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Abstract— The Adaptive Subspace Self Organized Map
(ASSOM) is a model that incorporates sparsity, nonlinear
pooling, topological organization and temporal continuity to
learn invariant feature detectors, each corresponding to one node
of the network. Temporal continuity is implemented by grouping
inputs into “training episodes”. Each episode contains samples
from one invariance class and is mapped to a particular node
during training. @ However, this explicit grouping makes
application of this algorithm for natural image sequences
difficult, since the grouping is generally not known a priori. This
work proposes a probabilistic generative model of the ASSOM
that addresses this problem. Each node of the ASSOM generates
input vectors from one invariance class. Training sequences are
generated by nodes that are chosen according to a Markov
process. We demonstrate that this model can learn invariant
feature detectors similar to those found in the primary visual
cortex from an unlabeled sequence of input images generated by
a realistic model of eye movements. Performance is comparable
to the original ASSOM algorithm, but without the need for
explicit grouping into training episodes.

Keywords—  generative model; hidden Markov model;
invariance; self-organization
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The initial stages of the visual cortex perform a feature
extraction task. Visual cortical cells are often loosely
categorized into two classes: simple and complex [1]. In the
primary visual cortex, both simple and complex cells exhibit
orientation and spatial frequency selectivity. However, the
responses of simple cells are highly dependent upon the phase
(position) of the stimulus, whereas complex cell responses
exhibit phase invariance. These complex cells are often
assumed to be inputs to higher cortical stages, and the
development of invariance along certain feature dimensions is
thought to be an important process in the learning of more
complex visual features.

INTRODUCTION

The concept of invariant feature detectors is closely related
to the concept of subspaces or manifolds of the input space [2,
3]. Natural inputs, such as auditory or visual signals, are
usually high dimensional, but distributed along many lower
dimensional manifolds. For example, although objects in the
visual field may be quite complex, neurons in the initial stages
of visual processing respond to relatively small spatial regions.
At this scale, the typical inputs may be relatively simple and
regular (e.g. oriented edges), but vary according to a class of
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transformations, such as translation. The inputs corresponding
to one common pattern subject to different transformations
within this class are referred to as an invariance class, and lie
along a manifold of the high dimensional input space. If the
transformation is a linear operation, then the manifold is a
linear subspace. Invariant features correspond to subspaces,
with the strength of each feature depending upon the length of
the projection of the input onto the subspace.

Kohonen modeled the development of invariant feature
detectors via the Adaptive Subspace Self Organizing Map
(ASSOM) [2, 4]. The map consists of a set of nodes arranged
in a two dimensional topology. Each node corresponds to one
invariant feature detector, which is defined by a set of
orthogonal basis vectors spanning a linear subspace. The
strength of each invariant feature is computed summing by the
squared length of the projection onto each basis vector.
Learning is competitive. Input vectors in the training set are
assigned to particular nodes, whose basis vectors are adapted
towards the input vector. Neighboring nodes, as defined by the
two dimensional topology, are updated in the same direction,
but by a smaller amount. This ensures that the collection of
nodes represents the variety of invariance classes found in the
data, with neighboring nodes representing similar invariance
classes. Later work has captured a similar idea using the
concept of independence [5]. Topographical organization can
also be introduced by having each node have only one basis
vector, but by defining invariant features by summing the
square lengths of the projections onto the basis vectors at that
node and its neighbors [6][7]. However, this may reduce
selectivity along other feature dimensions. For example, for
image features, basis vectors at neighboring nodes may vary in
orientation, reducing the orientation selectivity of the resulting
feature detectors.

The concept of a training episode is quite significant in the
ASSOM. An episode consists of a set of samples that are
transformed versions of each other, i.e. they belong to the same
invariance class. Depending upon the desired invariance, the
transformations applied to the samples may differ, e.g.
translations, rotations or scaling. The ASSOM learns
invariance by assigning the same node to represent all samples
in the episode. The training episode captures the idea that
temporally neighboring inputs are similar, and that the
resulting representation should vary slowly, and thus is related
to ideas of slow feature analysis [8].
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Fig. 1. For the ASSOM, the nodes are arranged in a two dimensional latent
space. Each epsiode of training vectors is assigned to the node whose
subspace has minimum projection error with the vectors in the episode.

