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Abstract— In this paper, we consider the prediction
task for a process with nearly periodic property, i.e.,
patterns occur with some regularities but no exact pe-
riodicity. We propose an inference approach based on
probabilistic Markov framework utilizing motif-driven tran-
sition probabilities for sequential prediction. In particular,
a Markov-based weighting framework utilizing fully the
information from recent historical data and sequential
pattern regularities is developed for nearly periodic time
series prediction. Preliminary experimental results show
that our prediction approach is competitive against the
moving average and multi-layer perceptron neural net-
work approaches on synthetic data. Moreover, our pro-
posed method is shown to be empirically robust on time-
series with missing data and noise. We also demonstrate
the usefulness of our proposed approach on a real-world
vehicle parking lot availability prediction task.

I. INTRODUCTION

Nearly periodic time series includes almost and quasi-
periodic time series which have gradually changing
periods. Almost periodic time series have fixed expec-
tation of fundamental frequency along with time. They
appear in musical signal [15], the strength of the global
oceanic tide-raising forces [16], communication signals
[9], [10], and financial data [27]. The fundamental period
of a quasi-periodic time series is almost constant in
short period but it changes gradually in long period.
Such time series appear in astronomical near-infrared
and x-ray oscillations [5], financial and economical in-
dices [3], [25], seismic activities [14], and wind inten-
sity measurements [7]. A seasonal time series could
either have characteristics of an almost periodic or a
quasi-periodic time series. They have additional drifting
terms in their series. Seasonal time series are found
in consumer behavior data [22] and financial data [4],
[31]. Short term behaviors, whose underlying variables
change frequently and has long term unpredictability,
exist in some almost periodic highly dynamic systems
and phenomena. For example, the dynamic behavior
of flame induces by radiative heat loss [11]. Traditional
predictive models whose accuracies depend on the
historical training data size are well designed for fore-
casting time series. These models use either local re-
cent information, such as linear regression [26], moving
average [13] and exponential weighted moving average
[8] or use periodic information, such as Fourier analysis,
wavelet transformation [28], and Chirplet transformation
[20]. However, they are not suitable for nearly periodic
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time series which has near-term (local) rapid behavior
changes and recent periodic information. Consequently,
using only either periodic information or local change
information is not sufficient for robust prediction.

In this paper, we present a novel motif-driven ap-
proach to estimate transition probabilities for high order
Markov chain for robust prediction in a nearly periodic
time series such that its period Ti is a random variable
with a finite expected value, i.e., E(Ti) = T such that
T ∈ R+ with some sequential regularities. The proposed
prediction model assumes that a time period from the
current time to the prediction time contains patterns
or regularities for prediction. Preliminary experimental
results on synthetic data and real world data show that
the performance of our proposed model is competitive
against the moving average and multi-layer perceptron
neural network prediction models. Moreover, our pro-
posed method is shown to be empirically robust on time-
series with missing data and noise.

II. BACKGROUND

A. Markov Model

Markov chains exist in many dynamic systems includ-
ing nearly periodic multi-class time series with noise
[23]. The time series could have constant transition
probabilities, stochastic transition probabilities or a com-
bination of both. In this paper, a Markov model is
represented by ({Vc,D},Vf ,Q), where Vc is the current
state at time c, D is the set of historical states in the
past, Vf is the forecasted state at time f = c + ∆t, Q

is the transition matrix from the corresponding current
state Vc and historical states D to the random future
state Vf . P1 = P(Vf |Vc,D) is the transition probability in
transition matrix.

B. Time Series Range Motif

A time series range motif in a given time series, T ,
with length m is a set of all time series with length much
shorter than m, which share high similarity with each
other and located at significant different position in T

[19]. Formally, a time series motif and range motif [21]
are defined as follows

Definition II.1. The time series motif in a time series,
T , is the most similar pair, T i and T j, of time series
among the other pairs in the time series T such that
∀a, b, i, j, dist(T i,T j)≤ dist(T a,T b), i 6= j,a 6= b while
T i and T j are not time series with slightly shift from
each other as well as T a and T b.
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Definition II.2. The range motif set T r = {T 1,T 2, ...}
containing all time series which have distance less than
2r between any two time series such that ∀T i, T j ∈T r,
dist(T i,T j)≤ 2r, i 6= j and ∀T k ∈T −T r, dist(T i,T k)>
2r.

