
Self-learning Recursive Neural Networks for Structured Data
Classification

Abdelhamid Bouchachia and Alexander Ortner

Abstract— Automatic classification of structured data is a
challenging task and its relevance to many domains is evident.
However, collecting labeled data may turn to be a quite
expensive task and sometimes even prone to mislabeling. A
technical solution to this problem consists in combining few
labeled data samples and a significant amount of unlabeled data
samples to train a classifier. Likewise, the present paper deals
with the classification of partially labeled tree-like structured
data. To carry on this task, we suggest an adapted variant
of recursive neural networks (RNNs) that is equipped with
semi-supervision mechanisms capable of learning from labeled
and unlabeled tree-like data. Accordingly RNNs rely on self-
learning to actively pre-label data which will be combined
with originally labeled one during the learning process. The
semi-supervised RNNs approach is presented and evaluated
on real-world eXtensible Markup Language (XML) collection
of documents in the context of digital libraries. The initial
empirical experiments show high quality results.

I. INTRODUCTION

are very efficient in various applications, particularly in
classification tasks. NNs are inductive machines capable of
learning from examples. Apart from reinforcement learning,
there are two main types of learning dedicated to neural net-
works: supervised and unsupervised. In supervised learning
(classification and prediction), the decision function sought
is learned from training pairs (input vector, class label).
Among others, multilayer perceptron, radial basis functions
and learning vector quantization are NNs that use supervised
training during which the squared distance to the target class
value is stepwise minimized. In unsupervised learning (clus-
tering), on the other hand, the decision function sought is
learned from only input vectors by generally minimizing the
intra-cluster distance and maximizing the between-clusters
distance. Examples of NNs based on unsupervised learning
are self-organizing maps and adaptive resonance theory.

It has been recognized the value of combining both classi-
fication and clustering in what is known as semi-supervised
learning (SSL)[8]. The semi-supervised learning paradigm
aims at using both labeled and unlabeled data for learn-
ing classification problems. While unsupervised learning
algorithms are relatively cheap to build, their classification
accuracy may not be high. On the other hand, supervised
learning algorithms relying on fully labeled training data
provide high classification accuracy. The difficulty here is the
cost of obtaining labeled training data. In many applications,
acquiring labels is very expensive and prone to mislabeling

Abdelhamid Bouchachia is with Bournemouth University, Faculty of
Science and Technology, UK. (email: abouchachia@bournemouth.ac.uk).
Alexander Ortner is with the University of Klagernfurt, Austria. (email:
a3ortner@edu.uni-klu.ac.at).

errors, leading to data-size unbalance between available
labeled and unlabeled data, especially when labeled data
is scarce. Think, for instance, about applications where to
label one data point you need to run expensive experiments
or you need to hire an expert to do that. Labeled data can
be plentiful for some applications, but in other applications
such as medical imaging, web classification, biomedical
data applications, the correct class labels can not be easily
obtained for a significant part of the vast amount of training
data available. Usually the difficulty in obtaining class labels
may arise due to incomplete knowledge or limited resources.

While many machineries have been used to deal with
semi-supervised learning (e.g. including generative models,
ensemble learning, graph-based models, boundary classifi-
cation, and semi-supervised clustering), negligible work has
been done with respect to neural networks. Known work in
this context relies on pre-labeling techniques [5], [3] and
focuses on radial basis function networks [2] and MLP [17],
[20]. The problem of such NNs is that supervised learning
approaches relying on the error backpropagation have no
direct way to incorporate unlabeled data and, therefore,
discard them. The present contribution aims at investigating
ways to combine labeled and unlabeled data to train a
particular type of neural networks, that is RNNs.

We are investigating semi-supervised learning relying on
recursive neural networks due to the following reasons:

1) Novelty of the proposed study, since this type of neural
networks has never been investigated in the context
of semi-supervised learning despite its relevance to
many domains where data are structured (tree-like data,
graphical data, chemical data, etc.)

2) The application of RNNs in the context of XML
document classification allows testing their capability
on complex and partially labeled data. Such an exper-
imental setting has not been investigated sofar to the
best of our knowledge. The study is thus significant in
terms of scale compared to other work on smaller and
fully labeled data sets [14].

RNNs have strong theoretical background and are efficient
in a wide range of pattern classification. However, they need
mechanisms to handle hybrid data.

