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Abstract— The Adaptive Subspace Self Organized Map 
(ASSOM) is a model that incorporates sparsity, nonlinear 
pooling, topological organization and temporal continuity to 
learn invariant feature detectors, each corresponding to one node 
of the network.  Temporal continuity is implemented by grouping 
inputs into “training episodes”. Each episode contains samples 
from one invariance class and is mapped to a particular node 
during training.  However, this explicit grouping makes 
application of this algorithm for natural image sequences 
difficult, since the grouping is generally not known a priori.  This 
work proposes a probabilistic generative model of the ASSOM 
that addresses this problem.  Each node of the ASSOM generates 
input vectors from one invariance class.  Training sequences are 
generated by nodes that are chosen according to a Markov 
process.  We demonstrate that this model can learn invariant 
feature detectors similar to those found in the primary visual 
cortex from an unlabeled sequence of input images generated by 
a realistic model of eye movements.  Performance is comparable 
to the original ASSOM algorithm, but without the need for 
explicit grouping into training episodes. 

Keywords— generative model; hidden Markov model; 
invariance; self-organization 

I. INTRODUCTION 
The initial stages of the visual cortex perform a feature 

extraction task. Visual cortical cells are often loosely 
categorized into two classes: simple and complex [1]. In the 
primary visual cortex, both simple and complex cells exhibit 
orientation and spatial frequency selectivity.  However, the 
responses of simple cells are highly dependent upon the phase 
(position) of the stimulus, whereas complex cell responses 
exhibit phase invariance.  These complex cells are often 
assumed to be inputs to higher cortical stages, and the 
development of invariance along certain feature dimensions is 
thought to be an important process in the learning of more 
complex visual features.    

The concept of invariant feature detectors is closely related 
to the concept of subspaces or manifolds of the input space [2, 
3].  Natural inputs, such as auditory or visual signals, are 
usually high dimensional, but distributed along many lower 
dimensional manifolds.  For example, although objects in the 
visual field may be quite complex, neurons in the initial stages 
of visual processing respond to relatively small spatial regions.  
At this scale, the typical inputs may be relatively simple and 
regular (e.g. oriented edges), but vary according to a class of 

transformations, such as translation.  The inputs corresponding 
to one common pattern subject to different transformations 
within this class are referred to as an invariance class, and lie 
along a manifold of the high dimensional input space.  If the 
transformation is a linear operation, then the manifold is a 
linear subspace.  Invariant features correspond to subspaces, 
with the strength of each feature depending upon the length of 
the projection of the input onto the subspace. 

Kohonen modeled the development of invariant feature 
detectors via the Adaptive Subspace Self Organizing Map 
(ASSOM) [2, 4].  The map consists of a set of nodes arranged 
in a two dimensional topology.  Each node corresponds to one 
invariant feature detector, which is defined by a set of 
orthogonal basis vectors spanning a linear subspace.  The 
strength of each invariant feature is computed summing by the 
squared length of the projection onto each basis vector.  
Learning is competitive.  Input vectors in the training set are 
assigned to particular nodes, whose basis vectors are adapted 
towards the input vector. Neighboring nodes, as defined by the 
two dimensional topology, are updated in the same direction, 
but by a smaller amount. This ensures that the collection of 
nodes represents the variety of invariance classes found in the 
data, with neighboring nodes representing similar invariance 
classes.  Later work has captured a similar idea using the 
concept of independence [5]. Topographical organization can 
also be introduced by having each node have only one basis 
vector, but by defining invariant features by summing the 
square lengths of the projections onto the basis vectors at that 
node and its neighbors [6][7].  However, this may reduce 
selectivity along other feature dimensions.  For example, for 
image features, basis vectors at neighboring nodes may vary in 
orientation, reducing the orientation selectivity of the resulting 
feature detectors. 