Intuitively, a nearly periodic time series contains range
motifs at almost regular time intervals. Towards this
end, we utilize the concept of range motifs to char-
acterize local variations and regularities in time series
to estimate transition probabilities for a Markov-based
prediction model [6], [29]. Let Dk

c and Dk
f represent the

two sets of states in the neighborhoods of Vc and Vf at
the kth previous period as follows:

Dk
c = {Vc−kT̂−w,Vc−kT̂−w+1

, ...,Vc−kT̂ , ...,Vc−kT̂+w−1
,

Vc−kT̂+w}

Dk
f = {Vf−kT̂−w,Vf−kT̂−w+1

, ...,Vf−kT̂ ,

...,Vf−kT̂+w−1
,Vf−kT̂+w}

where Vt is the state at time t, and w controls the set
size such that each set consists of (2w+1) states. The
two sets are assumed to be range motifs.

In Figure 1, we demonstrate the above definitions
on the current state, Vc, the future state of interest Vf ,
time interval between Vc and Vf , ∆t = f − c, and the
neighborhood sets Dk

c and Dk
f where k = 1 and 2 using

a sinusoidal function. Information from l = 2 historical
periods are used to estimate the unknown state Vf .

Fig. 1. A simple example to illustrate our definitions when l = 2

historical periods are used in the predictive model for estimating the
future state of interest, Vf , in a sinusoidal function

The fundamental period of time series can be either
estimated from the frequency domain (e.g., fast Fourier
transform) or the time domain (e.g., autocorrelation).
The estimated fundamental period

T̂ =
1

2π f̂
(1)

where f̂ is the estimated fundamental frequency is
obtained from the peak in the fast Fourier transform of
the time series. It can also be estimated from the interval
between peaks of autocorrelation.

III. METHODOLOGY

In our model, the data generating process of the time
series is assumed to follow a periodic-driven homoge-
neous Markov chain. The model is a N-step Markov
chain model which predicts the state at ∆t, N ∗ t ′, ahead
where N can be any positive integer which represents
the Nth state ahead from current state, Vc, and t ′ is the
data sampling granularity. Markov chain model predicts
future state of interest with large N without predicting
the unknown states between the known steps and state
of interest. Hence, it avoids the significant accumulated
errors from other one-step predictive models (e.g, au-
toregression and ARIMA). In order to solve the lack
of information because of local change, the prediction
depends on a set of states

D = D1

c ∪D1

f ∪ ...∪Dk
c ∪Dk

f ...∪Dl
c ∪Dl

f

which is a union set of the range motif D1
c , D1

f , ..., Dl
c

and Dl
f .

Our model estimates transition probability in two ways
for the two cases: (1). Vc = a; a ∈ Dk

c; (2). Vc = a; a /∈ Dk
c,

as follows.
Case 1: Vc = a; a ∈ Dk

c. For the case when current
state Vc appears in range motifs Dk

c, the transition
probability

P(Vf = v|Vc,D) =
1

Z
[ϕ(v,Vc,D

1

c ,D
1

f )

+...

+ϕ(v,Vc,D
k
c,D

k
f )

+...

+ϕ(v,Vc,D
l
c,D

l
f )] (2)

where v is any possible future state of interest and
ϕ is the potential function containing the information
of characteristics of each range motif pair, Dk

c and Dk
f .

To form the prediction model, the information of three
characteristics: (1) periodicity of current, c − kT̂ ; (2)
forecasted states, f −kT̂ , and (3) the time interval of pair
of states from each range motif pair, Dk

c and Dk
f are used

to estimate the transition probability. Each transition
probability composes of a summation of multiple poten-
tial functions, ϕ(v,Vc,D

k
c,D

k
f ), from information in each

range motif pairs, Dk
c and Dk

f divided by a normalized
denominator, Z.