In this study we propose and investigate the following:

1) Proposal of recursive neural networks for the classifi-
cation of structured data (XML documents).

2) Adaptation of a self-learning algorithm to handle partly
labeled structured data. RNNs are equipped with slef-
learning mechanisms to accommodate unlabeled data.

2014 International Joint Conference on Neural Networks (IJCNN)
July 6-11, 2014, Beijing, China

978-1-4799-1484-5/14/$31.00 ©2014 IEEE 808

3) A first empirical evaluation of the proposed self-
learning RNNs on XML documents including sensi-
tivity analysis.

In the following, recursive neural networks are introduced
in Sec. II. Details on the training procedure are also pro-
vided in Sec. II-A. The mapping of XML documents onto
RNN is outlined in Sec. III. Next, an overview of semi-
supervised learning algorithm and description of the self-
learning algorithm applied in this study are presented in
Sec. IV. Section V provides an initial empirical evaluation
of the approach. Finally, Sec. VI concludes the paper.

II. RECURSIVE NEURAL NETWORKS

Being interested in a particular type of data, namely trees
and graphs, RNNs seem very appropriate for classification
purposes. RNNs have been used in some applications in-
cluding medical and technical diagnoses, molecular biology
and chemistry, geometrical and spatial reasoning, speech and
language processing [12], [18]. Figure 1(a) illustrates the
structure of the generalized recursive neuron. A neuron in
the RNN is an extension of a neuron in one-level recurrent
neural network, where instead of just considering the output
of the neuron in the previous time step (like with the recurrent
neuron), the recursive node gets signals from its subtrees.

The encoding of a node (for instance the root node in the
figure) of the tree shown at the bottom of the figure admits as
input the signals emanating from the children nodes (pointed
to by the current node). Functionally speaking, each node in
the tree will be represented as a standard neural network. In
other terms, the combination of generalized neurons results
in recursive neural networks as shown in Fig. 1(b).

(a) The structure of a recursive neuron

(b) A generic recursive neural network

Fig. 1. Structure of RNNs

Figure 1(b) shows the architecture of an RNN consists of:

• Folding part: It encodes the information of the tree
structure and is called the encoding part.

• Classification part: This part classifies the
trees with the encoded information of the folding part as
input. It is also called the transformation part.

Each tree’s node will be represented as an individual network
in the folding structure consisting of at least two layers. The
first layer consists of two components:

• Units for encoding the label (tag) of the node (repre-
sented as blue units). The number of units is n.

• Units for encoding the descendants of the node. As-
suming the maximum outdegree of all the trees from
the collection is k and the number of input units used
to encode each descendant is m, the total number of
units for representing the subtree rooted at the node
is k · m. If some nodes have less than the maximum
k of children, the missing information will be set to
nil (units are represented as black units in Fig 1(a)).
An output neuron assembles information of the label
encoding part and from the subtree to be transmitted to
the node’s parent.

A detailed view of an RNN is shown in Fig. 2. It consists
of r+s+1 layers, where layers l0, . . . , lr belongs to the fold-
ing part and layers lr, . . . , lr+s belong to the classification
part. All layers are fully connected. The symbols appearing
in Fig.1(a) and Fig. 2 are defined as follows:

n ... the representation length of the node’s label
m ... the number of input units
k ... the maximum outdegree of the tree’s nodes
l0 ... the first input layer consisting of (n+k ·m) units
lr+s ... the last layer, where the i-th output corresponds

to the i-th class label, for 0 ≤ i < q
q ... the number of class labels
λ(t) ... the label of the node t

Fig. 2. The architecture of a recursive neural network proposed in [12]

The first proposal for using RNNs for (supervised) classi-
fication purposes developed by Sperduti and Starity [18]. In
the present work, RNNs are used to classify XML documents
which can be seen as trees/graphs. Figure 3 illustrates the
structure of an XML document.

Given a tree to be processed, the folding part of the RNN
will represent the nodes of the tree such that the signal flows
from the leaves and finishes with the root node. In other
terms, the bottom-up order has to be kept so that the signal
emanating from the descendant nodes is transmitted as input

809

(a) An XML source file (b) The encoding tree

Fig. 3. Structure of XML data

Fig. 4. Equivalent recursive neural network

to their parent nodes. Figure 4 illustrates an example of a
folding part with two layers.