The concept of a training episode is quite significant in the 
ASSOM. An episode consists of a set of samples that are 
transformed versions of each other, i.e. they belong to the same 
invariance class.  Depending upon the desired invariance, the 
transformations applied to the samples may differ, e.g. 
translations, rotations or scaling. The ASSOM learns 
invariance by assigning the same node to represent all samples 
in the episode.  The training episode captures the idea that 
temporally neighboring inputs are similar, and that the 
resulting representation should vary slowly, and thus is related 
to ideas of slow feature analysis [8].  
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However, this requirement that episode boundaries have to 
be specified explicitly makes application of the ASSOM to 
natural image sequences problematic, since information about 
episode boundaries may not be available.  In addition, given 
the topological organization, the requirement that all input 
nodes in the episode be assigned to the same node may be too 
restrictive.  Since neighboring nodes are similar, they may 
provide a better representation of a particular input. 

This work addresses this limitation by proposing a 
generative model that captures the key ideas in the ASSOM, 
including sparsity, nonlinear pooling, topological organization 
and temporal continuity (slowness).  Using the generative 
model, we can infer the node assignment of each input vector, 
while maintaining the idea that the representation should 
change slowly in time.  This eliminates the need for explicit 
segmentation of the data into training episodes.  The generative 
model also enables us to obtain an online training algorithm, 
where each incoming input vector is assigned to a node based 
only on the current and past vectors, and the basis vectors of 
the node and its neighbors are updated sample by sample.  This 
generative model has some similarity with the Generative 
Topographic Mapping (GTM) [9], but the GTM does not 
include any concept of temporal continuity. 

We demonstrate that the generative ASSOM can learn 
invariant features similar to those found in the primary visual 
cortex, based on unlabeled input sequences generated by a 
realistic model of eye movements that includes both saccades 
and drift.  We also show that performance of the generative 
model is similar to that of the original ASSOM, where 
saccades are used to mark training episode boundaries.   

I. METHODS 

A.  The Adaptive Subspace Self Organizing Map 
The ASSOM [9] is an extension of the Self Organized Map 

[10].  A set of nodes organized in lattice architecture seeks to 
find a set of low dimensional subspaces that reflect the 
statistics of a collection of N dimensional input vectors. The 
input to the network is a sequence of vectors N

t ∈x \ where t  
represents time. 

An ASSOM consists of a set of S  nodes indexed by 
{1... }i S∈ . As illustrated in Figure 1, the nodes are organized 

in a 2-D latent space with locations 1 2[ ]T
i i il l l= .  

Associated with each node is an H-dimensional  subspace 
of N\  defined by a set of H  orthonormal basis 
vectors 1[ ...  ... ]i i ih iHb b b=B . As illustrated in Figure 2, we 
define the response of each node as the squared length of the 
projection of an input vector tx  onto the subspace, 

 2 2

1
|| || ( )

H
T T

i t ih t
h

b
=

=∑B x x  (1) 

This calculation is similar to that used in energy models of the 
visual cortical complex cell responses.  Basis vectors are 
analogous to simple cell linear receptive fields. 

The ASSOM learns features that are invariant to 
transformations of the input patterns.  During training, the 
algorithm is presented with data in episodes consisting of 
training vectors that are similar but vary along the dimension 
for which the invariance is desired. For example, in order to 
learn translation invariant features, each episode consists of 
patterns generated by translating an image patch in different 
directions. 

For each episode, the node whose subspace minimizes the 
total squared projection error over all input patterns in the 
episode is selected as the “winner”. If we denote the index of 
the winning node by c, then 

 
2

arg min j

j
c τ

τ∈

= ∑ x�
E

 (2) 

where E  is the set of time indices within the episode and  

 ˆj j
τ ττ = −xx x�   (3) 

is the difference between the input pattern at time τ, and its 
projection onto subspace j, 

 ˆ i T
t i i t=x B B x  (4) 

The subspaces of the winning node and its neighbors are 
updated towards the input vectors in the episode according to  
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ˆi i

i
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T
ih τ τ

τ τ τ

λ
∈
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x

x
x

x
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  (5) 

where λ  is a positive learning rate and  

3 21 12 2... . |.| .| ...t t t t+ +x x xx x x x

1l

2l

Fig. 1. For the ASSOM, the nodes are arranged in a two dimensional latent
space.  Each epsiode of training vectors is assigned to the node whose 
subspace has minimum projection error with the vectors in the episode.  

