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Abstract— The current sparse representation tracking algo-
rithm is not suitable for the objects that illumination changes,
scale changes, the object color is similar with the surrounding
region,and occlusion etc, what’s more, it is hard to realize
real-time tracking for solving an /1 norm related minimization
problems. An optimal algorithm is introduced by exploiting an
accelerated proximal gradient approach which contains some
improvements of particle filter function, sparse representation
alterative weights and coefficient. These improvements not only
reduce the influences of appearance change but also make the
tracker runs in real time. Both qualitative and quantitative
evaluations demonstrate that the proposed tracking algorithm
has favorably better performance than several state-of-the-art
trackers using challenging benchmark image sequences, and
significantly reduces the computing cost.

I. INTRODUCTION

Visual tracking has long been an important research topic
in the computer vision field as it is widely applied in
the automated surveillance, vehicle navigation, automatic
object identification and tracking the target. Lots of methods
have have been successfully applied to object tracking and
can be summarized into two categories: discriminative and
generative approaches[1]. Discriminative methods treat the
tracking problem as a classification problem, which aims
to segment the target from the background [2][3]. So it
considers the information of both the target and background.
Some trackers combined a set of weak classifiers into a
strong one [4], adopting an online boosting method to up-
date discriminative features[5] or learning a large number
of positive and negative samples for tracking. Generative
methods formulated tracking by establishing the appearance
model of the target. In order to develop effective models,
several particularly factors should be considered. At the
first, to adapt to the target appearance variations caused
by pose change and illumination change, the target model
needs to be updated online [6][7]. In addition, Yi Wu et
al. [8] presented a novel Blur-driven tracker framework for
tracking motion-blurred targets. Experimental results showed
that discriminative models perform better when the training
set size is large while generative models achieve higher
generalization if limited data is available [9][10][11].
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Benefitting from less cost of generative model, sparse rep-
resentation techniques [12][13], also known as compressed
sensing or compressive sampling, for finding a sparse solu-
tion through solving an [1-regularized least problem, plays
a critical role in both mathematics and applications such as
visual tracking. Mei et al. [12][14][15] employed the sparse
representation of the object as the appearance model and then
obtained the tracking target by solving the /1 minimization
problem, and achieved some ideal results but failed when
there were similar objects in the scene. To further improve
the method, they introduced non-negativity constrains and
dynamically updated the target templates [16][17]. However,
most sparse representation used the holistic model to denote
the appearance model and cannot handle distracters and
partial occlusion accurately.

Similarly with sparse representation, but combined with
classic principal component analysis (PCA) algorithm and
online object tracking algorithm, an robust generative track-
ing algorithm with an adaptive appearance model is proposed
called sparse prototypes(SP), which handles partial occlusion
built into the same framework of the online object tracker
[18]. With the intuition that the appearance of a tracked target
can be sparsely represented, therefore, finding a sparse which
approximate the template subspace is necessary because it
is effective in dealing with pose, illumination and scale
variation as well as appearance change. Moreover, this paper
also aims at developing a more efficient tracker in real time.
The main contribution of this paper is to introduce a very fast
numerical method [19] to solve the minimization problem
[18], which is further reorganized, so that the proposed
numerical method could be combined into the SP tracker
and make it run in real time.

II. RELATED WORK

In recent years, there has been a large amount of lit-
erature research on target tracking problems, and studies
which related to our work are summarized in this section.
Generally speaking, there are several major issues in target
tracking, such as appearance caused by in-plane rotation,
scale illumination, poses change, partial occlusion and so on.
Several experimental results demonstrate that PCA subspace
representation with online update is effective in dealing
with some of this issues expect partial occlusion [20]. The
Incremental Visual Tracking(IVT) [21] method introduced an
online update approach for efficiently learning and updating
a low dimensional PCA subspace representation of the target
object, which is sensitive to partial occlusion.
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However, there might be a drift by using the method of
direct template update, so Viola et al.[22] introduced Multiple
Instance Learning(MIL) into visual tracking to address this
problem. Moreover, the [1 tracker [15] included a sparse
representation of trivial templates so that its sparse linear
combination can presents the occlusions and image noise
in the target. In this approach, the sparse representation is
obtained via solving a /1-norm related minimization problem
and the [1 tracker turns out to be too slow to be a real time
tracking method.

In this paper, advantages of both subspace method and s-
parse representation method are combined effectively to solve
the partial occlusion problem. In addition, a fast numerical
method for solving the {1-norm related minimization problem
is also applied to improve the method’s computational rate.
The experimental results show the proposed method has
a good robustness against pose changes and illumination
changes while at the same time achieving a great running
time efficiency.