Specifically it shows how an XML document with 6
nodes can be represented as a neural network, where the
folding part encodes the XML tree. Note that the nodes
{movie, title, production, year, item} in Fig. 4 use the
same elementary coding structure of the folding part. The
classification part admits the output of the folding part of
the root node as input.

A. Backpropagation Through Structure

To train this neural architecture, Kuechler and Goller [12]
introduced an algorithm called backpropagation through
structure (BPTS) inspired from the well-known backprop-
agation through time. BPTS consists of two phases:
• Forward phase: information flows from the leaves to the

root which represents the classification part.
• Backward phase: the whole neural network is updated

backwards, starting by the classification part and going
through the folding part down to the leaves.

An XML document is presented to the network node by
node, starting from the leaves. As mentioned earlier, each
node is represented as a folding part. Only after the signal
from all subtrees have reached the root node of the tree, this
later can then transmit the signals to the classification part.

Let the output of a neuron i in layer l for a node t be
denoted as y(l)i (t). The first layer l0 consists of n + k ·m
neurons. The first n neurons are for encoding the node’s
label and the remaining k ·m neurons are for encoding the
input signals of the subtrees. Note that k is the maximum
outdegree of all trees of the collection and m is the number
of neurons for representing the information of the current

node’s subtrees. The value of m is the same for the whole
tree. The output for layer l0 is defined as follows:

y
(0)
i (t) =


[C(λ(t))]i 0 ≤ i < n

y
(r)
((i−n) mod m)

(
tb i−n

m c
)

n ≤ i < n+ dm

[nil]((i−n) mod m) n+ dm ≤ i < n+ km
(1)

where C denotes a coding function which maps the label λ(t)
of the node t to a numeric code. The variable d represents
the number of descendants of a node t, 0 ≤ d ≤ k and
ti ∈ {t0, t1, . . . , } the children of node t. For nodes with
less then k children, the missing data will be interpreted as
nil information. The output for the layers lj , j > 0 are
defined as follows:

y
(l+1)
j (t) = f(net

(l+1)
j (t)) = f(v

(l+1)
j (t))

= f(
∑
i

y
(l)
i (t) · ω(l+1)

ij + θ
(l+1)
j)

for r ≤ l < r + s, if t is a root node (2)
for 0 ≤ l < r, if t is any node (3)

where θ
(l+1)
j denotes the bias associated with neuron j at

layer l + 1, w(l+1)
ij is the weight of the connection between

neuron i of layer l and neuron j of layer l + 1 and netj =
vj . The function f represents the activation function of the
neural network. The output signals of all other nodes are
transmitted to their parents starting from the leave nodes. For
instance, in Fig. 4 the production node receives signals
from item’s. The signal obtained from the production,
title and year nodes are sent to the movie node, whose
output is in turn transmitted to the classification network.

III. PREPROCESSING AND TRAINING

A. Encoding of Labels

The first step to be taken in order to classify XML
documents using recursive neural networks is to analyze the
set of documents. In particular, the common supertree of
the collection is constructed by merge as shown in Fig. 5.
The resulting supertree serves to determine the architecture
of the recursive neural network, the different labels and the
maximum number of descendant elements occurring in the
collection.

In the second step, the labels of the supertree nodes are
encoded. In this work, we apply a simple binary mapping
function that generates distinct codes for the available labels
(tags). Figure 6 illustrates the encoding idea.

Fig. 6. Generation of binary codes for the nodes’ labels

810

Fig. 5. Building a common supertree stepwise

B. Learning Algorithm

Algorithm 1 illustrates the preprocessing and main learn-
ing steps of the Backpropagation through structure algorithm
for classifying structured XML documents.

Algorithm 1 : Training algorithm
• Given the number of classes, the maximum number of
descendant nodes of the XML trees and the number of
different labels in the XML tree.
• Generate the recursive neural network (i.e., folding and
classification parts of the net)
repeat

for each document in the training set do
• Forward phase: starts from the leaves to the root
and transmits the information to the classification
part. The output of each layer are calculated.
• Backward phase: updates the whole neural net-
work backwards, starting by the classification part
and going through the folding part down to the leaves.
◦ Calculate the total error of the classification.
◦ Calculate the gradient of each output layer of a

node. starting from the root back to the leaves.
◦ Update the synaptic weights and the bias.

end for
until The classification error obtained falls under a thresh-
old or the number exceeds some given number.