tx
1ib

2ib

2T
i tB x

Fig. 2. The calculation of the squared length of the projection of input vector 
xt onto each subspace. 
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 ,
2( | , )i ci ch σ= l l IN  (6) 

where ( | , )⋅ m CN  is a Gaussian density function with mean m 
and covariance matrix C.  The Gaussian neighborhood function 

,i ch  ensures the winning node, c, and its neighbors are updated 
the most. The width of the Gaussian is controlled byσ .  This 
update creates a topological map of smoothly varying 
subspaces.  This learning rule is slightly modified from the 
original to improve computational efficiency [11]. 

Using all the samples in an episode to compute the update 
ensures that the subspaces capture invariance by accounting for 
transformed versions of the same input.  However, it has the 
disadvantages that the episodes must be explicitly labeled, and 
that online updates are difficult, since all inputs in the episode 
must be seen before a decision about the winning node is 
made.  In the following subsection, we describe an algorithm 
that overcomes these difficulties through a generative model of 
the inputs. 

B. The Generative ASSOM Model 
We formulate the generative ASSOM model as a Hidden 

Markov Model (HMM) [12, 13]. As in the standard ASSOM, 
we assume a set of S nodes arranged in a 2D latent space.  In 
the generative model, these nodes are latent variables.  At each 
time, t, the input tx is generated by one of the nodes, which is 
identified by the indicator vector {0,1}S

t ∈z  according to 1 of 
S coding, 

 1[ ... ... ]t t ti tSz z z=z  (7) 

where 

 
1 if  is generated by subspace 
0 otherwise

t
ti

i
z

⎧
= ⎨
⎩

x
 (8) 

The sequence of nodes is generated according to a Markov 
random process.  We assume that initially all nodes are equally 
probable for generating the input 

 1
0( 1)i iP z Sπ −= = = . (9) 

For subsequent times, the nodes change according to a 
transition probability 

 1,( 1 | 1)ij tj t ia P z z −= = = . (10) 

We will consider two possibilities assigning these transition 
probabilities: either by learning as described in Section II.E or  
by a fixed assignment,  

 
2

1
2

( | , )
(1 )

( | , )
j i Tr

ij
kk i Tr

l l
a S

l l
σ

ρ ρ
σ

−= + −
∑
N

N
. (11) 

The fixed assignment is a mixture of a uniform distribution and 
a discretized version of a Gaussian with standard deviation 

2
Trσ . The mixture weights are determined by [ ]0,1ρ ∈  The 

Gaussian component provides for temporal continuity of the 
winning node (the node responsible for 1t −x  or those close to it 

are more likely to be responsible for tx ).  The uniform 
component allows for large instantaneous changes in the 
winning node as at episode boundaries in the original ASSOM 
(all nodes are equally likely to be responsible independently of 
the past). 

Given the latent state tz , we assume that the input vector 

tx  is the sum of two components: one lying in the subspace 
and one orthogonal to the subspace: 

 t i t i t
⊥= +x B w B n  (12) 

where H
t ∈w \ , ( )N N H

i
⊥ × −∈B \  is a matrix with orthogonal 

columns spanning the orthogonal complement of iB , and 
N H

t
−∈n \ . We assume that tw  and tn  are independent and 

Gaussian distributed with diagonal covariance matrices. By 
orthogonality, we have T

t i t=w B x  and ( )T
t i t

⊥=n B x .  Thus,  

 ( ) ( )2 2| 0,( z ,1) | 0t W Nt i ttP σ σ= = ⋅w I nx IN N  (13) 

We assume that 2 2
W Nσ σ� , so that input vectors lying in 

the subspace have large probability, and input vectors off the 
subspace have low probability.   This ensures the probability is 
largest when the input vector lies in the subspace of the 
generating node, and decays to zero when the input vector is 
orthogonal to the subspace. As discussed below, this 
assumption makes the generative model similar to the original 
model.   

