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Abstract— Brain-Computer Interfaces (BCIs) represent a
great challenge in signal processing and machine learning,
because it is difficult to extract discriminant features corre-
sponding to particular brain responses due to the low signal-
to-noise ratio of the EEG signal. Steady-state visual evoked
potentials (SSVEPs) are one of the most reliable brain responses
to detect in the EEG signal. Although advanced supervised
machine learning techniques can improve the classification
performance of SSVEP responses, obtaining robust techniques
that do not rely on training a classifier is also important. We
propose to analyze, compare, and combine the performance
of three state-of-the-art techniques for the detection of SSVEP
responses across 10 subjects and different time segments to
determine if robust classification can be obtained without
subject-specific rigorous analysis using a combination of one or
more techniques. The methods include two approaches based on
spatial filtering, and canonical correlation analysis. The results
support the conclusion that the choice of the method does not
depend on the time segment, and the current techniques provide
equivalent performance.

I. INTRODUCTION

The research field of Brain-Computer Interface (BCI)
is currently a new hope for severely physically impaired
as this new means of communication would allow some
patients to communicate through direct neural activity mea-
surements [1], [2], [3]. In addition to those prospects for
physically impaired [4], [5], BCIs based on non-invasive
scalp electroencephalography (EEG) have also become of
great interest for healthy people as a new and alternative
way of controlling devices, particularly in video games [6].
Among the different types of brain responses that are
currently used in BCI: event-related potentials (ERPs), vi-
sual evoked potentials (VEPs), event-related desynchroniza-
tion/synchronization (ERD/ERS), and slow cortical poten-
tials, steady-state visual evoked potentials (SSVEP) are brain
responses that can be detected reliably, and they do not
necessarily require a calibration session [7], [8], [9]. For
this reason, SSVEPs seem better suited for users who would
not accept a regular calibration session. Furthermore, SSVEP
based BCI typically offer a high information transfer rate
(ITR) compared to other BCIs, e.g., 58 bits per minute for an
SSVEP based BCI [9], 23 bits per minute for an ERP based
BCI [10]. This type of BCI has a long history of applications
with various signal processing methods [11], [12], [13].

BCIs based on SSVEP use the response of the users’
attention to an oscillating visual stimulus. When a person
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focuses on a particular oscillating object, i.e., a visual stimu-
lus, then the person’s brain response can provide information
about which stimulus the user is attending to produce a
BCI. Usually, the stimuli that are used for inducing SSVEP
responses are flickering lights at different frequencies. When
an object flickers at a frequency f, then a response occurs in
the visual cortex. This response corresponds to the frequency
of the stimulus and its higher harmonics [14]. Therefore, it is
possible to obtain different responses in relation to different
frequencies. In relation to these responses, it is possible to
create a BCI where each response is related to a command
(selecting a symbol, using a device,...) [15].

In addition to the drawbacks common to every non-
invasive BCI such as the preparation time, e.g., mounting
cap and electrodes, SSVEP based BCI require gaze control.
In fact, BCIs based on SSVEP are ‘dependent’ BCIs as
the generation of the VEP depends on the gaze control via
extraocular muscles and particular nerves. However, new
studies have explored the effect of electrodes on non-hair-
bearing areas for the detection of SSVEP responses [16].
For BCIs that require special external stimuli, their quality
and their sources are a bottleneck for increasing the number
of basic commands in a BCI. Because there exists a direct
relationship between the characteristics of the visual stimulus
(frequency, phase, amplitude, image content) and the brain
evoked response, the stimuli shall be reliable, stable and
should not involve any risk or inconvenience such as visual
fatigue for the user [17]. The SSVEP responses are described
as reliable in the literature [18], [19], [20]. The amplitude
and the phase that define an SSVEP response depend on
three main parameters that can be considered as features
to discriminate different responses [21]: the frequency of
the visual stimulus (the SSVEP responses with maximum
amplitude are usually obtained in three frequency bands:
5-12 Hz, 12-25 Hz and 30-50 Hz [22]), the phase of the
visual stimulus, the intensity of the flickering light, and the
structure of the repetitive visual pattern [23]. SSVEP-BCIs
are described as more accessible than other BCI systems.
They have been used for several applications They include
several advantages among and little user training.