2004



The function ϕ is defined as

ϕ(v,Vc,D
k
c,D

k
f ) =

w

∑
a=−w

w

∑
b=−w

(3)

δ (Vc+a =Vc)

δ (Vf+b = v)

W (a,b)

where δ (expression) is an indicator function which has
only two values, 1 or 0, corresponding to the "True" and
"False" of the expression in the bracket of the function,

W (a,b) = ρ1(a)ρ2(b)ρ3(b−a) (4)

and functions ρm, m = 1,2,3 are bi-linear functions

ρm(x) =

{

w+1−|x|

w2+2w+1
|x|≤ w

0 otherwise.
(5)

where x determines the value of the ρm function and w

is model dependent controlling the gradients of the two
lines in the function. The highest value of the function
is at x = 0. The higher the absolute value of x, the lower
value of ρm. The sum of the ρm for all x is equal to 1 as
it acts as a probability in the weight function W . Figure
2 shows an example of the bi-linear function ρm with
w = 1.
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Fig. 2. bi-linear weighting function where w=1

Each potential function ϕ(v,Vc,D
k
c,D

k
f ) includes the

information from range motifs, Dk
c and Dk

f . These in-
formation are from a pair of two states equal to Vc

and v in Dk
c and Dk

f , respectively. Each data point is
assigned a weight from W , the product of the values
of ρ1, ρ2, and ρ3. The sum of all weighted pair data
is the value of the potential function ϕ(v,Vc,D

k
c,D

k
f ) in

transition probability, P(v|Vc,D). Figure 3 is an example
which shows the weight function, W , of all pairs of state
in historical periods, k = 1, with w = 1.

The values of ρ1, ρ2 and ρ3 are related to the three
characteristics of range motifs used in the prediction.
These relationships are described in the following ob-
servations in nearly periodic time series.

Observation III.1. Due to the near periodicity at current

state Vc, any state, Vc−kT̂+a, in motif Dk
c near to the Vc

tends to repeat at Vc.

Fig. 3. The weight functions, W , for all pairs of state in historical
periods, k = 1, with w = 1

The likelihood for the repetition of the state, Vc−kT̂+a,
at Vc, causes the weight of information of pair of states
which the data in Dk

c is near to the time, c− kT̂ , to be
higher. It is reflected in the bi-linear function, ρ1, in Eq.
(5) where a is the time difference between the time of
Vc−kT̂+a and c− kT̂ .

Observation III.2. Due to the near periodicity at future

state Vf , the nearer the state, Vf−kT̂+b, in motif Dk
f to Vf ,

the higher the likelihood the state repeats itself at, Vf .

Similar to the bi-linear function, ρ1, the likelihood of
the occurrence of Vf−kT̂+b at Vf , is reflected in the value
of ρ2 which is the same bi-linear function as ρ1 in Eq.
(5) where b is the time difference between the time of
Vf−kT̂+b and f − kT̂ . Hence, the nearer the state in Dk

f

in the pair of states to the f − kT̂ , the higher the value
of ρ2 in the weight function of the information.

Observation III.3. Due to near periodicity in the time

series, any pair of states with a time interval in previous

periods is likely to repeat themselves in current and

future periods with the same time interval.

There is a likelihood of repetition of previous pair of
states in the current and future periods. Therefore, the
pair of states which are ∆t apart tend to repeat them-
selves at Vc and Vf . The likelihood of this repetition is
reflected in a bi-linear function, ρ3, in Eq. (4) where b−a

is the difference between the time interval of Vc−kT̂+a and
Vf−kT̂+b and the ∆t, the time interval between Vc and Vf .
Hence, the nearer the time interval of previous pair of
states to the ∆t, the higher the tendency of the repetition
of the pair of states in current and future periods as well
as the higher the value of ρ3 in the weight function of
the pair of states.

Through the estimation of all W and ϕ, we are able
to compute all numerators in the transition probabilities
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function, P(v|Vc,D), in Eq. (2).
Without loss of generality, we assume the state values

range from 1 to m. The normalized term, Z, in Eq. (2),
is computed as follows.

Z =
m

∑
v=1

l

∑
k=1

w

∑
a=−w

w

∑
b=−w

δ (Vc−kT̂+a =Vc)

δ (Vf−kT̂+b = v)ρ(a)ρ(b)ρ(b−a). (6)

It is the sum of all numerators of all possible future state,
v, with respect to the current state, Vc in the transition
probability.