Using this model, we propose two algorithms for winner 
selection. The first algorithm, which we refer to as batch 
selection, selects the winner at time t based on all of the 
training data from time 0 to T. The second algorithm, which we 
refer to as online selection, selects the winner at time t based in 
the data from time 0 to time t. 

C. Batch Winner Selection 
This method is suitable is situations where offline training 

is possible. Given the entire input sequence 1[ ... ... ]t T= x x xX , 
batch selection seeks to determine a sequence of latent states 

1[ ... ... ]t T= z z zZ  to account for the data, taking into account 
both the probability that each node generates the output, as 
well as the slow spatial variation in the winner implied by the 
transition probability matrix. Based on the HMM formulation 
presented here, there are two natural choices: the Viterbi 
algorithm or the forward-backwards algorithm [13].  In our 
experiments, we have observed little difference in the results of 
the two approaches.  In the following, we present only the 
second approach, as it is more similar to the online selection 
algorithm presented later.   

Batch winner selection computes 

 ( ) ( 1 | )t tii P zγ = = X  (14) 

It then selects winners for each time t by 

 ( ) argmax [ ( )]tjc t jγ=  (15) 
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We use the forward-backward algorithm to compute ( )t iγ  by  

 1( ) ( ) ( )
tt t tKi i iγ α β=  (16) 

where 
1

( ) ( )S
t t tj

K j jα β
=

=∑ , and 

 1

1

( ) ( , , , 1)
( ) ( , , | 1)

t t ti

t t T ti

i P z
i P z

α
β +

= =
= =

x x
x x
…
…

 (17) 

The quantities ( )t iα  and ( )t iβ  are computed via recursions 
that proceed forward and backwards in time.  For example, 

 1
1

( ) ( | z 1) ( )
S

t t ti t ji
j

i P j aα α −
=

= = ∑x  (18) 

A similar backwards equation holds for ( )t iβ . 

Once the winners are selected, the subspaces are updated 
according to  

 , ( )
1

)
ˆ
(

i i c t

TT

t

i
i

i
h τ τ

τ τ

λ
=

Δ = ∑ x x
x x

B
B

�
 (19) 

This equation is similar to (4), except the winning node c(t) 
changes over time.  After each update, the basis vectors are 
orthonormalized. 

The generative model can be made equivalent to the 
original ASSOM with a single training episode by choosing 

0ρ = , 2 0Trσ = , and allowing 2
Wσ → ∞ .  Under the first two 

assumptions, the transition probability matrix reduces to the 
identity matrix, which implies that the responsible node is the 
same for all time instants, similar to the assumption of the 
standard ASSOM with a single episode.  In this case, (18) 
simplifies to 1( ) ( | 1) ( )t t ti ti P z iα α −= =x , which implies that  

 
1

( ) ( | 1)
t

t ii P zτ τ
τ

α
=

= =∏ x  (20)  

Combining with a similar analysis for ( )i tβ , we obtain 

 
1

( ) ( ) ( | 1)
T

t t ii i P zτ τ
τ

α β
=

= =∏ x  (21) 

for all t.  Under the assumption 2
Wσ → ∞ ,  

 
2

22
( 1) exp

i
t

N
t tiP z

σ

⎛ ⎞− ⎟
⎠

= ∝ ⎜
⎝

x
x

�
 (22) 

In this case, the product in (21) is the exponential of the 
negative total squared projection error, and the winner 
selection criteria in (2) and (15) are identical. 

D. Online Winner Selection 
The online selection algorithm seeks to a winner for each 

input vector tx  using only the input sequence up to time t, 

1[ ... ]t t= x xX . Because basis vectors can be updated at each 

time step, this algorithm is better suited to modeling learning in 
biological systems.  Similarly to (14) and (15), we compute  

 ˆ ( ) ( 1 | )tt tii P zα = = X  (23) 

and then select winners for each time t by 

 ˆ( ) argmax ( )[ ]tjc t jα=  (24) 

The values of ˆ ( )t iα  can be computed recursively using the 
forward algorithm (18), since 

 
1

( )ˆ ( )
( )

t
t S

tj

i
i

j

αα
α

=

=
∑

 (25) 

The online selection algorithm enables us to update basis 
vectors at every presentation of the input pattern, 

 , ( ) ˆ
( )

i i c t i

i T
ih τ

τ τ

τλΔ =B
x

x x B
x

�
 (26) 

Fig. 3 presents the pseudo-code for the online GASSOM 
algorithm. 

