
Sharing Information on Extended Reachability Goals
Over Propositionally Constrained Multi-Agent State

Spaces
Anderson V. de Araujo and Carlos H. C. Ribeiro

Divisao de Ciencia da Computacao
Instituto Tecnologico de Aeronautica - ITA

Sao Jose dos Campos, SP - Brazil
Email: {andva, carlos}@ita.br

Abstract—By exchanging propositional information,
agents can implicitly reduce large domain state spaces,
a feature that is particularly attractive for Reinforce-
ment Learning approaches. This paper proposes a learn-
ing technique that combines a Reinforcement Learning
algorithm and a planner for propositionally constrained
state spaces, that autonomously help agents to im-
plicitly reduce the state space towards possible plans
that lead to a goal whilst avoiding irrelevant or inade-
quate states. State space constraints are communicated
among the agents using a common constraint set based
on extended reachability goals. A performance evalu-
ation against standard Reinforcement Learning tech-
niques showed that by extending autonomous learning
with propositional constraints updated along the learn-
ing process can produce faster convergence to optimal
policies due to early state space reduction caused by
shared information on state space constraints.

Index Terms—Multi-Agent, Cooperative Agents,
Reinforcement Learning, Q-Learning, Planning,
Markov Decision Processes, Extended Reachability
Goals.

I. Introduction
In recent years, concepts such as decentralization and

autonomy have been concentrating much of the attention
of researchers in different areas of Computer Science. The
pros of decentralized and autonomous software are already
well known and have been demonstrated in numerous
applications. As far as decision making is concerned, there
are acknowledged advantages in considering environments
with individuals that cooperate with each other, trying
to achieve a single objective or independent goals. Panait
and Luke [1] showed an extensive study of learning sys-
tems with cooperative agents, presenting examples focused
on Evolutionary Computation, Robotics, Reinforcement
Learning, etc.

In the context of autonomous learning, this paper con-
siders an extended form of the standard Markov Decision
Process (MDP) [2], [3], [4] with propositional constraints
on the state space that are communicated among agents
as the learning goes on.

In a standard MDP, a state transition model is assumed
to be known beforehand, but this is not always the case in

real world applications [5]. Reinforcement Learning (RL)
is a common research area which addresses this issue,
focusing on the agent interaction with the environment as
a mechanism for gathering information about the domain
structure. Q-Learning [6] is a typical RL algorithm that
inherits a notorious difficulty of RL algorithms in general
to deal with large state spaces, due to a need for balancing
the control objective and the model-free estimation of
the domain structure based solely on exploration. Here,
we propose a technique which incorporates propositional
constraints on the state space, using Q-learning-based
algorithms and employing information exchange between
agents. By doing so, the objective is to reduce the overall
exploratory need, thus improving the performance of the
learning algorithm. To constrain the state space, extended
reachability goals (ERG) [7] are used. ERGs are comprised
by two expressions: one to be preserved during the itera-
tion, and another that describes a goal state. Both are
composed by propositions that describe the environment
states.

The rest of this paper is organized as follows: Section II
introduces the definitions and concepts that were used
to develop the proposed solution. Section III details the
definition of the adopted model and the applied planning
strategies. The developed approach, the algorithms and
techniques are also in this section.The experimental set up
is defined in Section IV, and the results and a comparative
analysis between different algorithms are in Section V.
Finally, Section VI summarizes the key features and the
main contributions of the proposed approach.

II. Background

A. Markov Decision Process and Reinforcement Learning

A Markov Decision Process (MDP) [2], [3], [4] is a
formal model for synchronous interaction between an agent
and its environment. At every step the agent observes the
current state of the environment and decides to execute
one action. The execution of the selected action takes the
agent to a new state of the environment and produces

2014 International Joint Conference on Neural Networks (IJCNN) 
July 6-11, 2014, Beijing, China

978-1-4799-1484-5/14/$31.00 ©2014 IEEE 1769



a reinforcement (a merit value associated to the state-
action pair). The interaction between the agent and the
environment continues until a stopping criteria is met.

MDPs are primarily used to model sequential deci-
sion making in stochastic environments, and are generally
applied in planning and optimization in environments
involving uncertainties, such as problems in Robotics,
Economics, etc.