Case 2: Vc = a; a /∈ Dk
c. In some cases, there are

some particular states Vc that do not occur in any of its
range motif in previous periods from the current state,
Dk

c. As a result, there is no pair of states in range
motifs between Dk

c and Dk
f to estimate the transition

probability, P(Vf = v|Vc,D) in Eq. (2) for that particular Vc.
In order to estimate the transition probability, we apply
the transition distribution model in Eq. (7) to obtain

P(Vf = v|Vc,D) =
1

Z
∑

V c∈Dc

ρ(V c −Vc)Pcase1(v|V c,D)

(7)

where Pcase1(v|V c,D) is the transition probability from Eq.
(2), and V c is a pseudo current state belonging to

Dc = D1

c
∪D2

c
∪ ...∪Dl

c
.

The transition probability is the sum of weighted transi-
tion probabilities estimated from Eq. (2) by replacing the
Vc in the equation by a pseudo current state, V c ∈ Dc.
The weighting function, ρ(V c −Vc), of each transition
probability with pseudo current state depends on a bi-
linear function ρ in Eq. (5) with w = max(m−Vc,Vc −1).
w determines the highest value between the difference
of the maximal state and the current state and the
difference of the current state and the minimal state so
that the bi-linear function, ρ, is positive for all the states.
It depends on the similarity of the transition probability
P(v|V c,D) of the pseudo current state with that for the
current state, Vc.

The normalized term

Z =
m

∑
v=1

∑
V c∈Dc

1

Z1(V c)
ρ(V c −Vc)Pcase1(v|V c,D)

is the sum of all weighted transition probability in Eq.
(7) with all possible (m) future states of interest.

Prediction: The estimated future state of interest

V̂f = E(Vf ) =
m

∑
v=1

vP(v|D) (8)

is the expectation of the possible future states.

IV. ALGORITHM

Algorithm 1 shows the procedure to predict the future
state of interest. In Line 1, the algorithm computes
the transition probability t3, assuming the time series
belongs to case 1 with Algorithm 2. It returns a variable
c to show which case of the time series belongs to
and a non empty transition probability if the time series
belongs to case 1. Line 2 checks whether the data
belongs to case 1 or case 2 (see Section III) from the
value of c return from in Line 1. If the data belongs
to case 1, the algorithm jumps to Line 27 to evaluate
the estimated state of interest, V̂f , with the transition
probability from Line 1. If the data belongs to case
2, Line 3 to 26 computes the unnormalized transition
probabilities, t2, for the prediction. In Line 16, t1 stores
the unnormalized transition probabilities of case 1 with
assigned the pseudo current states with states other
than actual state into the Eq. (2). These unnormalized
transition probabilities of the pseudo current states are
used for the estimation of the unnormalized transition
probabilities, t2 for the data of case 2. Line 3 to 13
computes the bi-linear function, ρb, as the ρ function in
Eq. (7). Line 14 to 22 computes the t2 and normalized
terms, Z, of all transition probabilities as in Eq. (7 and
8). Line 23 to 25 determines the normalized transition
probabilities, t3. Line 27 to 29 performs the prediction
of future state of interest by computing the estimated
future state as in Eq. (8).

Algorithm 2 computes the transition probabilities, t3,
for the time series of case 1 and c, a variable with
values, 1 or 2, indicates the case the time series
belongs to. Line 2 initiates variable c = 2. From Line
2 to 4, it computes the function ρa (the function ρ in
Eq. (5)) whose values depend on the value of input
variable w. The computed values are used as ρ1, ρ2

and ρ3, the weight function in Eq. (4) in Line 10. Line
7 checks whether Vc exists in Dk

c and Line 8 assigns
c = 1 if it exists. Line 10 computes the unnormalized
transition probability, t2, as in Eq. (2) for time series of
case 1. Line 15 to 17 calculates the normalized term,
Z, of the transition probabilities as in Eq. (6). Line 18
to 20 determines the transition probabilities, t3 of the
time series of case 1. Line 21 returns the variable c

and transition probability, t3, of the procedure.

V. EXPERIMENTAL RESULTS

In this section, we compare the prediction perfor-
mance of our proposed methods with moving average
and multi-layer perceptron network models. The exper-
iments are performed on periodic and nearly periodic
synthetic data under the condition of missing data or
noisy data and real datasets on parking availability.