E. Learning the model parameters 
For batch selection, the model parameters ija , Nσ  and Wσ  

can be estimated using the Baum-Welch algorithm [13]. We 
calculate  

 
1,

1 1, 1

( , ) ( 1, 1 | )

( ) ( 1) ( )
( )

t ti t j

t ij t t j t

i j P z z

i a P z j
P

ξ
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+ + +

= = =

=
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  (27) 

and estimate new transition probabilities ija  and variances Nσ  
and Wσ  by 

 
1

1
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  (28) 
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{1... }
1
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T i

N T
i S

i

S N H i
τ ττ

ττ

γ
σ

γ
=

∈
=

⎡ ⎤
⎢ ⎥= ⋅
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∑∑
∑

x�
 (29) 

 

Given input vectors tx  and parameters ija , 2
Nσ , 2

Wσ  

∀i, initialize 1
0 ( )i Sα −=  

For each time t,  
 ∀i, compute ( )t iα from { 1( )t jα − } using (18) 

 ∀i, compute ˆ ( )t iα  using (23) 

 Select a winner c(t) using (24) 
 ∀i, update basis vectors using iΔB  in (26) and 

orthonormalize. 

Fig. 3. Pseudocode for the online GASSOM algorithm.  Here we assume that 
the model parameters are fixed, but they could be learned by re-estimating 
them using online versions of (27) - (30) 
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For online selection, we can estimate parameters using the 
online estimation algorithm presented in [14][15]. 

II. EXPERIMENTS AND RESULTS 
We present the results from the original ASSOM, the batch 

ASSOM with learned model parameters, the batch ASSOM 
with fixed model parameters, and the online ASSOM with 
fixed model parameters. 

All maps consist of 16×16 arrays of latent nodes. Input 
vectors are 10×10 pixel image patches (N = 100) generated 
according to the eye movement model described below.  Each 
subspace is two-dimensional (H = 2).  

A. Fixational eye movement model 
In the human visual system, drift during fixation produces a 

set of visual samples with a linear displacement around the 
fixation point [16]. Saccades introduce large shifts in the 
fixation point.  Thus, fixations are analogous to the training 
episodes, with successive fixations being delineated by 
saccades. 

The input stimuli in our experiments are generated based 
on a model based on saccades and ocular drifts described in 
[17]. Saccade amplitudes are modeled using an exponential 
distribution with mean 2 degrees. The saccade direction is a 
uniform random variable over [0, 2 ]π .  The intersaccadic 
interval is modeled by an exponential distribution with mean 
300ms.  Ocular drift is modeled as a diffusion process with a 
diffusion constant of 40 arcmin2/sec. 

The sequence of image patches presented to the model are 
generated from the natural images in Van Hateren database 
[18], which are first pre-whitened [19]. Time in the eye 
movement model is discretized at 25ms per frame.  Visual 
space is quantized at 1 arcmin per pixel.  At the beginning, an 

(a) 

 
(b) 

(c) 

 
(d) 

 
Fig. 4. One set of basis vectors obtained from: (a) The original ASSOM, (b) 
Batch selection with learned transition probabilities, (c) Batch selection with 
fixed transition probabilities, (d) Online selection with fixed transition 
probabilities. Basis vectors are arranged in the 16x16 ASSOM topology. The 
highlighted bases in (d) are analyzed in Fig. 6. 