However, this requirement that episode boundaries have to
be specified explicitly makes application of the ASSOM to
natural image sequences problematic, since information about
episode boundaries may not be available. In addition, given
the topological organization, the requirement that all input
nodes in the episode be assigned to the same node may be too
restrictive.  Since neighboring nodes are similar, they may
provide a better representation of a particular input.

This work addresses this limitation by proposing a
generative model that captures the key ideas in the ASSOM,
including sparsity, nonlinear pooling, topological organization
and temporal continuity (slowness). Using the generative
model, we can infer the node assignment of each input vector,
while maintaining the idea that the representation should
change slowly in time. This eliminates the need for explicit
segmentation of the data into training episodes. The generative
model also enables us to obtain an online training algorithm,
where each incoming input vector is assigned to a node based
only on the current and past vectors, and the basis vectors of
the node and its neighbors are updated sample by sample. This
generative model has some similarity with the Generative
Topographic Mapping (GTM) [9], but the GTM does not
include any concept of temporal continuity.

We demonstrate that the generative ASSOM can learn
invariant features similar to those found in the primary visual
cortex, based on unlabeled input sequences generated by a
realistic model of eye movements that includes both saccades
and drift. We also show that performance of the generative
model is similar to that of the original ASSOM, where
saccades are used to mark training episode boundaries.

I. METHODS

A. The Adaptive Subspace Self Organizing Map

The ASSOM [9] is an extension of the Self Organized Map
[10]. A set of nodes organized in lattice architecture seeks to
find a set of low dimensional subspaces that reflect the
statistics of a collection of N dimensional input vectors. The

input to the network is a sequence of vectors x, € R" where ¢
represents time.
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Fig. 2. The calculation of the squared length of the projection of input vector
X, onto each subspace.
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An ASSOM consists of a set of S nodes indexed by
i€ {l...5}. As illustrated in Figure 1, the nodes are organized

LY.

Associated with each node is an H-dimensional subspace
of R" defined by a set of H orthonormal basis
vectors B, =[b,,... b, ... b, ]. As illustrated in Figure 2, we

in a 2-D latent space with locations/, =[,,

define the response of each node as the squared length of the
projection of an input vector X, onto the subspace,

H
IBx, =2 (5, x,)’ (1
h=1

This calculation is similar to that used in energy models of the
visual cortical complex cell responses. Basis vectors are
analogous to simple cell linear receptive fields.

The ASSOM learns features that are invariant to
transformations of the input patterns. During training, the
algorithm is presented with data in episodes consisting of
training vectors that are similar but vary along the dimension
for which the invariance is desired. For example, in order to
learn translation invariant features, each episode consists of
patterns generated by translating an image patch in different
directions.

For each episode, the node whose subspace minimizes the
total squared projection error over all input patterns in the
episode is selected as the “winner”. If we denote the index of
the winning node by c, then

. ~ 12
¢ =argmin znx; " (2)
J re€
where £ is the set of time indices within the episode and
%/ =x, -/ (3)

is the difference between the input pattern at time T, and its
projection onto subspace j,
X =B,B/x,

4)

The subspaces of the winning node and its neighbors are
updated towards the input vectors in the episode according to

% (x,B,)
I

where A is a positive learning rate and

AB, = ﬂh{,cz (5)
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where N (-|m,C) is a Gaussian density function with mean m
and covariance matrix C. The Gaussian neighborhood function
h, . ensures the winning node, ¢, and its neighbors are updated

the most. The width of the Gaussian is controlled by o . This
update creates a topological map of smoothly varying
subspaces. This learning rule is slightly modified from the
original to improve computational efficiency [11].

Using all the samples in an episode to compute the update
ensures that the subspaces capture invariance by accounting for
transformed versions of the same input. However, it has the
disadvantages that the episodes must be explicitly labeled, and
that online updates are difficult, since all inputs in the episode
must be seen before a decision about the winning node is
made. In the following subsection, we describe an algorithm
that overcomes these difficulties through a generative model of
the inputs.