Simple moving average [13] is a statistical technique
which takes a series of unweighted averages of contin-
uous data. It is a low-pass filter to smooth continuous
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Input: Vt , historical time series; c, time of current
state; m, total number of states; T̂ ,
estimated fundamental period; w, the
constant control the information size; l, the
periods of historical states to be used and
N, the number of state ahead from current
state to be forecasted

Output: V̂f , forecasted future state

Global Variables: t1, t2, t3, unnormalized transition
probability vectors conditioned to the current class
for data of case 1, the final unnormalized and
normalized transition probabilities for the prediction;
n1,n2, numerator of transition probability for case 1
and case 2, respectively; Z1,Z2, normalized term of
transition probability for case 1 and case 2,
respectively; ρa, bi-linear function for either ρ1, ρ2

or ρ3 in Weight function, Eq. (4); ρb, bi-linear
function ρ in Eq. (7)
Procedure Prediction

1: [e, t3] = ComputeTP(Vt , V̂c, c, w, l, T̂ , N)
2: if e = 2 then
3: L1 = m−Vc

4: L2 =Vc −1

5: if L1 > L2 then
6: for r2 =−L1 to L1 do
7: ρb =

L1+1−|r2|

L2
1
+2L1+1

8: end for
9: else

10: for r2 =−L2 to L2 do
11: ρb =

L2+1−|r2|

L2
2
+2L2+1

12: end for
13: end if
14: for V̂c = 1 to m do
15: if V̂c 6=Vc then
16: [x, t1] = ComputeTP(Vt , V̂c, c, w, l, T̂ , N)
17: for d3 = 1 to m do
18: t2(d3) = t2(d3)+ρb(V̂c −Vc)t1(d3)
19: Z = Z +ρb(V̂c −Vc)t1(d3)
20: end for
21: end if
22: end for
23: for d4 = 1 to m do
24: t3(d4) =

1

Z
t3(d4)

25: end for
26: end if
27: for d5 = 1 to m do
28: V̂f = V̂f +d5t3(d5)
29: end for

Algorithm 1: Prediction

data. Moving average of n consecutive data point is
defined as follow,

SMAn(t) =
V

t− n−1

2

+V
t− n−1

2
+1

+ ...+V
t+ n−1

2

n
(9)

Procedure ComputeTP(Vt , Vc, c, w, l, T̂ , N)
1: e = 2

2: for r1 =−w to w do
3: ρa =

w+1−|r1|

w2+2w+1

4: end for
5: for k = 1 to l do
6: for a =−w to w do
7: if Vc−kT̂+a =Vc then
8: e = 1

9: for b =−w to w do

10: t2(Vf−kT̂+b) =
t2(Vf−kT̂+b)+ρa(a)ρa(b)ρa(b−a)

11: end for
12: end if
13: end for
14: end for
15: for d1 = 1 to m do
16: Z = Z + t2(d1)
17: end for
18: for d2 = 1 to m do
19: t3(d2) =

1

Z
t2(d2)

20: end for
21: return e, t3

Algorithm 2: Compute Transition Probability

where V
t− n−1

2

, V
t− n−1

2
+1

, ... , V
t+ n−1

2

are n subsequence
data which midpoint is Vt In our experiments, moving
average predictive models take the mean of l periods
of SMAn( f − kT̂ ) as the predicted states, V̂f as follows.

V̂f =
1

l
(

l

∑
k=1

SMAn( f − kT̂ )) (10)

where l is the total periods of historical data to train the
predictive model.

A multi-layer perceptron network is a feedforward
neural network with multiple hidden layers. In our ex-
periments, multi-layer perceptron networks with three
hidden layers of 10 nodes are used for the prediction.
The input values are the n subsequence data V

f−kT̂− n−1

2

,
V

f−kT̂− n−1

2
+1

, ... , V
f−kT̂+ n−1

2

of different periods of k and
the output value is the predicted state, Vf . Levenberg-
Marquardt backpropagation [12] is used to train the
weights of the networks.

Mean squared error is used as the performance eval-
uation criterion. It measures the amount of difference
between the actual and the predicted states of interest
as follows.