 
(a)

 
(b) 

Fig. 5.  (a) The transition probabilities learned by batch GASSOM using the 
Baum-Welsh algorithm.  Each sub-image shows the transition probabilities aij

for the node j at time t-1.  The sub-images are arranged according to the 
topology of the nodes j. Each pixel shows the probability of transitioning to 
node i at time t, where the pixels are arranged according to the topology of the 
nodes. Sub-images are normalized so that blue corresponds to zero probability 
and red to the maximum probability.  (b) The transition probabilities when the 
model parameters are fixed.   
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image from the database and a fixation point in the image are 
chosen randomly.  The gaze point is first chosen at the fixation 
point.  A 10 x 10 patch input to the model is obtained by 
interpolating the image around the fixation point.  Patches are 
normalized to have a unit norm. At each frame, a new gaze 
point is chosen according to the ocular drift diffusion process 
until the next saccade.  After every 20 saccades, a new image is 
chosen from the database and a new fixation point chosen. 

The total length of the training sequence is 71 10×  frames. 
For the original ASSOM simulations, training episodes are 
defined by the period between two successive saccades.  For 
the batch ASSOM, one batch consists of an unlabeled sequence 
of image patches collected over 20 saccades.  The online 
ASSOM is presented with the stream of patches generated by 
the model. Neither the batch nor the online ASSOM have any 
information regarding the episode boundaries, apart from that 
contained implicitly in the image content of the patches.  

B. Parameter settings 
The learning rate starts at 21 10−× and decays exponentially 

to 41 10−× with a time constant 44 10× . The standard deviation 
of the neighborhood function ,i ch  starts at a value of 4 and 
decays exponentially to 0.5 with a time constant of 44 10× .   

Basis vectors are initialized as independent and identically 
distributed (i.i.d.) vectors whose components are chosen from a 
uniform distribution.  They are then orthonormalized. When 
learned, the elements of the transition probability matrix are 
chosen independently from a uniform distribution between 0 
and 1, and then normalized so that each row sums to one. The 
standard deviations of the Gaussian emissions are initialized 

Nσ = 0.1 and Wσ =1. When fixed, we set the transition 
probabilities according to (11) with 2Trσ =  and 0.3ρ = . The 
emission probabilities are given by (13) with Nσ  = 0.08 and 

Wσ =0.4. These parameters were set based on the results from 
the model parameter learning.  

C. Basis vectors obtained 
Fig. 4 shows one of the basis vector from each subspace of 

the maps obtained by the original ASSOM, the batch ASSOM 
with learned model parameters, and the batch and online 
ASSOM with fixed model parameters.  We show only one 
basis vector since the other basis vector in the subspace is 
usually similar, as discussed in more detail below.  Comparing 
the basis vectors which emerge from the different models, we 
observe that they are qualitatively quite similar in appearance 
and in their topological arrangement.  We provide more 
quantitative measures in the following. 

As a result of the topological updates of the basis vectors, 
the map of feature detectors exhibits many properties found in 
the primary visual cortex, where selectivity to orientation and 
spatial frequency vary smoothly across the cortical surface. We 
observe a similar smooth variation in the orientation and spatial 
frequency of the basis vectors in the maps generated by our 
algorithms.  The topographical maps of basis vectors exhibit 
orientation pinwheels, similar to pinwheel-like structures that 
have been identified in the mammalian visual cortex [20, 21]. 

Fig. 5(a) shows transition probabilities learned by the batch 
ASSOM starting from random initial conditions.  We observe 
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Fig. 6.  Selected basis vectors from Fig. 4(d). The plots on the right show the 
cross sections along the dotted lines.  
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that the learned transition probabilities display a very similar 
trend as assumed in equation (11), with a Gaussian-like peak 
centered at the latent node location at time t-1.  A least squares 
fit of (11) to the learned transition probabilities gives 
parameters 1.25Trσ =  and 0.5ρ = .  The parameter assumed 
when the model parameters were fixed were 2Trσ =  and 

0.3ρ = .  The similarity between the basis vectors which 
emerge illustrates that the model is quite robust to the exact 
choice of the transition probabilities, as long as they ensure a 
balance between temporal slowness and minimizing projection 
error.  The emission probabilities from learning were 

0.08Nσ =  and 0.4Wσ = , the same as assumed when the 
model parameters were fixed.   

