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Abstract—In order to improve corrosion resistance of alloy 
S355 EN 1025, the relationship between the thickness of zinc 
coating created during the process of acidic galvanic zincing and 
factors that influence this process were investigated. Influence of 
individual factors on thickness of zinc coating for sample area 
with surface current density of 3 A·dm-2 was determined by 
planned experiment which uses central composite plan. The 
obtained experimental data were evaluated based on neural 
network theory using cubic neural unit with Levenberg-
Marquardt iterative adaptive algorithm. The influence of 
number of training data on the reliability of the obtained 
computational model has been studied. Furthermore, 
relationship between the amount of training data and reliability 
of prediction for the thickness of created zinc layer was observed. 
The relationship between input factors and thickness of layer 
coating with 88.37 % reliability was reached. 
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I. INTRODUCTION 
Electrodeposition of zinc and its alloys has been widely 

used to create corrosion-resistant coatings on steel [1], non-
ferrous alloys and also non-metallic conductive materials [2], 
for its simplicity and affordability [3], [4]. Electrodepositing 
of the metal onto a cathode is a fundamental step during the 
electrolytic processing of zinc in production. The zing coating 
provides cathodic corrosion protection to steel in almost all 
environments as a physical barrier [5]. The texture and 
morphology of electrodeposited zinc can vary greatly 
depending on parameters such as current density [6], [7], 
temperature [8], [9], electrolyte composition [6], [10], pH 
[11], additives [12] and impurities [13]. Ultimately, these 
parameters must be controlled in order to produce a desirable 
cathode product. The optimum selection of process conditions 
is an extremely important issue as these determine surface 
quality of the manufactured components. Previous studies 
[12], [13], whose prediction models were compiled using 
classic statistical evaluation methods have established 
a reliability of prediction model for current density 5 A·dm-2 at 
58,75 % [12] and for current density 1 A·dm-2 at 53,80 % [13], 
respectively. The mathematical modeling of the process 
involves several parameters that may lead to difficult 
analytical solution [14]-[17]. On the other hand, use of 

artificial intelligence for evaluation of experiments results has 
its merits [18], [19]. Mainly because of faster and more 
reliable creation of prediction model for the studied process, 
compared to classic statistical methods [20], [21]. Also it is 
possible to achieve maximum output or minimum input or 
both by usage appropriate type of neural unit order and 
learning algorithm [22], [23].  

II. MATERIALS AND METHODS 

A. Sample Preparation 
Samples of material S355 EN 10025 with dimensions 

100.00 x 70.00 x 0.50 mm were used for the purposes of the 
experiment. Before the galvanizing process, each sample was 
treated as follows: 

1) Degreasing in aqueous solution containing 0.6 % 
sodium carbonate; 0.06 % C18- unsaturated amine 
ethoxylate; 0.15 % fatty amine ethoxylate; 0.6 % 
sodium metasilicate pentahydrate; 0.6 % sodium 
hydroxide, T = 50 °C, t = 3 min. 

2) Rinse in distilled water. 

3) Pickling in an aqueous solution of HCl 18 %, 
T = 18 °C, t = 1 min. 

4) Rinsing in distilled water. 

5) Drying with compressed air. 

After drying, sample was immediately submerged into 
prepared electrolyte and the process of acidic galvanic zincing 
was started. 

B. Electrolyte Preparation 
To identify the relationship between thickness of zinc 

coating and factors that enter the process of galvanic zincing, 
the planned experiment method was used [24]. The core of the 
experiment comprised of composite plan that considered six 
factors which influence the process of zincing. Table I. shows 
conversion of factor levels between coded scale and natural 
one. Coded scale is used to prevent influence of the absolute 
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value of the studied factor in evaluating the results of the 
experiment. 

TABLE I.  TRANSFER TABLE 

Factor Factor level 
Code 
scale Natural scale -2.37 -1.00 0.00 +1.00 +2.37

x1 Zn [mol·l-1] 0.06 0.34 0.54 0.73 1.01

x2 Cl- [mol·l-1] 0.70 2.26 3.39 4.51 6.07

x3 H3BO4 [mol·l-1] 0.10 0.32 0.49 0.65 0.87

x4 U [V] 1.62 3.00 4.00 5.00 6.38

x5 T [°C] -3.78 10.00 20.00 30.00 43.78

x6 T [min] 3.11 10.00 15.00 20.00 26.89

 

C. Problem Solution 
Higher-order nonlinear neural units (HONU) [25] has been 

shown as promising polynomial neural architectures to predict 
chaotic time series [26] and real signals including respiratory 
time series [27]. Linear predictors, i.e. linear neural units 
(LNUs) are considered to be the first–order neural units. The 
second–order neural unit is called the quadratic neural unit 
(QNU) and the third–order one can be called the cubic neural 
unit (CNU). Cubic neural unit was used during the evaluation 
of the experiment, because its resulting mathematical model 
can cover wide range of measured value variability (training 
data). This unit has shown highest reliability during the 
evaluation of experiment results. 

