIES PREDICTION 
The standard method for predicting financial time series is 

the statistical linear approach. In this approach, the signal Sn is 
considered as the output of a system with unknown input un 
and its value is determined by the linear combinations of 
previous outputs and inputs according to the following 
equation [22]: 
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where ak, bm and G are the model parameters. Usually the input 
un is modelled by a zero mean Gaussian noise source. The 
above equation can be specified in the frequency domain by 
taking the Z transform of both sides of the equation. Let H(Z) 
represent the transfer function of the system in the Z domain, 
then: 
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and the Z transform of the signal is:   

∑
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     In this case, the roots of the numerator and the denominator 
of the transfer function H(Z) are the zeros and the poles of the 
model, respectively. When ak = 0, the model is considered as 
all poles and called the Moving Average (MA) model, when 
bm  = 0, the model is considered as all poles and known as 
Autoregressive (AR) model, while a model that has poles and 
zeros values is referred to as an autoregressive moving 
average (ARMA) model.  
For the nonlinear model, we have: 
 

nug =,.....)S ,S ,S( 2-n1-nn  (6) 

     In this case, un is a zero mean white noise. The function g 
is a highly nonlinear and very complicated. Nonlinear 
prediction can be determined using either the Volterra or the 
bilinear models, where the process is assumed to be inevitable, 
i.e., un can be approximated using a finite number of terms and 
in which: 
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using the discrete Volterra series expansion. Where {ui}, {uij}, 
{uijk} are Gaussian random variables and {ai}, {aij}, {aijk} are 
sets of constant coefficients.  
Using the bilinear model, we can determine Sn as follows: 
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where c0   = 0, and un is a white noise process. 
     To solve the nonlinear model, it is required to determine 
the unknown parameters, which are usually very difficult to 
determine using traditional methods. Neural networks can be 
used to solve this problem in which the parameters (weights 
and biases) are determined implicitly using suitable training 
algorithms.  

 Feedforward Neural Networks are Nonlinear 
Autoregressive (NAR) models, on the other hand Recurrent 
Neural Networks are nonlinear ARMA models (NARMA). 
This means that Recurrent Neural Network have advantages 
over Feedforward Neural Network, similar to the advantages in 
which ARMA model posses over AR model [23].  

IV. TEMPERTAURE FORECASTING 
In this work, temperature forecasting takes an existing 

series of data tttnt xxxx ,,,..., 12 −−−  and forecasts the next 
incoming values of the series ,...x,x 2t1t ++ . Forecasting 
the behavior of the meteorological data is a nontrivial task, as 
it is often masked by noise and has nonlinear and non-

stationary behavior. 
Temperature is a kind of atmospheric time-series data 

where the time index takes on a predetermined or unlimited 
set of values.  The temperature can have a greater influence in 
daily life than any other single element on a routine basis.  
Therefore, some great observations are needed to obtain 
accuracies for the temperature measurement [24]. Existing 
methods for estimating temperature can work efficiently; 
however, it is inadequate to represent the efficiency of 
temperature forecasting due to the relatively primitive output 
post-processing of the current techniques which is 
competitively superior to subjective prediction. Therefore, 
because temperature parameter itself can be nonlinear and 
complex, a powerful method is needed to deal with it. With 
the advancement of computer technology and system theory, 
there have been more meteorological models conducted for 
temperature forecasting [1], including soft computing 
approaches [2-3], [25-27].  

On the other hand, the development of HONN has captured 
researchers’ attention. PSNN which lies within this area, has 
the ability to converge faster and maintain the high learning 
capabilities of HONN. Yet, this paper focuses on developing a 
new alternative network model, namely the RPSNN, to 
overcome such drawbacks in MLP and taking the advantages 
of PSNN with the recurrent term added for temporal sequences 
of input-output mappings. 

V. EXPERIMENTAL SETTING 
     A univariate data of a 5-years daily temperature 
measurement in Batu Pahat Malaysia, ranging from 2005 to 
2009 was used for the simulation. The data was obtained from 
the Central Forecast Office, Malaysian Meteorological 
Department (MMD).  

The data is segregated in time order and is divided into 3 
sets; training, validation and the out-of-sample data, giving a 
distribution of 914, 456, and 456, respectively. To avoid 
computational problems, the data is normalized between the 
upper and lower bounds of Sigmoid transfer function. 