Despite the interest of using a specialized classifier for
the detection of SSVEP responses to obtain a high recog-
nition rate with a short time segment for the analysis (1
second) [24], most of the methods employed in SSVEP based
BCI do not rely directly on machine learning, i.e., with
a training database for tuning the model, but on statistical
measures comparing the current input signal and models of
the potential brain evoked response based on the stimuli.
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Among those methods, canonical correlation analysis and
minimum energy combination are described as the most
efficient methods. Although they have been compared with a
limited number of subjects in [25], a comparison with more
subjects and other methods would provide further evidence
of the best method to use. Moreover, while there may be
no difference of performance across subjects, a change of
performance across trials could indicate that combining the
detection scores from the different methods may produce a
higher accuracy. Additionally, the methods could be applied
sequentially as the minimum energy combination is based
on the creation of spatial filters, and canonical correlation
analysis is based on a statistical measure. These measures
may complement each other. The goal of the study is to
assess if there is a difference of performance across methods,
if this difference depends on the choice of a predefined time
segment, and if combining methods may improve perfor-
mance.

The remainder of this paper is organized as follows.
First, we present the most efficient detection techniques for
SSVEP responses. In section III, we define the experimental
protocol. Then, the performance analysis is detailed for each
method and their combinations, for different time segments
in section IV. Finally, the results are discussed for their
application in SSVEP based BCI for able-bodied people.

II. METHODS

A. Signal definition
The following definitions of the evoked SSVEP response

and the signal corresponding to the stimulus have been used
for the detection of SSVEP responses [20]. We consider a
visual stimulation flickering at f Hz. The signal yi(t) as the
voltage between the electrode i and a reference electrode at
a time t is considered as:

yi(t) =

Nh∑
k=1

ai,k sin(2πkft+ Φi,k) + bi,t (1)

where Nh is the number of considered harmonics. The signal
is divided into two parts: the SSVEP response and the
remaining EEG activity, which is considered as noise. The
first part corresponds to the evoked SSVEP response signal,
which is composed of a number of sinusoids with frequencies
in relation to the stimulus frequency, and a number of
Nh harmonic frequencies. Each sinusoid is defined by its
amplitude and phase: ai,k and Φi,k. bi,t corresponds to
the background EEG activity. The detection of an SSVEP
response on an EEG signal requires a time segment of Nt

samples of EEG signal, with a sampling frequency of Fs Hz:

yi = Xfai +Bi (2)

where yi = [yi(1), . . . , yi(Nt)]
T contains the EEG signal for

the ith electrode in one time segment. The SSVEP model
of the frequency f, Xf , is contained in a matrix Nt × 2Nh

defined by

Xf (t, 2k − 1) = sin(2πkft) (3)
Xf (t, 2k) = cos(2πkft) (4)

with 1 ≤ k ≤ Nh. The vector ai of size 2Nh contains the
amplitudes. For Ny electrodes, the signal is defined as:

Y = XfAf +B (5)

where Y = [y1, . . . , yNy
] contained the sampled EEG signals

from all the electrodes. Af contains all the amplitudes for
all the expected sinusoids for every electrode signal related
to the expected frequency to detect.

B. Minimum energy combination

For enhancing discriminant features from the signal, the
signals from the electrodes shall be combined. A spatial filter
is used for a combination of the signals measured by different
electrodes. A vector of channel data is denoted by s. Its
purpose is to enhance the information contained in the EEG
while reducing the nuisance signals. With spatial filtering,
the signal is defined as a linear combination of yi.

s =

Ny∑
i=1

wiyi = Y w (6)

where wi is the weight for the ith electrode. We note S the
set of Ns signals after spatial filtering by:

S = YW with S = [s1, ..., sNs ] (7)

In the BCI literature, spatial filtering is often a necessary
preprocessing step for both feature reduction, and feature
enhancement [26], [27], [14]. We consider the minimum
energy combination (MEC) approach, which is based on
the principal component analysis (PCA), which was first
described in [20]. The method assumes for each frequency
that it is the right frequency to detect and removes the
noise considering this hypothesis. It can generate a frequency
power estimation of each potential stimulus frequency. The
spatial filtered signals are set in relation to hypotheses of the
expected frequency to observe. First, the technique removes
any potential discriminant components from all electrode
signals, by projecting them onto the orthogonal complement
of the formal model of the signal X.