Levenberg-Marquardt algorithm, which was used during 
the training process of neural unit, is described by equations 
(1) to (7). It is a process of updating individual weights w in 
a predetermined number of steps to achieve a minimum 
difference between the real (measured) and calculated values 
[28]. 
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After the learning process of neuron unit is done, we get 
a computational model that describes the thickness of AAO 
layer with equations (8) and (9) for surface current density 
3 A·dm-2. 
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where th is final thickness of zinc film, α is preliminary 
thickness of zinc film, ui is a combination of input factors 
levels (in coded scale), w is weight of combinations of input 
factors and stdy is standard deviation of measured thicknesses 
of all samples. Calculated thickness of zinc film is expressed 
in mm·10-3. The number of training data was gradually 
reduced during the neural units learning process from 46 to 
30, where the resulting computational model was considered 
reliable. This gradual decrease in amount of training data was 
done to increase the reliability of prediction - lesser amount of 
training data raises the amount of data that is used for 
verification of compiled prediction model. For this reason, it is 
possible to consider the compiled prediction model as more 
reliable.   

III. RESULTS AND DISCUSSION 
Process of experiment result evaluation using any neural 

unit is comprised of two parts – neural unit learning process 
and the verification of obtained computational model. 
Generally, reliability of computational model that neural unit 
learning process creates rises with increase in amount of 
training data.  Process of verification is similar in that regard: 
with rising number of verified values also increases the 
reliability of prediction for obtained computational model. 
However, this only applies in cases where verified values were 
not used as training data. 

A problem with arises in case of planned experiment, 
which uses 46 different combinations of input factors – 
amount of data for training process and for evaluation process. 
For this reason, the amount of training data was gradually 
reduced. Data that were not used during the training process 
were used to verify the model. Reliability of computational 
models for different number of training values is shown in 
Table II. As can be seen from the table, the amount of training 
data (No.T.D.) decreased from 46 to 30. It was not possible to 
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use lower number of training values due to high prediction 
error and the associated reliability of resulting model. 

Table II shows reliability of computational model in three 
ways. First case (A.D.) shows models reliability for all 
measured values of zinc coating thickness. This means, that 
reliability of the model was calculated from values that were 
also used during learning process of neural unit. Reliability of 
model is between 94.72 % (for 46 training data) and 83.30 % 
(for 30 training data). In second case (W.B.C), boundary 
conditions were set for a computational model, x6 ≤ +1. This 
means that computational model does not consider the input 
factor x6 (zincing time) in case its level is above +1 (20 min). 
The reason is that after certain time the speed of zinc excretion 
from cathode changes. Calculation model does not account 
for this change in excretion speed and the difference between 
measured and calculated thickness of zinc coating is 
considerably higher. Again, all values of zinc coating 
thickness were used during the verification process and the 
reliability of computational model is between 94.61 % 
(for 46 training data) and 93.60 % (for 30 training data), 
which shows 10 % increase in reliability of computational 
model. In third case (O.U.), only coating thickness values that 
were not used during training process were used during 
verification process. In this case, reliability of a model is 
around 88.37 % (for 30 training data). This means that created 
model can predict the thickness of zinc coating for any levels 
of input factors x1-x6. 

TABLE II.  RELIABILITY OF COMPUTATIONAL MODELS 

No.T.D. 
Adj. [%] 

A.D. W.B.C. O.U. 

46 94.72 94.61 - 
45 94.47 94.34 - 
44 85.58 99.82 86.13 
43 86.26 99.82 82.95 
42 85.26 98.41 77.03 
41 84.64 97.88 71.04 
40 83.73 96.48 94.88 
39 82.88 95.20 93.52 
38 82.86 95.00 93.01 
37 82.90 95.53 92.36 
36 82.83 95.78 91.68 
35 83.10 96.14 90.67 
34 83.34 95.66 90.43 
33 82.22 94.06 82.99 
32 82.43 94.31 88.92 
31 83.34 94.50 89.05 
30 83.30 93.60 88.37 

 

Fig. 1 and Fig. 2 show results of neural units training 
process with 46 (Fig. 1) and 30 (Fig. 2) training data. Line of 
ideal prediction was plotted in both figures. This means that, 
the closer the points are to the plotted line, the more accurate 
the prediction of neural unit is, or the neural unit can learn 
more accurately from given data. As can be seen in Fig. 1, 
neural unit was able to learn from 46 training values quite 
accurately, relatively speaking – thickness values are very 
close to the line of perfect calculations. 