A modelM for a standard MDP can be defined as:
M = 〈S,A, T ,R〉, where:
• S 6= ∅: Finite set of system states;
• A 6= ∅: The set of actions that can be executed by the

agent;
• T : The state transition function that provides the

probability of executing a transition from a state s
to a state s′ under action a;

• R: The reinforcement function that returns a real
value that corresponds to the received reinforcement
after each action a at any state s of the environment.

Reinforcement Learning [5], [8] is a collection of learning
techniques for MDPs where an agent tries to maximize
a function of the total reinforcement values received in a
partially or totally unknown environment w.r.t. the tran-
sition function. The widely studied Q-Learning algorithm
was introduced by Watkins [9] and had its convergence
proved in [6]. It is the de facto standard RL technique with
many variations [10] where the agent learns an optimal (or
near-optimal) action policy through sequential updates of
an action-value function Q(s, a) without an explicit need
to learn a model of the environment. By performing an
action a, the agent interacts with the environment moving
from state to state. Each action performed over a state
provides a reinforcement, and the corresponding agent
updates its estimate of the Q-value associated with the
state-action pair. In stochastic environments (typical for
MDP problems), the Q-value for a given state-action pair
under a given action policy is the (temporally discounted)
expected sum of the received reinforcement values when
performing the action at the given state and following the
optimal policy thereafter.

The Q-learning update equation is:

Q(s, a) = Q(s, a) + α[R(s) + γmax
a′

Q(s′, a′)−Q(s, a)]

where 0 < α ≤ 1 is an input learning parameter that
determines the extent to which newly acquired information
will override old values. The constant 0 ≤ γ < 1 is the
temporal discount factor, lower values make the agent
tends to consider only recent reinforcements for updating
the action-value function.

A pseudo-code for Q-Learning is presented in Algo-
rithm 1.

Others Q-learning-based algorithms such as Dyna-
Q [11] and SARSA [12], are reportedly faster to converge
to the optimal policy than Q-learning. Dyna-Q is an

Algorithm 1 Q-Learning

1: Initialize Q(s, a) arbitrarily;
2: for i = 1→MAX_EPISODES do
3: Initialize s
4: repeat
5: Choose a from s using policy derived from Q
6: Take action a, observe R(s) and resulting state s′
7: Q(s, a) ← Q(s, a) + α[R(s) + γmax

a′
Q(s′, a′) −

Q(s, a)]
8: s← s′

9: until s is terminal
10: end for

architecture to integrate planning, acting and learning. It
uses the same procedure to update the utility values as
Q-Learning, however it executes a learning procedure for
the expected utility values by looping over an internally
updated model of the environment.

SARSA is an acronym for State-Action-Reward-State-
Action, due to the procedure executed to update the utility
values, where: s is the current state, a is the action chosen
to be executed in the state, r the corresponding reward, s′
is the resulting state after executing a over s and finally a′
is the next action to be executed in s′. The agent interacts
with the environment and updates the policy based on
taken actions. This technique is an instance of the so-called
on-policy learning algorithms.

The above Reinforcement Learning algorithms were
compared in [13] and were also used for benchmarking the
experiments performed in this paper.

B. Communication
Communication is commonly used to improve the per-

formance of several algorithms in decentralized multi-agent
settings. It plays different roles in multi-agent systems,
such as information exchange, task delegation, coordina-
tion of teams, distributed planning [14], conflict resolution,
etc.

In the context herein, the communication between
agents [15] is basically the exchange of messages for gath-
ering propositional information about the state space.
Although broadcasting models for message difusion are
possible, it is generally not interesting to send messages
to all agents at each time interval, since communication
generally involves some cost [16]. Moreover, broadcasting
promotes traffic increase that can cause an overflow [17].
Norrozi [18] shown an efficient way to avoid this problem.
In general, for MDP problems the optimal policy for each
agent should be generated through minimal and sufficient
communication for coordination, such that the cost is not
an obstacle as far as costs are concerned. In fact, proper
communication can be in some cases crucial for agents to
coordinate properly, keeping updated information on the
environment. For this, the rules for communication must
defined in the model and thus choosing the right moment

1770



to communicate can be considered a fundamental problem
in multi-agent systems [19].