III. INTRODUCTION TO SPARSE PROTOTYPES

This tracking method is closely related to the tracking
method proposed by Xue Mei and Dong Wang[15][18], The
main difference is the model representation and minimal
method, in this paper, we can quickly get the result of the
operation, we first give a brief review on the 11 tracker within
the particle framework[18][19][21] for tracking the target.

Particle filtering [21] is to find a set of transmissions
in the state space representation of a random sample to
approximate the probability density function, instead of using
the sample mean calculus, and then get the system state
minimum variance estimation process, these samples are
called as particles” vividly, and therefore called particle
filter. The representation is then used in the particle filter
framework [18] for object tracking. Specially, for frame at
t, we set the state variable z; which indicates the position
and shape information, with z;.; to describe the observed
value of the target from the first frame to the frame t. The
state prediction equation and status update equations for the
particle filter are as follows:
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Where p(z:|x:) denotes the observation likelihood from the
state at time t. It is practically intractable to calculated
the above probability distribution directly, so the posterior
p(w¢|z1.¢) is approximated by a finite samples {z},z?, - -
- xN} with different weights {w},w?,- -, w]¥} where N is
the number of samples and §(x; — %) is Dirac delta function.
The samples are generated by an approximated equation
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In the case of the bootstrap filter q(xi|xi_, z) = p(x¢|ai_1)
and the weights become the observation likelihood p(z¢|zy).

According to the weights distribution, in each step, samples
are re-sampled to generate new sample set with equal weights
in case the weights of some particles keep increasing or fall
into the degeneracy case.

The sparse prototypes aims at calculating the observation
likelihood p(z¢|x;), and some researchers have proposed an
algorithm [12][16][17] by casting the tracking problem as
finding the optimal patch with sparse representation and han-
dling partial occlusion with trivial templates then the patch
is normalized and reshaped to a one-dimensional vector y
which is formulated as a target candidate. This can be viewed
as a minimum error reconstruction through a regularized /1
minimization function with non-negativity constraints:
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Where B is composed of target template set and trivial
template sets, while ¢ is composed of target coefficient and
trivial coefficient.

The main differences compared with sparse representation
lie in a different target template model. For target tracking,
we model object appearance with PCA basis vectors and
some trivial templates. The sparse prototypes representation
model is then:

y=Dz+e=[D I}[Z} (6)

Where [ is identity matrix and is a trivial template set, y
indicates an observation vector, D represents a column basis
vectors, z represents the coefficients of basis vectors, and e
denotes the error term. The prototypes in this formulation
consist of a set of PCA basis vectors and a set of trivial
templates. We solve Eq. (6) by
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Where B = [D,I,—1I] is composed of target template
set D and trivial template sets I and —I. a represents the
coefficient corresponds to B.

Finally, the observation likelihood is derived from (see [18]
and the references therein):
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Which consider the occlusion kept. Where p (zf|z}) indi-
cates not only the reconstruction error of Eq.(7), but also any
pixel as being occluded. z is obtained by solving the Eq.(7),
« 1s a constant controlling the shape of the Gaussian kernel,
I is a normalization factor, then the optimal state x; of frame
t obtained by:

z; = argmaxp (z|z}) )
€S,
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In addition, the update of observation model is adopted
[18] for handling appearance change of a target object for
visual tracking. Therefore, the tracking result is chosen from
the candidate of the maximum observation likelihood when
tracking at time ¢.

IV. REAL TIME OBJECT TRACKING

Through the narrative of the front sections, the SP algo-
rithm can be seen as an optimization problem by solving
the Eq.(7). The proposed method for solving the /1 mini-
mization Eq. (7) based on the accelerated proximal gradient
approach[19][24] is given in algorithm 1.

Algorithm 1 our tracker

1. Initialization
Load the image sequences
Candidate Sampling
Adopt PC'A_I1 to acquire templates set
Solving the minimization Eq.(7) via algorithm 2
Calculate observation likelihood via Eq.(8)
Obtain the optimal candidate by Eq.(9)
Collect samples for model update
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The minimization model can be converted to the APG
method:

min F'(a) + G(a) (10)

As long as F'(a)is a convex function with Lipschitz [19]
continuous gradient, as the same time, G/(a)is a non-smooth
but convex function. Within K = O(\/L/¢) iterations, xj
achieves e-optimality such that ||z} — 2*|| < €||, where z* is
one minimizer of Eq.(10).