Similar situation arises in case where the neural unit used 
30 training values (Fig. 2). However, in this case, all of the 
plotted values lie on the line of ideal prediction. This means 
that the neural unit was able to learn from training data with 
considerably higher accuracy. 

 
Fig. 1. Result of training process for current density 3 A·dm-2 and 46 
training data 

 
Fig. 2. Result of training process for current density 3 A·dm-2 and 30 
training data 
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Results from verification of obtained computational 
models are shown in Fig. 3 and Fig. 4. Fig. 3 shows 
calculation error for case where neural unit had access to all 
46 training data during the training process. As can be seen 
from Fig. 3, neural unit predicts the thickness of layer coating 
with error that ranges from 2.00·10-3 mm to 3.00·10-3 mm for 
all samples. Fig. 4 shows the case where neural unit had 
access to 30 training data. As can be seen from Fig. 4, neural 
unit predicts the thickness of layer coating with error that 
ranges from -6.00·10-3 mm to 2.00·10-3 mm. In spite of the fact 
that the absolute range of error has risen, the model can be 
considered as more reliable, because the calculation of neural 
unit could have been verified against an adequate number of 
values. Data used for verification represent 33 % of total 
sample number. 

 
Fig.3. Error of prediction for 46 measured samples and 46 training data for 
current density 3 A·dm-2 

 
Fig. 4. Error of prediction for 46 measured samples and 30 training data for 
current density 3 A·dm-2 

Table III shows weights that were calculated by neural unit 
for each individual combination of input factors that influence 
the process of galvanic zincing. These weights were calculated 
using 30 training data. 

TABLE III.  INPUT WEIGTHS 

input weight input weight input weight input weight
ABS -0.57 x3x6 0.03 x1x3x6 -0.01 x2x6x6 -0.02

x1 0.00 x4x4 0.02 x1x4x4 -0.01 x3x3x3 0.02
x2 -0.01 x4x5 -0.01 x1x4x5 0.00 x3x3x4 0.01
x3 0.00 x4x6 0.13 x1x4x6 -0.02 x3x3x5 0.00
x4 0.01 x5x5 -0.05 x1x5x5 -0.01 x3x3x6 0.05
x5 0.01 x5x6 -0.09 x1x5x6 -0.01 x3x4x4 -0.01
x6 0.06 x6x6 0.18 x1x6x6 -0.01 x3x4x5 0.00

x1x1 -0.08 x1x1x1 0.06 x2x2x2 0.01 x3x4x6 -0.03
x1x2 0.02 x1x1x2 -0.02 x3x2x3 -0.01 x3x5x5 -0.01
x1x3 0.00 x1x1x3 -0.01 x2x2x4 0.01 x3x5x6 -0.02
x1x4 0.04 x1x1x4 0.01 x2x2x5 0.00 x3x6x6 -0.01
x1x5 -0.01 x1x1x5 0.00 x2x2x6 0.05 x4x4x4 0.02
x1x6 0.06 x1x1x6 0.05 x2x3x3 -0.02 x4x4x5 0.00
x2x2 0.00 x1x2x2 -0.01 x2x3x4 -0.01 x4x4x6 0.05
x2x3 0.01 x1x2x3 0.04 x2x3x5 -0.02 x4x5x5 0.01
x2x4 0.05 x1x2x4 -0.02 x2x3x6 0.00 x4x5x6 0.04
x2x5 0.05 x1x2x5 -0.03 x2x4x4 -0.02 x4x6x6 0.01
x2x6 -0.01 x1x2x6 0.00 x2x4x5 -0.01 x5x5x5 0.03
x3x3 -0.04 x1x3x3 -0.01 x2x4x6 -0.01 x5x5x6 0.05
x3x4 0.02 x1x3x4 -0.01 x2x5x5 -0.02 x5x6x6 0.00
x3x5 0.01 x1x3x5 -0.01 x2x5x6 -0.01 x6x6x6 0.12

 

IV. CONCLUSION 
Generally, usage of higher-order neural units has a great 

potential for evaluation of experiments results in industrial 
applications. As it has been presented in this paper, the usage 
of 3rd order neural unit based on the iterative Levenberg-
Marquardt (LM) optimization algorithm provides a wide range 
of options to describe the examined process of galvanic 
zincing. We have obtained predictive model with almost 
90.00 % reliability for surface current density 3 A·dm-2.  This 
represents an increase in prediction reliability of resulting zinc 
layer thickness by 30 to 40 %, as compared to classic 
statistical evaluation methods. Such high reliability offers 
some possibilities for optimization of examined technological 
processes, but more research is still necessary to increase 
reliability of obtained computational model. Higher reliability 
of prediction model will allow us to reduce the operating costs 
and simultaneously create desired value of zinc film thickness. 
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