B. The Generative ASSOM Model

We formulate the generative ASSOM model as a Hidden
Markov Model (HMM) [12, 13]. As in the standard ASSOM,
we assume a set of S nodes arranged in a 2D latent space. In
the generative model, these nodes are latent variables. At each
time, ¢, the input X, is generated by one of the nodes, which is

identified by the indicator vector z, € {0,1}° according to 1 of

S coding,
z,=z,..2,..2,4] @)
where
1 ifx, is generated by subspace i
z, = . (®)
0 otherwise

The sequence of nodes is generated according to a Markov
random process. We assume that initially all nodes are equally
probable for generating the input

7, =P(zy,=1)=S". ©)

For subsequent times, the nodes change according to a
transition probability

a,=P(z,=1|z,_,=1). (10)

We will consider two possibilities assigning these transition
probabilities: either by learning as described in Section IL.E or
by a fixed assignment,

) N, |1,07.)
>N |Lop)

The fixed assignment is a mixture of a uniform distribution and
a discretized version of a Gaussian with standard deviation

o;. . The mixture weights are determined by pe [0,1] The

a;=pST+(1-p (11)

Gaussian component provides for temporal continuity of the
winning node (the node responsible for x, , or those close to it
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are more likely to be responsible for x, ). The uniform

component allows for large instantaneous changes in the
winning node as at episode boundaries in the original ASSOM
(all nodes are equally likely to be responsible independently of
the past).

Given the latent state z,, we assume that the input vector
x, is the sum of two components: one lying in the subspace
and one orthogonal to the subspace:

x, =B,w, +B/n, (12)

where w, e R, B € R is a matrix with orthogonal
columns spanning the orthogonal complement of B, , and

n, € RY" . We assume that w, and n, are independent and
Gaussian distributed with diagonal covariance matrices. By
orthogonality, we have w, =B/x, and n, = (B;)"x, . Thus,

P(x,|z, =D)=N(w,]0,0,1)- N (n,[0,001)  (13)

We assume that o, > 0, so that input vectors lying in

the subspace have large probability, and input vectors off the
subspace have low probability. This ensures the probability is
largest when the input vector lies in the subspace of the
generating node, and decays to zero when the input vector is
orthogonal to the subspace. As discussed below, this
assumption makes the generative model similar to the original
model.

Using this model, we propose two algorithms for winner
selection. The first algorithm, which we refer to as batch
selection, selects the winner at time ¢ based on all of the
training data from time O to 7. The second algorithm, which we
refer to as online selection, selects the winner at time ¢ based in
the data from time O to time ¢.

C. Batch Winner Selection

This method is suitable is situations where offline training
is possible. Given the entire input sequence X =[Xx,... X,..X; ],
batch selection seeks to determine a sequence of latent states
Z =|[z,..z,..z;] to account for the data, taking into account
both the probability that each node generates the output, as
well as the slow spatial variation in the winner implied by the
transition probability matrix. Based on the HMM formulation
presented here, there are two natural choices: the Viterbi
algorithm or the forward-backwards algorithm [13]. In our
experiments, we have observed little difference in the results of
the two approaches. In the following, we present only the
second approach, as it is more similar to the online selection
algorithm presented later.

Batch winner selection computes
7.()=P(z, =1]X) (14)
It then selects winners for each time ¢ by

c(t) = argmax ;[7, (/)] (15)



We use the forward-backward algorithm to compute 7,(i) by

%) =z (Df,(0) (16)
where K, =" a,()B,(j),and
a,(l:)=P(x1,...,x,,zti =1) (17)
L) =P(X, .., X | 2, =1)

The quantities ¢, (i) and S (i) are computed via recursions
that proceed forward and backwards in time. For example,

o, (i) = P(x, |z, —1)2

j=1

o, ()a; (18)

A similar backwards equation holds for (i) .

Once the winners are selected, the subspaces are updated
according to
e (x "B.)

This equation is similar to (4), except the winning node c(?)
changes over time. After each update, the basis vectors are
orthonormalized.