IV. SEMI-SUPERVISED VIA SELF-LEARNING

A. Semi-supervised Learning

As outlined in Sec. I, semi-supervised learning is a very
interesting learning scheme. It aims at devising mechanisms
of learning from labeled and unlabeled data in a symbiotic
way. The underlying motivation is to boost the accuracy of
the classifier using the available labeled data augmented with
the unlabeled one. The scenario is portrayed in Fig. 7 which
shows that labeled and unlabeled data can be processed

Fig. 7. The process of pre-labeling

according to two fundamental alternatives learning via pre-
labeling and pure semi-supervised learning:

1) Usage of labeled data (or some knowledge hints ex-
tracted from it) to estimate the label of unlabeled
data before initiating a fully supervised classifier. This
scheme is known as pre-labeling which can be either
active (by human being) or passive pre-labeling (by an
algorithm)

2) Complete merge of both labeled and unlabeled data
to train a partially supervised classifier. This scheme
corresponds to pure semi-supervised learning (which
is also known as learning with partial supervision)

So far many approaches have been suggested to deal with
learning from hybrid data. Broadly speaking, the approaches
can be classified into: generative [7], [15], ensemble learn-
ing [10], [21], graph-based [1], [19], boundary classifica-
tion [13], and semi-supervised clustering models [5]. All
of the available methods fall in one of the two schemes
mentioned above.

Considering self-learning which relies on offline or online
pre-labeling [4], [3], [16] to enlarge the training data set in
order to enable a fairly consistent training of the classifier. In
the present work, we aim at incorporating unlabeled data in
the training of the recursive neural network described earlier.
Self-learning based on a feedforward neural network has

811

been adopted in [17] and [20]. The neural network model can
be used to estimate a posterior probability function for each
class in the classification domain, and assigning an unlabeled
example to the class for which the posterior probability of
membership is highest [17]. In [20], the unlabeled example
is assigned to the class (represented as fuzzy set) for which
the fuzzy membership degree is the highest. This approach
will be adapted in the present work to use both labeled
and unlabeled XML documents to train the recursive neural
network.

Assuming that the training set T consists of two subsets
T = {Tl, Tu}, where Tl =

{
(t1, c1), (t2, c2), . . . , (tNl , cNl)

}
represents the subset of labeled trees and Tu ={
tNl+1, tNl+2, . . . , tNl+Nu

}
the subset of unlabeled trees.

The symbol ti denotes the ith tree, ci denotes the class label
such that i ∈ I = {1, 2, . . . Q}, Q is the number of classes.
Nl and Nu are the number of labeled and unlabeled trees
respectively, N = Nl + Nu. The estimated labels for the
unlabeled subset o1, . . . , oNl are obtained according to the
scheme 1-of-Q, i.e.

onk =

{
1 if cn = k

0 otherwise
(4)

B. Label Estimation for Unlabeled Data

According to Verikas et al. [20], the neural network output
values provide membership degrees to the fuzzy sets which
represent the classes. The membership degree µcj (t

n) of
the nth XML tree tn to the jth fuzzy set is then given by
the output signal y(r+s)

j (tn) of the jth output neuron of the
neural network. Applying the intensification operation which
increases the contrast between the elements of the fuzzy set,
increasing µcj (t

n) which are larger than 0.5 as follows:

ηcj (t
n) =

{
2
[
µcj (t

n)
]2

for 0 ≤ µcj (t
n) ≤ 0.5

1− 2
[
1− µcj (t

n)
]2

otherwise
j = 1, 2, . . . , Q (5)

Verikas et al. used k-nearest neighbors (knn) for their label
estimation. The knn criterion is given as:∥∥xn − xk∥∥ < ∥∥xn − xi∥∥ , ∀k ∈Mn and ∀i /∈Mn (6)

where Mn is the set of indices of the nearest neighbors of
xn.

To adapt the algorithm proposed by Verikas et al. to
structured data like XML trees, we need to define a dis-
tance function between two labeled trees. There are several
approaches to compute such a distance. In this study, we
rely on the tree edit distance proposed in [9]. The tree edit
distance consists of three edit operations:

1) insertion: inserts a child to a node in the tree. The cost
for this operation is 1. The number of occurrences is
denoted with ins.