For Eq.(7),it is completely equivalent to the minimization
problem as below:
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in which 1 € R" represent the vector with all entries are
equal to 1, and 1ry (a) can be defined:

0 a>0
1Ri (a)—{ +0o otherwise. 2)
Then we assume that:
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If the result of Eq.(11) is xx+1, then the minimization
problem for Eq.(11) has the solution which is given in
algorithm 2.

Algorithm 2 Real time numerical algorithm for solving the
minimization Eq.(7)

0 1

1. For a given nonnegative vector A, choose x” =z =
0eR, " =t"1=1
For k =0,1,2,--, generate 2**! from z* according

to the following iteration which would be convergence
eventually:
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V. EXPERIMENTS

Our algorithm is implemented in Matlab and achieves
about average 23 frames per second with 400 particles on
a PC with Intel E7500 CPU (2.93GHz).

A. Experimental settings

Target of interest in the first frame position will be set
manually and then automatic tracking is possible. The object
is normalized to 32x32 pixels and 16 eigenvectors are used
in all experiments for PCA representation. The number of
templates for the sparse representation is 10. 600 particles
are used and the maximum number of iterations is set to
20 in algorithm 2. The tracker is updated every 5 frames
and the regularization constant A is assumed as 0.05 in all
experiments.

B. Qualitative comparison with other methods

In order to illustrate the qualitative comparison more clear-
ly, some methods are described briefly here.The Visual Track-
ing Decomposition(VTD) method [25] used the observation
model which is decomposed into multiple basic observation
models that are constructed by sparse principal component
analysis (SPCA) of a set of feature templates.The MIL
method [22] put all ambiguous positive and negative samples
into bags to learn a discriminative model for tracking.The
[1 method [15] adopted the holistic representation of the
object as the appearance model and then tracks the object
by solving the /1 minimization problem.The assessment of
several methods above in different situations are shown as
below:

1) Heavy occlusion:

Fig.1 represents the identification of different methods.
Fig.2 illustrates the tracking results from seven challeng-
ing sequences with significant change of scale, illumination
and pose variation, as well as occlusion. For the occlusion
sequence, there is a serious occlusion, while the caviarl
sequence’s target is occluded by a similar object. As shown in
Fig.2, our algorithm and /1 methods have better performance,
since both methods take occlusion into consideration and
handle occlusion using sparse representation with trivial
templates while others can not deal with appearance changes
caused by the pose and occlusion. Although the VTD method
is able to track the object, it can not calculate the in-plane
rotation because of the design of affine motion model. On
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the other hand, the deviations of [1 tracker is unacceptable
especially when partial occlusion occurs (e.g.,#559) . This
may be caused by the fact that the occlusion is ignored when
{1 tracker makes new image observation.

—PCA — L1 VTD —MIL —— OURS

Fig. 1. The identification of different methods

(e)

Fig. 2. The sequences of Deer

In Fig.3, the caviarl sequence is challenging as it contains
similar objects, but our method performs best especially for
targets occluded by similar objects. The PCA, [1 method and
MIL trackers, however, drift away from such targets. The
VTD method does not perform well but it can track the object
as the generalized features are used for object representation.

2) Illumination change:

For the car4 sequence, as shown in Fig.4 and Fig.5,
there will be dramatic illumination changes when the vehicle
passes through the shadows of the trees or the overpass. The
MIL methods are less effective when tracking the car, and
the tracking results even drift away from the target because
of the illumination variation. Both our methods and PCA
methods can track the target effectively while others have
serious drift phenomenon. This may be caused by the changes
in appearance of the object, which can be well approximated
with fixed posture subspace. Additionally, from the above
results, trackers, such as MIL tracker, /1 tracker and VTD

Fig. 3. The sequences of Caviarl

tracker do not adapt to different scales or in-plane rotations
especially dramatic lighting changes.

3) Cluttered background:

When it comes to lemming sequence, the most prominent
and challenging issues is the heavy occlusion in a cluttered
background as well as changes of scales and poses as shown
in Fig.6 and Fig.7. The MIL and our methods perform well
all the time when the abrupt motion in a cluttered or in-
plane rotation occurs and the surrounding region has similar
textures. The VID method can track the target accurately
even after drifting away, while the 1 method cannot since
the target object is similar to the surrounding background.
The PCA method fails to track the whole object and only
tracks the center of the object after the abrupt motion occurs
due to the different appearance update strategies.

4) Abrupt motion:

In the Deer video, there is a huge challenge about the
varying appearance caused by the motion blur as well as the
fast motion. The tracking results are shown in Fig.8 and Fig.9.
For the deer sequence, our tracker and VTD tracker perform
better than other methods due to the re-initialization update
model. The MIL tracker is able to track the object in some
frames after drifting away caused by the similar surrounding
background as the deer reappears at the same location in the
image. But it failed later due to the motion blur. The PCA
and /1 trackers are less effective and drift away from the deer
with the repetitive motions.