εmse =
1

t f − ti +1

t f

∑
f=ti

(

V̂f −Vf

)2 (11)

where ti and t f are the initial and the final time stamps
of the testing time series.
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A. Synthetic Data Generation

We generate synthetic data with either random noise
or missing data. These time series are either periodic
or nearly periodic. All synthetic data are five-day time
series consisting of two states: 0 and 1. The (expected)
period of all data is 24 hours and the data is generated
with sampling rate of 5 minutes. The generation of the
synthetic data is similar to the synthetic data generation
in [18].

1) Periodic Synthetic Data Generation: A one-day
time series is generated from the Bernoulli distribution.
For simplicity, the success probability is set to 0.5. The
state is set to 1 corresponding to the random variable
with success outcome and otherwise it is set to 0. The
one-day time series is replicated 5 times to form a five-
day periodic time series.

The random noise is induced in the time series based
on the Bernoulli distribution. Each data point in the five-
day time series corresponds to a random variable. The
random variable with a (new) success outcome causes
its corresponding data point to be flipped to the opposite
state.

To generate synthetic data with missing data, the
process is similar to the noise generation above. The
random variables with success outcome cause the data
points of the five-day periodic time series to be unknown
(or missing data).

2) Nearly Periodic Synthetic Data Generation: The
initial step of the generation of nearly periodic synthetic
data is the same as the first step in the generation
of periodic synthetic data. A ten-day periodic time-
series is generated in the initial step. The second step
is to remove and add additional data points into the
original time series. Two sets of random variables of
nine days were generated with Bernoulli distribution.
The generated random variables in one of the two
sets determines which corresponding data point in the
original time series to be removed and the other set
determines which data point in the original time series
to be added a data point after it. Each data point of
each set corresponds to a data point of the first nine
days of the ten-day periodic time series. The removing
and adding of a data point will only occur when one data
point from the two sets of a particular data point in the
original time series is success. In our synthetic data the
success probability of both removing and adding data is
0.5. The third step is to add random noise and creating
missing data. The procedures are the same as those for
the periodic time series. The final step is to truncate the
last five days data points from the time series to form a
five-day nearly periodic time series.

B. Vehicle Parking Lot Availability Dataset

Fifteen set of twenty-nine consecutive days parking
lot availability dataset are acquired from Singapore Land

Transport Authority 1 in 2013. The data are the num-
ber of parking lot available in 15 commercial parking
garages in Singapore. The data were recorded with a
sampling rates of 5 minutes. In the experiments, we
assume the (expected) periodicity of the time series is
7 days. We transform the parking lot availability time
series into a time series containing two states: zero and
one. Zero represents parking availability of less than 5
percent and one represents otherwise.

C. Results Comparison

First, we discuss the prediction results using the
synthetic data. In the performance evaluation, ∆t is the
time interval between the current time, c, and prediction
time, f (see Section II-A). The data from the second day
to fourth day are the training data and the data of the
fifth day is the testing data.

In each experiment, we generate five random time se-
ries with the same parameter setting. The performance
of each prediction model is the mean of its performance
on the five time series. In our experiments, we compare
the results of our proposed method with w = 0, l = 1

and w = 1, l = 1(PM(0,1) and PM(1,1)) moving average
models with w = 0, l = 1 and w = 1, l = 1(MA(0,1) and
MA(1,1)) and neural network models with n = 1, l = 1

and n = 3, l = 1(NN(1,1) and NN(3,1)). ∆t is one hour in
all experiments. All missing data are ignored in the pre-
diction of proposed method and moving average models
unless all data to be used in constructing the model are
missing. If the situation happens, the model will gener-
ate a random guess of predicted state between state 0
and 1 by 1 trial of binomial distribution with the success
probability of 0.5. For neural network models, all missing
data are replaced by binomial random variable with 1
trial and success probability of 0.5 too.
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Fig. 4. Comparison of mean squared errors in periodic synthetic
data with various noise probabilities.

1http://www.mytransport.sg/content/mytransport/home.html
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Fig. 4 shows the comparison results of all models in
predicting periodic time series with noise probabilities
ranging from 0.1 to 0.5. We observe that the best
predictive models are PM(0,1) and PM(1,1). They have
mean squared errors less than 0.17. Other than time
series with noise probabilities less than 0.20, the per-
formance of PM(1,1) is better than PM(0,1). The two
feedforward neural network models have significantly
higher mean squared errors than the two proposed
methods. Their mean squared errors are more than two
times of PM(1,1). MA(3,1) has higher errors than all four
models mentioned previously. The mean squared errors
of MA(1,1) is nearly equal to the noise probabilities. It
implies that the erroneous probabilities of the predictive
state depend on noise probabilities. It is equal to the
noise probabilities as the predictive model only depends
on only one data in previous period.
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Fig. 5. Comparison of mean squared errors in periodic synthetic
data with various missing data probabilities.