C. Extended Reachability Goals
In our approach, the propositional constraints are based

on the concept of extended reachability goals. A simple
reachability goal corresponds to a condition to be satisfied
at the final state in a planning problem, reached after
a plan execution [7]. Differently, an extended reachabil-
ity goal, besides the specification of the condition to
be achieved, establishes a condition to be preserved (or
restrictions to be satisfied) for every state during the
execution. This provides a significant extension on the
specification of planning problems, narrowing the scope of
the model and allowing more complex planning problems
to be more formally defined.

To define extended reachability goals it is necessary
to represent them using a formal language, e.g. the tem-
poral logic used by Bacchus [20]. In general, the formal
representation of the goals is the composition of atomic
propositions that represent state characteristics and log-
ical operands, called hereafter expressions. For example,
assuming that p, q and k are atomic propositions that
correspond to conditions for states, we could define the
condition to be preserved as: ¬p∧¬q. This representation
denotes that states with the properties p or q must be
avoided during the interaction with the environment. Sim-
ilarly, it might be possible to define the condition to be
achieved as k, indicating that the problem is solved after
reaching a state that satisfies this condition.

Planning problems with extended reachability goals can
be solved using a strong probabilistic planning algorithm
called PPF’ [7]. The inputs to PPF’ are S,A, T and the
extended reachability goals features. It returns a valid
policy, if one exists. If there is more than a single valid
policy and the output is the one with the highest proba-
bility of reaching the goal. PPF’ initially computes a set
of states that satisfies the final goal. From this set, the
algorithm verifies which of the remaining states that satisfy
the preservation goal can reach one state of the set. The
action selected has the maximum value for Q, but does not
consider the information of the reward function. This step
is repeated until the initial state is comprised inside the
set or there is no new state to add to the set.

A logic that can be used as a formal language to specify
extended reachability goals and a planning system based
on this logic is provided by Pereira et al. [7] .

III. RL, MDPs and Extended Reachability Goals
Classical planning and MDP models are not suitable

to formally represent extended reachability goals. Hence,
a new model is proposed and named ERG-MDP [21],
which extends the default MDP model and increases its
specificity by adding definitions to manipulate a set of
propositions for each state. An ERG-MDP constrains the
environment using the extended reachability goals.

The ERG-MDP model contains four additional enti-
ties 1 P,L, ϕ1 and ϕ2, defined as:
• P 6= ∅: A non-empty set of atomic propositions

representing state characteristics;
• L : S 7→ 2P: The state interpretation function;
• ϕ1: The logical expression for the preservation goal to

be maintained during the plan execution;
• ϕ2: The condition to be achieved at the end of the

plan execution defined as a logical expression.
Our proposal is mainly composed by the Multi-ERG-

Controller algorithm, which derives from its single agent
version, the ERG-Controller [21].

Both the ERG-Controller and the Multi-ERG-
Controller make use of two algorithms: PPFERG and
ERG-RL. The former is a slightly modified version of
the PPF’ algorithm that returns all the viable policies
given the final goal and the preservation goal. The latter
incorporates the extended reachability goals features and
is detailed as follows.

A. ERG-RL
The ERG-RL algorithm proposed by Araujo and

Ribeiro [21] extends a reinforcement learning algorithm to
include extended reachability goals. The main difference
between ERG-RL and standard RL is that the first also
stores the proposition function when interacting with the
environment. The expressions are stored together with its
corresponding utility value for each state, for posterior
evaluation in the ERG-Controller.

We stress that any RL algorithm can be used as the
learning component in ERG-RL to update the utility table
values. For example, if we use Q-Learning, we have the
algorithm ERG-Q, which is considered for the experiments
reported in this paper.

B. ERG-Controller
The ERG-Controller algorithm executes the exploration

over the environment and plans over the information re-
trieved from it. The execution flowchart of the algorithm
is presented in Figure 1.

Figure 1. The complete ERG-Controller flowchart.

1The default MDP properties that were previously defined in
section II are omitted.

1771



The algorithm initially explores the environment to
generate a first ERG-Model. This occurs through the
execution of the ERG-RL algorithm.

After a ERG-RL execution, the ERG-Controller tries
to find the expression with the lowest utility value for all
visited states which is not in the set of avoidable expres-
sions. If the algorithm finds the expression and it does
not obstruct the agent from reaching the final goal, then
it removes all the transitions that directs to states that
contains the expression found. Afterwards, it continues the
execution while accumulating experiences to improve the
model.