Ỹ = Y −X(XTX)−1XTY and Ỹ ≈ B (8)

PCA is applied on Ỹ , and the eigenvectors will correspond
to W . Its purpose is to have an optimal combination of
the electrode signals, which cancel as much of the nuisance
signals as possible. This method allows the combination of
a fixed number of electrodes that minimize the nuisance
signals. Once the channels are created, the power of the
expected frequencies and their harmonics are calculated for
each channel. For each frequency, the evaluation of the
SSVEP response is defined by:

R(f) =
1

Ns ·Nh

k=Ns∑
k=1

j=Nh∑
j=1

∥∥X(f)Tj Sk

∥∥2 (9)

In the next sections, we denote by WMEC , the set of weights
obtained with MEC.
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C. Maximum energy optimization

Spatial filters are used to enhance the SSVEP response
in the signal. A spatial filter is represented by a linear
combination of the signals measured by different electrodes.
We denote by s, a linear combination of yi, the EEG after a
spatial filter:

s =

Ny∑
i=1

wiyi = Y w (10)

where wi is the weight for the ith electrode. Several com-
ponents can be created by using several sets of weights w.
We note Ns as the number of channels. We first estimate
the background activity by removing the potential SSVEP
components from the signal. It is achieved by projecting the
signal onto the orthogonal complement of the SSVEP model
matrix (X).

Y̌f = Y −Xf (XT
f Xf )−1XT

f Y (11)

Spatial filters Ŵf that maximize the Signal-to-Noise Ra-
tio (SNR) are obtained though determining the generalized
Rayleigh quotient that maximizes the following expression:

Ŵf = argmaxW
Tr(WTY TYW )

Tr(WT Y̌f
T
Y̌fW )

(12)

We define the following expression Ŷf = XT
f Y Ŵf where

Y Ŵf is the signal after spatial filtering. The power of the
expected frequencies and their harmonics are calculated for
the Ns components. For each frequency, the evaluation of
the SSVEP response is defined by:

R(f) =
1

Ns ·Nh

Ns∑
i=1

Nh∑
k=1

(
Ŷf (i, 2k − 1)2 + Ŷf (i, 2k)2

)
(13)

In the next sections, we denote by WMAX , the set of weights
obtained with the spatial filters that maximize the SNR.

D. Canonical correlation analysis

Canonical correlation analysis (CCA) is a popular detec-
tion technique that has been used in several BCI studies [28],
[9]. Let Σx, Σy , and Σxy denote the covariance matrices of
Xf the model of the stimulus, and Y the EEG signal, and
the cross-variance matrix, respectively. The goal of CCA is to
find pairs of linear projection of the couple of transformations
(w′xXf , w

′
yY ) that are maximally correlated:

(w+
x , w

+
2 ) = argmax(wx,wy)ρ(Xf , Y, wx, wy) (14)

where

ρ(Xf , Y, wx, wy) = corr(w′xXf , w
′
yY ) (15)

= argmax(wx,wy)

w′xΣxywy√
w′xΣxwxw′yΣywy

(16)

CCA is applied for each model of the stimulus, i.e., for each
frequency, and the detection of the stimulus observed by the
subject corresponds to the model of stimulus associated to
the highest correlation value.

E. Combination techniques

In this section, we propose to combine the methods
presented in the previous subsection in two ways. First, the
output values corresponding to the confidence score of each
type of stimulus are normalized :

R(fi) =
R(f)∑Nf

i=0R(fi)
(17)

where Nf is the number of visual stimulus, i.e., the total
number of classes in the problem. Then, the combination
score, for each class, is obtained by considering the mean
value of the scores from the different methods (MEM,
MAX, CCA). The second strategy for combining the meth-
ods consists in using MEC or MAX to obtain a subspace
corresponding to spatially filtered signals, and then to use
CCA. In this approach, CCA is applied on X and YWMEC ,
by using MEC, or on X and YWMAX by using MAX.