2) deletion: deletes a node from the tree. The cost for this
operation is 1. The number of occurrences is denoted
with del.

3) update: updates the label of a node in the tree. The cost

for this operation is 1. The number of occurrences is
denoted with upd.

The idea is to count the steps of a tree a to be transformed
into tree b. We can now create a distance measure between
two nodes.

TreeDist(ti, tj) =
ins+ del + upd

|ti|+ |tj |
(7)

where |ti| denotes the number of nodes of tree ti and |ti|+|tj |
is the upper limit of edit steps to transform ti into tj . Note
that TreeDist is symmetric and standardized. The following
pseudo code illustrates the determination of ins+del+upd.

Algorithm 2 : Computation of the distance between two
nodes

// CalculateDistance(TreeNode s, TreeNode t)
Let D a matrix of size: numOfChildren(s)+
1 × numOfChildren(t) + 1;
D[0, 0]=UpdateCost(LabelOf(s), LabelOf(t));
for i = 1 to numOfChildren (s) do
D[i, 0] = [i− 1, 0]+numOfNodes(si);

end for
for j = 1 to numOfChildren(t) do
D[0, j] = D[0, j − 1]+numOfNodes(tj);

end for
for i = 1 to numOfChildren (s) do

for j = 1 to numOfChildren (t) do
D[i, j] = Min{CalculateDistance(si, tj) +
D[i−1, j−1], D[i, j−1]+numOfNodes(tj), D[i−
1, j]+numOfNodes(si) };

end for
end for
Return(D);

The quantities used are:

• si, tj are the ith and jth subtrees of node s and t
respectively.

• numOfChildren(s) denotes the number of the sth
node’s descendants.

• numOfNodes(s) denotes the number of nodes of the
subtree rooted at s.

• UpdateCost(LabelOf(s), LabelOf(t))
returns 1 if labels of s and t are equal or 0 otherwise.

• D[i][j] stores the edit distance (ins + del + upd)
between the subtree a tree T1 rooted at i and the subtree
of the tree T2 rooted at j.

After introducing TreeDist, the k−nearest neighbors for
the unlabeled trees can then be identified as follows:

TreeDist(tn, tk) < TreeDist(tn, ti), ∀k ∈Mn and (8)
∀i /∈Mn Nl + 1 ≤ n ≤ N ; 1 ≤ k, i ≤ N (9)

Then, we calculate the target vector on for the unlabeled tree
tn as follows:

on =

∑
z∈Mn

oz

knn
(10)

812

where

ozj =

{
ηcj (t

z) if Nl + 1 ≤ z ≤ N
1 or 0 if 1 ≤ z ≤ Nl

(11)

∀j = 1, . . . , Q; ∀n = Nl+1, . . . , N

The self-learning algorithm is then given in Alg. 3.

Algorithm 3 : Training algorithm
Train the network using labeled XML trees only, as
proposed in section III-B.
repeat

Calculate target values for the unlabeled data using
Eq. 10.
Retrain the network using both the labeled and unla-
beled XML trees.

until the classification accuracy does not change after a
certain number of subsequent iterations or a predefined
number of iterations is reached

V. EMPIRICAL EVALUATION

To illustrate the application of self-supervised RNN for
the classification of XML documents by structure, we will
focus on four aspects:
• Effect of labeled data on the accuracy of RNN
• Effect of unlabeled data on the accuracy
• Comparison of fully supervised RNN against semi-

supervised RNN
• Effect of increasing the number of classes
A movie database obtained from INEX1 is applied. A

subset of 2063 XML documents stemming of three classes
are considered in the first set of experiments. The classes
consists of 594, 701 and 768 documents respectively. This
XML data set is randomly split into a training set (60%) and
a testing set (40%). Moreover to conduct the experiments
of this self-supervised learning approach, the training set is
randomly divided into two subsets: labeled set and unlabeled
set. Because of the assumption that the unlabeled set is
usually larger than the labeled set, we consider the 70%
(unlabeled)-30% (labeled) rule.