After the main loop, the PPFERG algorithm runs over
a state transition model generated by bootstrapping the
experiences from an exploratory action policy of ERG-RL.
The execution of PPFERG guarantees that the expression
defined by the preservation goal is valid for all possible
states and directs the actions towards the states that
satisfy the final goal. By establishing these conditions,
PPFERG implicitly reduces the state space.

Finally, the ERG-Controller returns a policy that cor-
responds to an optimal policy based on the set of viable
policies found by the PPFERG algorithm. This optimal
policy corresponds to executing the actions that produce
the maximum utility values for the corresponding states.

A more detailed description of ERG-RL can be found
in [21].
C. Multi-ERG-Controller

The ERG-controller does not support multi-agent ex-
ecutions for simultaneous update of the ERG-Model. To
apply the same approach to problems with different agents
distributed over the environment, we extended the default
ERG-Controller and named it Multi-ERG-Controller.

The Multi-ERG-Controller executes a different thread
for each agent in the environment. Each thread executes an
ERG-RL algorithm instance according to the agent’s initial
position. Figure 2 presents the flowchart for the Multi-
ERG-Controller algorithm.

Figure 2. The synthesized Multi-ERG-Controller approach flowchart.

The flowchart in Figure 2 shows the execution of a
number of threads equal to the number of agents, which
is its main feature. The detailed Multi-ERG-Controller
algorithm is presented in Algorithm 2.

Algorithm 2 Multi-ERG-Controller
Require: θ

1: avoid← ¬ϕ1
2: repeat
3: U ← U-Values(RunRLThreads(E))
4: E ← E ∪model(RunRLThreads(E))
5: for all s ∈ S do
6: exp← L(s)
7: if exp 6∈ avoid ∧ ¬blocked(exp, ϕ2) then
8: V E ← V E ∪ {exp}
9: count(exp)← count(exp) + 1
10: sum(exp)← sum(exp) + U(s)
11: end if
12: end for
13: if V E 6= ∅ then
14: for all exp ∈ V E do
15: if sum(exp)÷ count(exp) ≤ θ then
16: mean(exp)← sum(exp)÷ count(exp)
17: end if
18: end for
19: exp← minmean

20: if exp 6= null then
21: avoid← avoid ∪ {exp}
22: T ← T − {∀s ∈ S,∀a ∈ A, T (s, a) → s′ where

exp ∈ L(s′)}
23: end if
24: end if
25: until V E = ∅
26: ϕ1 ← ¬avoid
27: P ← PPFERG(E)
28: π ← findOptimal(P, U)
29: return π

Both the U-Values, U in algorithm 2, and the ERG-
Model (E) are extracted from the agents’ interaction with
the environment. These interactions are executed in the
procedure RunRLThread (detailed in Algorithm 3). U
represents the utility values and E the model retrieved from
the inner RL algorithm.

The acquired U-Values and the ERG-Model are used
in the Multi-ERG-Controller to decide which expression
(exp) with averaged utility value below θ 2 that does not
block the final goal (ϕ2) must be avoided. Here, one ex-
pression is composed by the group of propositions present
in a state joined by an and(∧) operator. The propositions
comprised in a state can be recovered through the state
interpretation function (L).

After each round of the main loop, the algorithm verifies
if there is a valid expression. If a valid expression exists,
the algorithm chooses the expression, stores it in the set of
avoidable expressions (avoid) and removes the transitions
that reach states that represents the expression. If there

2Input parameter that defines the minimum utility value below
which an expression must be avoided during the interaction.

1772



is not a valid expression, it calls the PPFERG algorithm,
that operates similarly in the ERG-Controller.

As in the ERG-Controller, the algorithm then returns
an optimal policy based on the set of viable policies (π)
found by PPFERG.

RunRLThreads is responsible for creating and executing
an ERG-RL instance asynchronously for each agent in the
problem. This algorithm returns the U-Values extracted
from the interaction with the environment and the ERG-
MDP model (E). Figure 3 shows a graphical scheme for it,
and Algorithm 3 details its operation.

Figure 3. Graphical scheme for the RunRLThreads algorithm.