Temperature time series are highly nonlinear. They exhibit 
high complexity and contain lot of noise. To purify the data 
for further processing, it is needed to identify and remove the 
contaminating effects of the outlying objects on the data.  
Therefore, the temperature time series were scaled using 
standard minimum and maximum normalization method 
which then produces a new bounded dataset. One of the 
reasons for using data scaling is to process outliers, which 
consist of sample values that occur outside normal range. The 
advantage of this transformation is that the distribution of the 
transformed data will become more symmetrical and will 
follow more closely to normal distribution. 
     As there is no rule of thumb for identifying the number of 
input, a trial-and-error procedure was determined. All 
networks were built considering 5 different numbers of input 
nodes ranging from 4 to 8. A single neuron was considered for 
the output layer. The number of hidden nodes (for MLP), and 
the higher order terms (for PSNN and RPSNN) were initially 
started with 2, and increased by one until a maximum of 5.  
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The prediction performance of all networks was evaluated 
using two performance metrics. The normalized mean squared 
error (NMSE) is used to measure the deviation between the 
actual and the predicted signals. The smaller the value of 
NMSE, the closer is the predicted signals to the actual signals. 
The signal to noise ratio (SNR) provides the relative amount 
of useful information in a signal as compared to the noise it 
carries. 

The RPSNN is benchmarked against the MLP and PSNN, 
which were trained with the incremental backpropagation 
learning algorithm [28]. Early stopping with maximum number 
of 3000 epochs was utilized. For all networks, an average 
performance of 20 trials was used. By considering all in-
sample dataset that have been trained, the best value for the 
momentum term 2.0=α  and the learning rate 1.0=η , were 
chosen based on extensive simulations done by trial-and-error 
procedure.  

VI. SIMULATION RESULTS 
In this section, the simulation results for the prediction of 

Batu Pahat temperature time series is presented using various 
neural networks. The simulation results of the RPSNN are 
benchmarked against the MLP and standard PSNN. Notice 
that out of all measuring criteria, network model with the 
lowest NMSE is selected. This is due to the fact that NMSE is 
much more significant as an estimator of the overall 
deviations between predicted and measured values. 

 
 
 

 
 
 
 
 
    In order to compare the predictive performance of the three 
models, Table I presents the best simulation results obtained 
on out-of-sample data from all neural network models.  Over 
all the training process, it is verified that RPSNN exhibited the 
lowest prediction error, in terms of NMSE on the out-of-
sample dataset.  This indicates that the network is capable of 
representing nonlinear function better than the two 
benchmarked models.  Apart from the NMSE, RPSNN and 
PSNN obtained a lower MAE, which is 0.0635; while the 
MAE for MLP is 0.0636.  By considering the MAE, it shows 
that RPSNN is able to make a very close forecast to the actual 
output in analysing the temperature signals. Moreover, it can 
be seen that RPSNN reached the highest value of SNR.  
Therefore, it can be said that the network can track the signal 
better than PSNN and MLP. In the case of learning speed, 
particularly on the number of epoch utilized, PSNN converged 
much faster than the RPSNN and MLP.  However, RPSNN 
reached a smaller number of epochs when compared to the 
MLP.  On the whole, the performance of RPSNN gives a good 
comparison when compared to the two benchmarked models. 
      

 
(a) NMSE 

 
(b) MAE 

 
(c) SNR 

 
(d) Number of epoch 

 
 
 
     In order to test the modeling capabilities of all network 
models, Figure 2 shows the average result of MAE, NMSE, 
and SNR tested on out-of-sample data, and maximum epochs 
reached during the training of the network, where the number 
of higher order terms (for RPSNN and PSNN) or number of 
hidden nodes (for MLP) are tested between 2 to 5. From the 
plots in Figures 2 (a) and (b), it can be noticed that RPSNN 
has shown obvious increments in NMSE and MAE as the 
order increases. Using the same measuring criteria, the 
performance of both PSNN and MLP in NMSE and MAE 
were slightly increased along the growth of the network size. 
Meanwhile, the SNR for RPSNN and PSNN, as shown in 

TABLE I.  AVERAGE RESULTS OF ALL NETWORKS ON TEMPERATURE 
PREDICTION 

 MLP PSNN RPSNN 
NMSE 0.7815 0.7791 0.7710 
MAE 0.0636 0.0635 0.0635 
SNR 18.6971 18.7104 18.7557 

Epochs 2850 1212 1461 

2     3          4               5

2     3          4               5

 2        3                4                     5

2      3                 4                      5

Fig. 2. The effects of increasing order or hidden nodes to the network 
performances 
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Figure 2 (c) were decreasing when the order increases. On the 
other hand, when referring to Figure 2 (d), there is no 
significant indicator in the maximum number of epochs 
reached by all network models when the network size is 
increased, as there are up and down scores in the epoch size. 
In the same plot, MLP however have obtained the largest 
epoch in all network structures. In most cases, the plots in 
Figure 2 indicate that RPSNN can steadily learn and 
generalize the temperature data when the number of higher 
order is small.      