C. Quantitative comparison with other methods

Table I and Table II summarizes the results in terms of the
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Fig. 4. The sequences of car4 Fig. 6. The sequences of lemming

Fig. 5. The sequences of DavidIndoor Fig. 7. The sequences of Singerl
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Fig. 8. The sequences of Occlusionl

(@ (b)

© (d)

(e)

Fig. 9. The sequences of carll

average tracking overlap and error, which shows our method
achieves the lowest tracking errors. In addition, The success
rate is evaluated through the overlap rate which is defined by
the PASCAL VOC [26] criterion if given the tracking result
of each frame Ry, the corresponding ground truth Rs and
score = Z:ZZ(R;BQG; The tracking results are regarded as
being valid when the score is over 0.5. The average overlap

rate of our tracker is 0.82 while the highest is 0.61 at present.

TABLE I
OVERLAP RATE OF TRACKING METHOD

Overlap Rate | PCA L1 VID | MIL | Ours

Car4 092 | 0.84 | 0.73 | 034 | 0.92
Carl 1 0.81 | 044 | 043 | 0.17 | 0.81
Caviarl 028 | 0.28 | 0.83 | 0.25 | 0.89

David Indoor | 0.71 | 0.63 | 0.53 | 0.45 | 0.80
Lemming 0.18 | 0.13 | 035 | 053 | 0.75
Occlusion 085 | 0.88 | 0.77 | 0.59 | 091

Deer 022 | 0.04 | 058 | 021 | 0.61
Singerl 0.66 | 0.70 | 0.79 | 0.33 | 0.82
Average 0.58 | 049 | 0.63 | 0.36 | 0.81

TABLE II
AVERAGE CENTER ERROR

Average center PCA L1 VTD MIL Ours
Car4 2.87 4.08 12.29 | 60.10 3.03
Carl 1 2.11 33.25 | 27.05 | 43.47 2.17
Caviarl 45.25 11993 | 391 | 48.50 1.67
David Indoor 3.59 7.63 13.55 | 16.15 3.65
Lemming 93.38 184.85 | 86.89 | 25.58 | 9.1457
Occlusionl 9.18 6.50 11.13 | 32.26 4.70
Deer 127.47 | 17147 | 11.92 | 66.46 8.53
Singerl 8.48 4.57 406 | 15.17 4.75
Average 36.54 66.54 | 21.35 | 38.46 471

Consistent with the appearance updating in [18] , if the
object is well tracked and the occlusion rate is small, the
tracking result is then used to update the observation model
directly. We give the results using only Eq.(8) with the
occlusion map in Table I to demonstrate how the occlusion
map facilities the object tracking and the observation update.
The results show that our algorithm can effectively predict
the occlusion maps and further improve the tracking results
in terms of both overlap rate in Tablel and the center
location error in Table II. Overall, the minimum error rate
and maximum overlap rate in all the sequences show that our
algorithm has the best performance compared with several
other the-state-of-the-art trackers on challenging benchmark
image sequences by considering more factors.

D. Computational Complexity

Performance evaluation methods above show the proposed
method is more accurate and robust in most challenging
sequences. In addition, it is more efficient, because it reduces
several orders of magnitude for the computational complexity
compared with the other algorithms. We have analysed the
time complexities of some algorithms previously mentioned,
for example, the complexity of the I1 tracker is (O(d? +dk)),
the sparse representation tracker has (O(ndk)) complexity
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[18] and (O(dk)) for IVT which is more faster compared with
the others, but for the SP tracker in this paper, the complexity
is O(y/d/k) , which is consistent with the analysis of
accelerated proximal gradient algorithm [19], and the average
time for solving one image patch(32x32) is 0.039ms, by
contrast, the average time for IVT is 0.19ms.

VI. CONCLUSION

The method in this paper exploits both classic principal
component analysis algorithm and recent sparse representa-
tion to obtain the observation model and uses an accelerated
proximal gradient approach to locate the target more accu-
rately and faster. It does not only adapt the tracker to account
for the object appearance change but also handles the occlu-
sion caused by similar objects or distinct. Comparing with
several other the-state-of-the-art methods,the experimental
results on challenging benchmark image sequences demon-
strated both the effectiveness and efficiency of the proposed
method. As the proposed algorithm utilized representation
scheme and the minimum problem, it can still be further
optimized.
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