Algorithm 3 RunRLThreads
Require: initial-states

1: for all state ∈ initial-states do
2: Thread(ERG-RL(state))
3: end for
4: repeat
5: wait-time-interval
6: until all threads have finished.
7: return U-Values, E

Algorithm 3 calls the procedure Thread, which is re-
sponsible for creating a new execution process and schedul-
ing it in the operating system to run. Once all threads
are running, the algorithm has to wait a predefined time
interval (represented by the procedure wait-time-interval)
to verify if all threads have finished. After all threads
have been executed, the algorithm can finally return the
updated utility table and the model extracted from the
RL executions. Information exchange among the agents is
accomplished by sharing the same utility table (U-Values).
Thus, all information gathered from the environment is
updated in the same table. After each update, all agents
can retrieve the current utility value for each state, bit to
avoid inconsistency errors, the access to the utility table is
synchronized. The final policy is retrieved from the shared
utility table by the Multi-ERG-Controller, which selects
the actions with the maximum utility value for each state.

IV. Experiments
The experiments were ran on grid environments with

100 states, 10 rows and 10 columns, where each cell corre-
sponds to a single state. They were defined with extended

reachability goals and the valid propositions are: A,B and
@, the latter representing the final goal to be reached.
Table I summarizes the abbreviations and descriptions for
the propositions and possible actions.

The grid environments were randomly generated w.r.t
position of the agents, obstacles, initial positions and final
goal position.

Table I
Abbreviations and descriptions for the generated examples.

Abbrev. Name Description
0-9 Agents Agents‘ Identifiers
A Obstacle A Proposition with low reward
B Obstacle B Proposition with low reward
@ Final Goal Composition of the final goal
↑ North Execute the action “north”
↓ South Execute the action “south”
→ East Execute the action “east”
← West Execute the action “west”

Figure 4 illustrates an environment configuration (sce-
nario) generated according to the description in Table I).
Empty cells correspond to states that do not have any
proposition associated.

Figure 4. An example of generated environment.

The ERG-MDP model E was defined as follows:
• S: [s00, ..., s99];
• A: [north, south, west, east];
• P: [A,B,@];
• T : Equally distributed between the possible states3;
• L: It was randomly created for each different example;
• R4:

– ∀s ∈ S, A ∨B ∈ L(s), R(s) : −30;
– ∀s ∈ S,@ ∈ L(s), R(s) : 30;
– R(∗) : −1.0.

• ϕ1: ∅;
• ϕ2: @.
The experiments were performed on a set of 10 examples

performed 10 times for each test case. For these experi-
ments, the Multi-ERG-Controller algorithm was executed
with 3 agents (one thread each). The ERG-Controller and
the RL algorithms Q-learning, SARSA and Dyna-Q were

3e.g. if agent is in state s00 there are only two possible actions:
south and east, each one with probability 0.5.

4where the symbol ‘*’ means any action or state.

1773



also executed over the same test cases for comparative
purposes.

For operating the RL algorithms, the required constants
were defined with teh following values: α = 0.1, γ = 0.9
and ε = 0.09. For the ERG-Controller based algorithms,
θ = −15. The execution of Dyna-Q requires also the
parameter N , which is the number of iterations for the
internal planning procedure, defined as 5.

The stopping criterion was defined as maxQt−1(s, a)−
Qt(s, a) < ε, for all executions.

V. Results
This section presents the final preservation goal

achieved by the ERG controllers and the comparison anal-
ysis between Multi-ERG-Controller (with 3 agents), ERG-
Controller, Q-Learning, Dyna-Q and SARSA.

A. Preservation Goal
At each iteration of the Multi-ERG-Controller and

ERG-Controller main loops, the algorithms find the ex-
pression with the lowest averaged utility value, until it
finds all suited expressions (according to θ). The resulting
set of expressions is composed by: A,B and A ∧B. Thus,
the final preservation goal found by both ERG based
algorithms is:
¬(A ∨B ∨ (A ∧B))
The preservation goal indicates that the agent should

avoid the states that contains expressions with one of the
propositions (A or B) or both.

B. Executions
Table II shows the overall results considering Q-

Learning, SARSA and Dyna-Q as benchmark RL algo-
rithms against the employment of them as the learning
component of ERG-RL in the ERG based algorithms.
The total time (T ) of an execution (in milliseconds), the
number of iterations and the standard deviation of the
number of iterations were considered in the analysis.