III. EXPERIMENTAL PROTOCOL

Ten healthy able-bodied subjects (age=27.2±2.4 years old,
two females) participated in a study where the goal was to
pay attention to a series of different flickering lights (black
and white) at the following frequencies : 6.66 Hz, 7.50 Hz,
8.57 Hz, 10.00 Hz, and 12.00 Hz on a computer screen
(diagonal size=15.4 inches, vertical refresh rate=60 Hz,
luminance= 180.0 cd/m2, with an estimated contrast of
280 : 1). Subjects were sitting in a comfortable chair at
about 60 cm from the computer screen, in a non shielded
room. Impedances were kept below 10 kΩ. Each stimulus
on the computer screen had a luminance of about 0.46 cd.
The experiments were carried out sequentially. The order of
the flickering boxes on which the subject had to pay attention
was identical across subjects. The EEG was recorded with
a g.USBamp EEG amplifier from g.tec with a sampling rate
of 128 Hz. The electrodes were placed on AFZ for ground,
CZ for the reference and PO3, PO4, PZ , O9, O10, and OZ

for the input electrodes, as depicted in Figure III.

Fig. 1. Location of the electrodes in the 10-10 system.

A. Signal pre-processing

An analog bandpass filter between 2 and 40 Hz, and
a notch filter around 50 Hz (main frequency in Europe)
were applied directly inside the amplifier during the EEG
acquisition. For the classification, we consider the responses
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corresponding to the presentation of the stimulus frequencies,
i.e., 7.50 Hz, 6.66 Hz, 8.57 Hz, 10.00 Hz, and 12.00 Hz.
The frequency power for a single subject observing a visual
stimulus flickering at 6.66 Hz is presented in Figure III-A.

PO3 PO4

PZ O9

O10 OZ

Fig. 2. Frequency power at each electrode for a subject observing a visual
stimulus flickering at 6.66Hz during 10s.

B. Classification

The classification of the SSVEP responses was performed
according to the methods presented in the previous section.
In the experiment, Nh = 3, the detection of an SSVEP
response is performed by selecting the frequency with the
maximum associated value for the minimum energy com-
bination, maximum energy optimization, and for canonical
correlation analysis.

IV. RESULTS

In this study, we report the performance by considering
the mean and the standard deviation (SD) of the accuracy, in
%, across classes. In addition, we determine the information
transfer rate (ITR) [29] in bits per minute (bpm) defined by
ITR = 60

T · ϑ where

ϑ = log2(Nout) + Plog2(P ) + (1 − P )log2( 1−P
Nout−1 )(18)

and P being the probability of the good detection, i.e., the
accuracy, Nout being the number of possible different out-
puts, and T being the time in seconds of recorded EEG signal
that is required to take the decision among the Nout outputs.

The accuracy for the detection of the five types of SSVEP
responses is presented in Table I. The accuracy for the three
combination techniques is presented in Table I. The accuracy
and the associated ITR are depicted in Figure 3 as a function
of the time segment that is considered for the analysis. The
highest ITR is obtained with the mean combination strategy

(a) Accuracy

(b) ITR

Fig. 3. Accuracy and ITR as a function of the time segment used for the
detection.

and TS=0.5 s: 119.48 bpm. The highest accuracy is 97.10%
with TS=3 s and methods MAX and CCA. A Friedman’s
test indicated a significant difference across methods (p <
10e−5) by using the performance results with a time segment
of 0.5 s to 3 s with a step of 0.25 s. After post-hoc analysis
with a false discovery rate correction, a significant difference
was observed across the three single methods: CCA is better
than MAX, and MAX is better than MEC. A more detailed
analysis indicated that there is no difference between the
three methods for all the time segments, except for the last
time segment of 3 s.