 
 

     
                Fig. 4. Temperature forecast made by all networks on unseen data 

 
    Besides, the input-output mapping capabilities of all 
network models were also tested on varies number of input 
nodes, which is from 4 to 8. The performance of the network 
specifically when tested on out-of-sample temperature data on 
the NMSE, MAE and SNR are depicted in Figure 3 (a, b, and 
c), respectively. On the other hand, Figure 3 (d) depicts the 
number of epoch reached during the training of the networks. 
From the plots in Figures 3 (a) and (b), it can be noticed that 
both NMSE and MAE have shown an up and down values, 
regardless of the number of input nodes used. On the SNR as 
shown in Figure 3 (c), both RPSNN and MLP have a 
decreased SNR along with the increasing number of input 

 
(a) NMSE 

 
(b) MAE 

 
(c) SNR 

 
(d) Number of epoch 

 
(a) Forecast made by RPSNN 

 
    (b)  Forecast made by PSNN 

 
(c) Forecast made by MLP 

 4   5    6                    7     8       

 4   5    6                    7    8       

      4      5    6                 7 8         

      4       5       6                 7      8       

Fig. 3. The effects of increasing input nodes to the network performances
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nodes, while at the same time PSNN has up and down scores. 
On the other hands, as shown in Figure 3 (d), all networks in 
most cases have utilized larger number of epoch during the 
training, when equipped with least input nodes. In the same 
plot, MLP however have obtained the largest epoch in all 
network structures. In most cases, the plots in Figure 3 show 
that there is no clear indicator whether the higher or smaller 
number of input nodes could contribute to better performance 
of the networks.  

Meanwhile, Figure 4 (a-c) depicts the best forecasts made 
by RPSNN, PSNN, and the MLP on temperature time series. 
As shown in the plots, the blue line represents the trend of the 
actual values, while the red line represents the predicted values. 
The predicted values of daily temperature measurement made 
by all network models almost fit the actual values with 
minimum error forecast.  

VII. DISCUSSIONS 
     It is verified that RPSNN has the ability to perform an 
input-output mapping of temperature data as well as good 
performance when compared to the benchmarked MLP and 
PSNN.  Besides, the evaluations on MAE, NMSE, and SNR 
over the temperature data demonstrated that RPSNN 
acceptably improved the performance level compared to the 
two benchmarked network models, PSNN and MLP.  The 
better performance of temperature forecasting is allocated 
based on the vigour properties it contains.  Hence, it can be 
seen that the thrifty representation of higher order terms in 
RPSNN assists the network to model effectively.  

RPSNN generalized well and achieved the lowest NMSE 
and highest SNR on the unseen data, in which this is a 
desirable property in nonlinear time series prediction. The 
presence of a single layer of adaptive weights in the RPSNN 
allowed fast and rapid training. The good performance in the 
prediction of temperature time series is due to the well 
regulated structure which led to network robustness. The 
parsimonious representation of high order terms in the network 
provided the network with the ability to accurately forecast the 
future index of the series. The network learned the underlying 
mapping steadily as the order of the network increased. There 
is saturation in performance for RPSNN with larger network’s 
order due to overfitting. This indicates that the interaction 
between the input signals of RPSNN of smaller number of 
higher order terms contains significant information for the 
prediction task.  

VIII. CONCLUSION AND FUTURE WORKS 
In this paper, an improved version of ordinary Pi-Sigma 

Neural Network, namely the Recurrent Pi-Sigma Neural 
Network is proposed for the prediction of temperature time 
series. The network preserves all the advantages of ordinary 
feedforward PSNN whilst having a temporal dynamic induced 
by the recurrent connection. The utilization of product units in 
the output layer indirectly incorporates the capabilities of 
RPSNN while using a small number of weights and 
processing units.  Results obtained from the experimental 
simulations showed that RPSNN outperformed Multilayer 

Perceptron and Pi-Sigma Neural Network. The powerful 
learning capabilities of RPSNN allow the network to produce 
superior performance in terms of reduced NMSE and MAE, 
and also a higher SNR in comparison to other networks. 
Future work will involve the use of swarm intelligent 
approach, such as bat and cuckoo search algorithm, for finding 
suitable initial tunable weights for the network. 
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