The stopping criterion for all RL algorithms consists in
comparing the V values obtained via Policy Evaluation and
the optimal V* values obtained via the Value Iteration (VI)
algorithm [22]. The ERG based algorithms have to rerun
Value Iteration after each discovery of a new expression
to be avoided, because as some states get blocked, the
environment changes and correspondingly its V* values.
The time of running Value Iteration is therefore discounted
from the total time of execution for every algorithm. The
average Value Iteration execution time for all executions
was 730.46 ms. In our experiments there are 3 avoided
expressions that are found, so the total amount of time to
be discounted is 2191.38 ms.

For the Multi-ERG-Controller executions, all the com-
pared values are the average of the results for all agents.

Table III presents the percentage of improvement when
comparing the ERG-Controller against the corresponding
standard RL algorithms. Table IV compares the single

Table II
Comparative results between all tested algorithms.

Algorithm T Iterations Iter. (std dev)
Q-Learning 3370 30.1 8.03
ERG-Cont. (Q-Learn.) 2225.6 18.1 5.46
Multi-ERG (Q-Learn.) 1709.6 7.9 4.1
SARSA 3655 21.7 16.87
ERG-Cont. (SARSA) 2955.6 14.3 3.05
Multi-ERG (SARSA) 2404.6 7.2 3.47
Dyna-Q 2088 13.6 8.3
ERG-Cont. (Dyna-Q) 1595.6 9.0 2.26
Multi-ERG (Dyna-Q) 1044.6 3.66 1.72

agent versions of the ERG-Controller with its correspond-
ing multi-agent versions, showing that there was a reduc-
tion of time of execution and number of episodes for reach-
ing the stopping criterion in the multi-agent instances.

Table III
Comparison, RL algorithms and its ERG-RL versions.

Algorithm %T % Iterations Iter. (std dev)
Q-Learn 33.95 39.86 32.0
SARSA 19.13 34.10 81.92
Dyna-Q 23.58 33.82 72.77

Table IV
Comparison, ERG-RL algorithms and its Multi-ERG-RL

versions.

Algorithm %T % Iterations Iter. (std dev)
Q-Learn 23.18 56.35 24.90
SARSA 18.64 49.65 -13.77
Dyna-Q 34.53 59.33 23.89

Finally, Table V shows the comparison of the standard
RL algorithms with the Multi-ERG-Controllers that use
the corresponding RL algorithms, showing that there was
a remarkable reduction of time of execution and number
of episodes for reaching the stopping criterion in the multi-
agent instances.

Table V
Comparison between the standard RL algorithms and its

Multi-ERG-RL versions.

Algorithm %T % Iterations Iter. (std dev)
Q-Learn. 49,27 73.75 48.94
SARSA 34.21 66.82 79.43
Dyna-Q 49.97 73.08 79.27

VI. Conclusion
In this paper, we presented a new approach, called

Multi-ERG-Controller, to discover the action policy for an
environment under propositional constraints on states in
MDP problems for multiple agents. Our method connects
extended reachability goals and multiple reinforcement
learning instances through shared information. We imple-
mented a shared utility table algorithm, according to the
significance of environmental observations made by the
agents, in order to reduce the learning time and generate
better action policies.

1774



The results obtained and presented in section V showed
an important reduction of learning time and iterations
when applying any ERG-based algorithm, this reduction
is more remarkable in the Multi-ERG-Controllers, which
encourages its use in problem solving with extended reach-
ability goals for multiple agents.

As future work, we intend to adapt the Multi-ERG-
Controller to partially observable MDPs and extended
reachability goals.

References

[1] L. Panait and S. Luke, “Cooperative multi-agent learning: The
state of the art,” Autonomous Agents and Multi-Agent Systems,
vol. 11, pp. 387–434, 2005, 10.1007/s10458-005-2631-2. [Online].
Available: http://dx.doi.org/10.1007/s10458-005-2631-2

[2] R. A. Howard, Dynamic Programming and Markov Processes.
MIT Press and Wiley, 1960, vol. 3.

[3] M. L. Puterman, Markov Decision Processes: Discrete Stochas-
tic Dynamic Programming, 1st ed. New York, NY, USA: John
Wiley & Sons, Inc., 1994.

[4] S. J. Russell and P. Norvig, Artificial Intelligence: A Modern
Approach. Pearson Education, 2003. [Online]. Available:
http://portal.acm.org/citation.cfm?id=773294

[5] R. S. Sutton and A. G. Barto, Reinforcement Learning: An
Introduction (Adaptive Computation and Machine Learning).
The MIT Press, mar 1998.