V. DISCUSSION AND CONCLUSION

In this study, we have evaluated the best techniques for the
detection of SSVEP responses based on an offline analysis
of real EEG signals. We have shown that despite possible
complementarities between methods, they are all relatively
equivalent. While BCI studies have been mainly dedicated to
physically impaired people, to allow a new communication
mean to people who are not able to communicate with con-
ventional devices, SSVEP based BCI allow high performance
systems as it is possible to reliably detect an SSVEP response
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TABLE I
MEAN AND STANDARD DEVIATION (ACROSS COMMANDS FOR EACH SUBJECT, ACROSS SUBJECTS FOR THE MEAN) OF THE ACCURACY (IN %) FOR

EACH METHOD AND DIFFERENT TIME SEGMENTS (TS) IN SECONDS.

(a) MEC

Subjects
TS (s) 1 2 3 4 5 6 7 8 9 10 Mean STD
0.5 88.17 71.63 54.29 76.61 97.45 48.35 62.17 80.37 70.15 68.57 71.78 14.09
1.0 95.95 86.61 79.61 88.95 99.39 70.16 82.19 95.90 91.51 89.27 87.95 8.33
1.5 97.61 91.70 88.98 93.30 99.53 79.16 91.01 99.30 96.86 94.99 93.24 5.79
2.0 98.03 93.74 92.32 95.01 99.72 83.67 95.20 99.62 97.69 97.22 95.22 4.49
2.5 99.15 94.65 94.84 96.08 99.67 86.29 96.88 99.72 98.44 97.78 96.35 3.79
3.0 98.53 88.73 83.49 97.29 97.67 81.19 91.12 86.17 98.10 98.38 92.07 6.45

(b) MAX

TS (s) 1 2 3 4 5 6 7 8 9 10 Mean STD
0.5 88.17 71.63 54.29 76.61 97.45 48.35 62.17 80.37 70.15 68.57 71.78 14.09
1.0 95.95 86.61 79.61 88.95 99.39 70.16 82.19 95.90 91.51 89.27 87.95 8.33
1.5 97.61 91.70 88.98 93.30 99.53 79.16 91.01 99.30 96.86 94.99 93.24 5.79
2.0 98.03 93.74 92.32 95.01 99.72 83.67 95.20 99.62 97.69 97.22 95.22 4.49
2.5 99.15 94.65 94.84 96.08 99.67 86.29 96.88 99.72 98.44 97.78 96.35 3.79
3.0 99.57 95.91 97.53 96.63 99.90 85.04 98.05 99.95 99.24 99.19 97.10 4.23

(c) CCA

TS (s) 1 2 3 4 5 6 7 8 9 10 Mean STD
0.5 89.33 74.55 53.26 75.86 97.17 44.78 62.59 79.90 68.20 68.06 71.37 14.91
1.0 96.97 89.41 81.89 89.56 99.25 64.15 84.29 95.52 91.93 89.74 88.27 9.52
1.5 98.32 93.30 91.51 93.40 99.63 73.91 91.71 99.20 97.09 95.78 93.38 7.09
2.0 99.06 94.68 94.91 95.43 99.67 79.15 96.00 99.72 98.12 97.74 95.45 5.73
2.5 99.29 95.18 96.12 96.17 99.76 82.84 97.26 99.81 98.68 98.44 96.35 4.76
3.0 99.57 95.77 97.53 96.63 99.90 85.08 98.05 99.95 99.29 99.19 97.10 4.23

within 0.5 s. Yet, this performance depends on the subject.
For instance, subject S3 only obtained about an accuracy of
54% with TS=0.5 s.

Whereas the theoretical ITR indicates a higher perfor-
mance for a short time segment, the study does not consider
the time that is necessary to shift attention from one stimulus
to one other, and the dynamic of the SSVEP response at the
beginning of the presentation of a visual stimulus. Although
an SSVEP response shall be detected during the presentation
of a particular visual stimulus, the attention of the subject
can fluctuate. Drops of attention may result in a drop in the
amplitude of the SSVEP response, and therefore a drop of
the accuracy for its detection. In fact, time segments used in
the literature are typically around 2 s. We have shown that
the pattern of performance across methods was stable across
different time segments, which is a critical issue for speeding
up BCI with a dynamic time segment.
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