AB, thl . (19)

"I

The generative model can be made equivalent to the
original ASSOM with a single training episode by choosing
p=0, =0, and allowing 0;, — . Under the first two
assumptlons, the transition probability matrix reduces to the
identity matrix, which implies that the responsible node is the
same for all time instants, similar to the assumption of the
standard ASSOM with a single episode. In this case, (18)

simplifies to ¢, (i) = P(x, | z, =D, (i) , which implies that
11
a,i) =[] P(x, |z, =1 (20)
7=1
Combining with a similar analysis for /3,(r), we obtain
T
a,)B0O =Pk, 1z, =1 (21)
7=1
for all £. Under the assumption ©;, — o,
P(xJ4f=1>o<exp(—g§;j (22)

In this case, the product in (21) is the exponential of the
negative total squared projection error, and the winner
selection criteria in (2) and (15) are identical.

D. Online Winner Selection

The online selection algorithm seeks to a winner for each
input vector X, using only the input sequence up to time ¢,

X, =[x,... x,]. Because basis vectors can be updated at each
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Given input vectors X, and parameters a;, Oy, Oy
Vi, initialize ¢, (i)=S"
For each time ¢,

Vi, compute (i) from { &_(j)} using (18)

Vi, compute ¢,(i) using (23)

Select a winner c¢(f) using (24)

Vi, update basis vectors using AB, in (26) and

orthonormalize.

Fig. 3. Pseudocode for the online GASSOM algorithm. Here we assume that
the model parameters are fixed, but they could be learned by re-estimating
them using online versions of (27) - (30)

time step, this algorithm is better suited to modeling learning in
biological systems. Similarly to (14) and (15), we compute

&, (i)=P(z,=1|X) (23)
and then select winners for each time ¢ by
c(t) = argmax [&, (/)] (24)

The values of &, (i) can be computed recursively using the
forward algorithm (18), since

A0)
>a0)

The online selection algorithm enables us to update basis
vectors at every presentation of the input pattern,

a (i)= (25)

% (x/B,)
el

Fig. 3 presents the pseudo-code for the online GASSOM
algorithm.

AB, = Ah (26)

i,c(t)

"L

E. Learning the model parameters
For batch selection, the model parameters a,, 0, and o,

can be estimated using the Baum-Welch algorithm [13]. We
calculate

GG, j)=Pz,=lz,,=11X)
_ 2,(0a,P(X,|z.0, =DB. () @7)
P(X)
and estimate new transition probabilities @, and variances o,
and o, by
i
. DR 28
> )
T N,
.1 PN AG] 4 29
" S(N-H) s Z;}/f(i)
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Fig. 4. One set of basis vectors obtained from: (a) The original ASSOM, (b)
Batch selection with learned transition probabilities, (c) Batch selection with
fixed transition probabilities, (d) Online selection with fixed transition
probabilities. Basis vectors are arranged in the 16x16 ASSOM topology. The
highlighted bases in (d) are analyzed in Fig. 6.
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Fig. 5. (a) The transition probabilities learned by batch GASSOM using the
Baum-Welsh algorithm. Each sub-image shows the transition probabilities a;
for the node j at time #-1. The sub-images are arranged according to the
topology of the nodes j. Each pixel shows the probability of transitioning to
node i at time ¢, where the pixels are arranged according to the topology of the
nodes. Sub-images are normalized so that blue corresponds to zero probability
and red to the maximum probability. (b) The transition probabilities when the
model parameters are fixed.
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For online selection, we can estimate parameters using the
online estimation algorithm presented in [14][15].
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II. EXPERIMENTS AND RESULTS

We present the results from the original ASSOM, the batch
ASSOM with learned model parameters, the batch ASSOM
with fixed model parameters, and the online ASSOM with
fixed model parameters.

All maps consist of 16x16 arrays of latent nodes. Input
vectors are 10x10 pixel image patches (N = 100) generated
according to the eye movement model described below. Each
subspace is two-dimensional (H = 2).

A. Fixational eye movement model

In the human visual system, drift during fixation produces a
set of visual samples with a linear displacement around the
fixation point [16]. Saccades introduce large shifts in the
fixation point. Thus, fixations are analogous to the training
episodes, with successive fixations being delineated by
saccades.

The input stimuli in our experiments are generated based
on a model based on saccades and ocular drifts described in
[17]. Saccade amplitudes are modeled using an exponential
distribution with mean 2 degrees. The saccade direction is a
uniform random variable over [0,27] . The intersaccadic

interval is modeled by an exponential distribution with mean
300ms. Ocular drift is modeled as a diffusion process with a
diffusion constant of 40 arcmin®/sec.