Fig. 6 show the pairs of basis vectors from two of the 
subspaces learned by the online ASSOM.  We observe that the 
two basis vectors have the very similar spatial frequencies and 
orientations.  Their cross sections in the directions 
perpendicular to the level sets show a Gabor-like profile: a 
sinusoidal variation modulated by a spatially decaying 
envelope.  The two basis vectors are in approximate phase 
quadrature, as the sinusoidal variations differ in phase by about 
90 degrees.  

In order to analyze the structure of the basis vectors 
learned, we fit individual basis vectors with two-dimensional 
Gabor functions and extract the wavelength and orientation 
from the fits.  Fig. 7 shows the distributions of orientations in 
the models.  We find that all models provide a fairly uniform 
sampling of orientations.  Fig. 8 shows the distributions of 
spatial wavelengths, which are also similar across all models.  

To measure the phase relationship between the basis 
vectors, we fit the basis vectors in each subspace with a 
common Gabor fit: the two basis vectors share the same spatial 
frequency, orientation and bandwidth parameters, but may 
differ in phase.  Fig. 9(a) plots the distributions of phase 
parameters.  We observe a clustering around 90 degrees, 
indicating that the two basis vectors are usually in approximate 
phase quadrature.  Fig. 9(b) shows that quality of the Gabor fits 
is quite consistent across all models. 

To evaluate the ability of the online method to identify the 
episode boundaries, we recorded the locations of the winners 
during training.  Fig. 10 shows the histograms of the Euclidian 
distances between temporally adjacent winning nodes both 
across saccades (analogous to boundaries between episodes) 
and within each fixation (analogous to the period within a 
training episode). Across saccades, winning nodes are more 
widely separated.  During fixations when the gaze location 
drifts slowly, transitions tend to occur either to the same node 
or nearby nodes.  This demonstrates that the model captures the 
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Fig. 9.  (a) The distributions of the phase difference between the two basis 
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temporal slowness which was required to be explicitly 
specified in the original ASSOM.  The generative ASSOM 
models are provided with no indication about the location of 
saccades, aside from changes in the image patches themselves. 

Invariance of the receptive fields was tested by measuring 
the difference in activation for a shifted input sequence. 
Activation is calculated as the squared projection length of the 
input on a subspace as defined in Fig. 2. Fig. 11 shows the 
average mean squared error between the activations for the 
shifted and unshifted patches. Averaging was done over 
activations to 35 10× patches.  The MSE is normalized to one at 
a shift of 10 pixels. Both the original and online algorithms 
showed very similar invariance for translated inputs.  

III. DISCUSSION 
The ASSOM learns invariance by looking at explicitly 

defined training episodes in the input, and by adjusting the 
subspaces to minimize error between the winning subspace and 
its neighbors and the input patterns in the episodes.  
Maximizing invariance leads to the emergence of basis vectors 
very similar to the phase quadrature receptive fields of simple 
cells in the primary visual cortex, which are hypothesized to 
provide input to the same complex cell.  

In this paper, we have presented a generative model for the 
ASSOM, which can learn similar invariant feature detectors as 
the original ASSOM, but without the need for on an external 
agent to provide explicit information about episode boundaries.  
The algorithms use temporal continuity of the latent node 
accounting for the data to uncover slowly varying features 
from quickly varying inputs. Thus, this approach shares a 
similar motivation as Slow Feature Analysis [22, 23], which 
has been suggested as a mechanism used by the brain to 
account for neuronal development.  

This scheme is particularly useful in sensory coding where 
inputs are generated from active sensors, such as the eyes, 
which are in constant motion. By uncovering slowly varying 
features, these algorithms may be able to provide a basis for 
more robust estimation about the changes in the state of the 
environment.   We have demonstrated the applicability of our 
approach to this situation using input generated by a realistic 
model of eye movements. 

The generative ASSOM model also enables us to develop 
batch and online estimation algorithms. The results presented 
here demonstrate that both algorithms can achieve similar 
performance to the original ASSOM.  This generative 
extension of the ASSOM should increase the applicability of 
the ASSOM model to a wider variety of situations, especially 
those involving unlabeled temporal sequences as might be 
generated during natural behavior.  In particular, the online 
algorithm is particularly applicable to modeling neuronal 
development during interaction with the environment.  
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