[6] C. J. C. H. Watkins and P. Dayan, “Technical note q-learning,”
Machine Learning, vol. 8, pp. 279–292, 1992.

[7] S. Lago Pereira, L. Barros, and F. Cozman, “Strong probabilistic
planning,” in MICAI 2008: Advances in Artificial Intelligence,
ser. Lecture Notes in Computer Science, A. Gelbukh and
E. Morales, Eds. Springer Berlin / Heidelberg, 2008, vol.
5317, pp. 636–652, 10.1007/978-3-540-88636-5_61. [Online].
Available: http://dx.doi.org/10.1007/978-3-540-88636-5_61

[8] L. P. Kaelbling, M. L. Littman, and A. W. Moore, “Rein-
forcement learning: a survey,” Journal of Artificial Intelligence
Research, vol. 4, pp. 237–285, 1996.

[9] C. Watkins, “Learning from delayed rewards,” Ph.D. disserta-
tion, University of Cambridge,England, 1989.

[10] A. L. Strehl, L. Li, E. Wiewiora, J. Langford, and M. L. Littman,
“Pac model-free reinforcement learning,” in Proceedings of the
23rd international conference on Machine learning, ser. ICML
’06. New York, NY, USA: ACM, 2006, pp. 881–888. [Online].
Available: http://doi.acm.org/10.1145/1143844.1143955

[11] R. S. Sutton, “Integrated architectures for learning, planning,
and reacting based on approximating dynamic programming,” in
Proceedings of the Seventh International Conference on Machine
Learning. Morgan Kaufmann Publishers Inc., 1990, pp. 216–
224.

[12] G. A. Rummery and M. Niranjan, “On-line Q-learning using
connectionist systems,” Cambridge University Engineering De-
partment, Cambridge, England, Tech. Rep. TR 166, 1994.

[13] L.-J. Lin, “Self-improving reactive agents based on reinforce-
ment learning, planning and teaching,” in Machine Learning,
1992, pp. 293–321.

[14] E. H. Durfee and V. R. Lesser, “Using partial global plans
to coordinate distributed problem solvers,” in Proceedings
of the 10th international joint conference on Artificial
intelligence - Volume 2. San Francisco, CA, USA:
Morgan Kaufmann, 1987, pp. 875–883. [Online]. Available:
http://portal.acm.org/citation.cfm?id=1625995.1626060

[15] C. V. Goldman and S. Zilberstein, “Optimizing information
exchange in cooperative multi-agent systems,” in AAMAS ’03:
Proceedings of the second international joint conference on Au-
tonomous agents and multiagent systems. New York, NY, USA:
ACM, 2003, pp. 137–144.

[16] P. Xuan, V. Lesser, and S. Zilberstein, “Communication in
multi-agent markov decision processes,” in In Proc. of ICMAS
Workshop on Game Theoretic and Decision Theoretic Agents,
2000.

[17] M. Kinney and C. Tsatsoulis, “Learning communication strate-
gies in multiagent systems,” in In Applied Intelligence, 1998.

[18] A. Noroozi, “A novel model for multi-agent systems to improve
communication efficiency,” in Computer Engineering and Tech-
nology, 2009. ICCET ’09. International Conference on, vol. 2,
jan. 2009, pp. 189 –192.

[19] R. Becker, A. Carlin, V. Lesser, and S. Zilberstein,
“Analyzing myopic approaches for multi-agent communication,”
Computational Intelligence, vol. 25, no. 1, pp. 31–50,
2009. [Online]. Available: http://dx.doi.org/10.1111/j.1467-
8640.2008.01329.x

[20] F. Bacchus and F. Kabanza, “Planning for temporally extended
goals,” Annals of Mathematics and Artificial Intelligence,
vol. 22, pp. 5–27, 1998, 10.1023/A:1018985923441. [Online].
Available: http://dx.doi.org/10.1023/A:1018985923441

[21] A. V. Araujo and C. H. C. Ribeiro, “Solving problems with
extended reachability goals through reinforcement learning on
propositionally constrained state spaces,” in IEEE International
Conference On Systems, Man, And Cybernetics, vol. 1, 2013, pp.
1542–1547.

[22] R. Bellman, Dynamic Programming, 1st ed. Princeton, NJ,
USA: Princeton University Press, 1957.

1775