The sequence of image patches presented to the model are
generated from the natural images in Van Hateren database
[18], which are first pre-whitened [19]. Time in the eye
movement model is discretized at 25ms per frame. Visual
space is quantized at 1 arcmin per pixel. At the beginning, an
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Fig. 6. Selected basis vectors from Fig. 4(d). The plots on the right show the
cross sections along the dotted lines.

image from the database and a fixation point in the image are
chosen randomly. The gaze point is first chosen at the fixation
point. A 10 x 10 patch input to the model is obtained by
interpolating the image around the fixation point. Patches are
normalized to have a unit norm. At each frame, a new gaze
point is chosen according to the ocular drift diffusion process
until the next saccade. After every 20 saccades, a new image is
chosen from the database and a new fixation point chosen.

The total length of the training sequence is 1x10" frames.
For the original ASSOM simulations, training episodes are
defined by the period between two successive saccades. For
the batch ASSOM, one batch consists of an unlabeled sequence
of image patches collected over 20 saccades. The online
ASSOM is presented with the stream of patches generated by
the model. Neither the batch nor the online ASSOM have any
information regarding the episode boundaries, apart from that
contained implicitly in the image content of the patches.

B. Parameter settings

The learning rate starts at 1x10~ and decays exponentially
to 1x107* with a time constant 4x10*. The standard deviation
of the neighborhood function 7, starts at a value of 4 and

decays exponentially to 0.5 with a time constant of 4x10*.

Basis vectors are initialized as independent and identically
distributed (i.i.d.) vectors whose components are chosen from a
uniform distribution. They are then orthonormalized. When
learned, the elements of the transition probability matrix are
chosen independently from a uniform distribution between 0
and 1, and then normalized so that each row sums to one. The
standard deviations of the Gaussian emissions are initialized

oy = 0.1 and o, =1. When fixed, we set the transition
probabilities according to (11) with ¢, =2 and p=0.3. The
emission probabilities are given by (13) with o, = 0.08 and

0,, =0.4. These parameters were set based on the results from
the model parameter learning.
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Fig. 8. The distributions of wavelengths of the learned basis vectors

C. Basis vectors obtained

Fig. 4 shows one of the basis vector from each subspace of
the maps obtained by the original ASSOM, the batch ASSOM
with learned model parameters, and the batch and online
ASSOM with fixed model parameters. We show only one
basis vector since the other basis vector in the subspace is
usually similar, as discussed in more detail below. Comparing
the basis vectors which emerge from the different models, we
observe that they are qualitatively quite similar in appearance
and in their topological arrangement. We provide more
quantitative measures in the following.

As a result of the topological updates of the basis vectors,
the map of feature detectors exhibits many properties found in
the primary visual cortex, where selectivity to orientation and
spatial frequency vary smoothly across the cortical surface. We
observe a similar smooth variation in the orientation and spatial
frequency of the basis vectors in the maps generated by our
algorithms. The topographical maps of basis vectors exhibit
orientation pinwheels, similar to pinwheel-like structures that
have been identified in the mammalian visual cortex [20, 21].

Fig. 5(a) shows transition probabilities learned by the batch
ASSOM starting from random initial conditions. We observe
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Fig. 9. (a) The distributions of the phase difference between the two basis
vectors in each subspace. (b) The mean squared error (MSE) of the Gabor fits
to the basis vectors. Since the basis vectors are normalized, the maximum
fitting error is 1.

that the learned transition probabilities display a very similar
trend as assumed in equation (11), with a Gaussian-like peak
centered at the latent node location at time #-1. A least squares
fit of (11) to the learned transition probabilities gives
parameters 0, =1.25 and p=0.5. The parameter assumed

when the model parameters were fixed were o, =2 and
p=03.
emerge illustrates that the model is quite robust to the exact
choice of the transition probabilities, as long as they ensure a
balance between temporal slowness and minimizing projection
error.  The emission probabilities from learning were
o, =0.08 and o0, =04, the same as assumed when the

The similarity between the basis vectors which

model parameters were fixed.