Fig. 5 shows the comparison results on periodic time
series with missing data probabilities ranging from 0
to 0.8. Similarly, we observe the two best predictive
models are PM(0,1) and PM(1,1). Other than time series
with noise probabilities less than 0.10, the performance
of PM(1,1) is better than PM(0,1). PM(0,1), MA(0,1)
and NN(3,1) have zero or nearly zero error rate in the
prediction of data with 0 missing data probability. How-
ever their mean squared errors increase significantly
with the increase of missing data probabilities except
PM(0,1). The performance of neural network models
change slightly down trend and moving average models
have poorer performance in all predictions. The errors
of MA(1,1) are similar to its performance in prediction
with noise corrupted data. It is linearly dependent on
the missing data probability.

Fig. 6 shows the comparison results on nearly peri-
odic time series with noise. Interestingly, performances
of all models do not depend on the noise probabilities.
All models have nearly constant mean squared errors
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Fig. 6. Comparison of mean squared errors in nearly periodic
synthetic data with various noise probabilities.

in all predictions. PM(1,1) has the best performance
with mean squared errors less than 0.12, when PM(0,1)
has the second best performance with mean squared
errors around 0.16. MA(3,1) and the two neural network
models have higher mean squared errors around 0.3.
The model has the worst performance is MA(1,1) with
mean squared errors slightly lower than 0.5 of the mean
squared error of random guess.
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Fig. 7. Comparison of mean square errors in nearly periodic synthetic
data with various missing data probabilities.

Fig. 7 shows the comparison results on nearly peri-
odic time series with missing data. The best predictive
models are PM(0,1) and PM(1,1). PM(1,1) has signifi-
cantly lower mean square errors than PM(0,1). The gap
of the differences between their mean squared errors
approach zero with increase missing data probabilities.
The performance of PM(0,1), NN(1,1), NN(3,1) and
MA(1,1) do not change significantly with all missing data
probabilities while the other models perform poorer with
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higher missing data probabilities. Again, MA(1,1) has
mean square errors slightly lower than 0.5. MA(3,1)
has mean square errors around 0.5 at missing data
probability of 0.8.

For the vehicle parking lot availability prediction task,
∆ts are 5, 10, 15, and 20 minutes. From Table I, one
observes that PM(1,1) has the best performance.

TABLE I

THE MEAN SQUARED ERRORS OF ALL MODELS IN PREDICTING THE

STATES AFTER 5, 10, 15 AND 20 MINUTES FROM THE TIME

PERFORMING THE PREDICTION

proposed proposed Moving Moving Neural Neural
∆t method method Average Average Network Network

(minutes) (w = 0, (w = 1, (n = 1, (n = 3, (n = 1, (n = 3,
l = 1) l = 1) l = 1) l = 1) l = 1) l = 1)

5 0.0193 0.0187 0.0578 0.0558 0.0451 0.0465
10 0.0193 0.0188 0.0578 0.0558 0.0447 0.0452
15 0.0193 0.0188 0.0578 0.0558 0.0433 0.0453
20 0.0193 0.0188 0.0578 0.0558 0.0431 0.0461

VI. CONCLUSION AND FUTURE WORKS

In this paper, we propose an inference approach
based on probabilistic Markov framework utilizing motif-
driven transition probabilities for sequential prediction.
In particular, a Markov-based weighting framework uti-
lizing fully the information from recent historical data and
sequential pattern regularities is developed for nearly
periodic time series prediction. Preliminary experimental
results show that our prediction approach is competitive
against the moving average and multi-layer perceptron
neural network approaches on synthetic data. Moreover,
our proposed method is shown to be empirically robust
on time-series with missing data and noise. We also
demonstrate the usefulness of our proposed approach
on a real-world vehicle parking lot availability prediction
task.

In future, we will apply our proposed approach on data
with multiple states. We will also use motifs from more
than one time period to train our proposed method.
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