Fig. 6 show the pairs of basis vectors from two of the
subspaces learned by the online ASSOM. We observe that the
two basis vectors have the very similar spatial frequencies and
orientations. Their cross sections in the directions
perpendicular to the level sets show a Gabor-like profile: a
sinusoidal variation modulated by a spatially decaying
envelope. The two basis vectors are in approximate phase
quadrature, as the sinusoidal variations differ in phase by about
90 degrees.

Distance during fixation

70 Distance across saccades

% of transitions

Euclidean Distance

Fig. 10. Histograms of the distances between temporally adjacent winners
during fixation and across saccades.

In order to analyze the structure of the basis vectors
learned, we fit individual basis vectors with two-dimensional
Gabor functions and extract the wavelength and orientation
from the fits. Fig. 7 shows the distributions of orientations in
the models. We find that all models provide a fairly uniform
sampling of orientations. Fig. 8 shows the distributions of
spatial wavelengths, which are also similar across all models.

To measure the phase relationship between the basis
vectors, we fit the basis vectors in each subspace with a
common Gabor fit: the two basis vectors share the same spatial
frequency, orientation and bandwidth parameters, but may
differ in phase. Fig. 9(a) plots the distributions of phase
parameters. We observe a clustering around 90 degrees,
indicating that the two basis vectors are usually in approximate
phase quadrature. Fig. 9(b) shows that quality of the Gabor fits
is quite consistent across all models.

To evaluate the ability of the online method to identify the
episode boundaries, we recorded the locations of the winners
during training. Fig. 10 shows the histograms of the Euclidian
distances between temporally adjacent winning nodes both
across saccades (analogous to boundaries between episodes)
and within each fixation (analogous to the period within a
training episode). Across saccades, winning nodes are more
widely separated. During fixations when the gaze location
drifts slowly, transitions tend to occur either to the same node
or nearby nodes. This demonstrates that the model captures the
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Fig. 11. Mean Square Error of the activation when the input is shifted. The
online algorithm has the same invariance properties as the original.
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temporal slowness which was required to be explicitly
specified in the original ASSOM. The generative ASSOM
models are provided with no indication about the location of
saccades, aside from changes in the image patches themselves.

Invariance of the receptive fields was tested by measuring
the difference in activation for a shifted input sequence.
Activation is calculated as the squared projection length of the
input on a subspace as defined in Fig. 2. Fig. 11 shows the
average mean squared error between the activations for the
shifted and unshifted patches. Averaging was done over
activations to 5x10° patches. The MSE is normalized to one at
a shift of 10 pixels. Both the original and online algorithms
showed very similar invariance for translated inputs.

III. DISCUSSION

The ASSOM learns invariance by looking at explicitly
defined training episodes in the input, and by adjusting the
subspaces to minimize error between the winning subspace and
its neighbors and the input patterns in the episodes.
Maximizing invariance leads to the emergence of basis vectors
very similar to the phase quadrature receptive fields of simple
cells in the primary visual cortex, which are hypothesized to
provide input to the same complex cell.

In this paper, we have presented a generative model for the
ASSOM, which can learn similar invariant feature detectors as
the original ASSOM, but without the need for on an external
agent to provide explicit information about episode boundaries.
The algorithms use temporal continuity of the latent node
accounting for the data to uncover slowly varying features
from quickly varying inputs. Thus, this approach shares a
similar motivation as Slow Feature Analysis [22, 23], which
has been suggested as a mechanism used by the brain to
account for neuronal development.

This scheme is particularly useful in sensory coding where
inputs are generated from active sensors, such as the eyes,
which are in constant motion. By uncovering slowly varying
features, these algorithms may be able to provide a basis for
more robust estimation about the changes in the state of the
environment. We have demonstrated the applicability of our
approach to this situation using input generated by a realistic
model of eye movements.

The generative ASSOM model also enables us to develop
batch and online estimation algorithms. The results presented
here demonstrate that both algorithms can achieve similar
performance to the original ASSOM. This generative
extension of the ASSOM should increase the applicability of
the ASSOM model to a wider variety of situations, especially
those involving unlabeled temporal sequences as might be
generated during natural behavior. In particular, the online
algorithm is particularly applicable to modeling neuronal
development during interaction with the environment.
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