Since the time computational complexity of training the
RNN on random structure is very high, we attempt to
enhance the training efficiency. To achieve that, we cluster
the unlabeled set and only use a certain proportion thereof
that consists of the typical examples. We use the k-medoids
algorithm partitioning around medoids (PAM) [11] to cluster
the unlabeled XML documents. The choice of PAM is
dictated by the nature of data, we do not need to compute a
prototype like in K-means and Fuzzy C-means.

PAM operates on a dissimilarity matrix for the given data
set and a pre-specified number of clusters k. It searches for k
representative documents (i.e., medoids which are the most
centrally located document in a cluster). After finding a set

1http://www.inex.otago.ac.nz/tracks/strong/strong.asp

of k medoids, k clusters are constructed by assigning each
document to the nearest medoid. Note that PAM aims at
finding k medoids M = (m1, . . . ,mk) which minimize the
sum of the dissimilarities of the documents to their closest
medoid, that is:

argminM
∑
i

mink d(xi,mk) (12)

where function d(x, y) is the distance between object x
and y. Note that the distance between two documents is
calculated according to Eq. 7. The main steps of the PAM
algorithm are shown in Alg. 4.

Algorithm 4 : PAM steps
Randomly choose k documents that stand for initial
medoids.
repeat

Associate each data point to the nearest medoid (dis-
tance between two documents is calculated according
to Eq. 7).
for For each medoid m do

for For each non-medoid document o do
Swap m and o and compute the total cost (sum-
mation of distances) of the configuration.

end for
end for
Select the configuration with the lowest cost (summation
of distances).

until there is no change in the medoid set.

The quality of clustering is measured using the entropy of
clusters [6]. The optimal number of clusters k the weighted
average entropy of the generated clusters. The entropy of
cluster i is defined as

Ei = −
1

log(H)

H∑
j=1

nij
ni

log

(
nij
ni

)
(13)

where ni is the total number of XML documents in the
cluster i and nij is the number of XML documents of class
j positioned in cluster i.

Once the clusters are obtained, the most typical samples
around the medoids are collected to form the unlabeled set.
An XML document of a cluster is selected if the distance
between this document and a medoid does not exceed a
certain threshold which is set to 0.5. For 70% of the
training data (=865 unlabeled documents), we have found
that the optimal number is 3. The quality of the clusters
measured by Eq. 13 and the medoids are shown in Tab. I and
Tab. II respectively. Then the pre-selection of the unlabeled
set allowed to retain 651 documents among the initial set
consisting of 865 documents.

The main goal is the evaluation of the proposed learning
algorithm by measuring the classification accuracy. In all of
the experiments we use the following network parameters:
• η = 0.1, learning rate
• α = 0.01, momentum rate

813

TABLE I
CLUSTER QUALITY

cluster size quality
1 237 0
2 292 0.037283
3 336 0

TABLE II
MEDOIDS OF THE CLUSTERS

cluster medoid
1 "Lively_Set_The_1964.xml"
2 "Book_Revue_1946.xml"
3 "People_Will_Talk_1951.xml"

TABLE IV
ACCURACY AFTER 30 RUNS (EFFECT OF UNLABELED DOCUMENTS)

Proportion 30% 50% 70% 90%
Accuracy mean 0.93805 0.98370 0.95892 0.98640
Stan. deviation 0.10732 0.06388 0.12642 0.05480

• H = 3, hidden layer size
• m = 4, number of nodes in context layer
• knn = 5, number of nearest neighbors (for label

estimation)
These settings have been determined based on initial runs
on a subset of data. Tab. III illustrates just an excerpt of
configurations among a great number of configurations we
tested. The best parameter choice corresponds to configu-
ration 4. To ensure a fair evaluation of the accuracy of the
proposed model, each experiment is repeated 30 times. While
the parameters remain the same, the labeled and unlabeled
change - but their proportions remain the same. That is, the
random split of the XML documents has to be renewed for
each run. Consequently, the clustering of the new unlabeled
XML documents will be executed in each run.

A. Effect of Unlabeled Data

In the following the effect of increasing the number
of unlabeled documents is observed. The experiments are
carried out using 30% (260 docs), 50% (433 docs), 70%
(607 docs) and 90% (780 docs) of the unlabeled data (70%
of the training data = 867 docs). The subsets of the unlabeled
data are randomly sampled. Table IV shows the results of the
30 runs for each configuration. The accuracy of the classifier
increases as the number of unlabeled documents increases,
except in the case of 70% of unlabeled data. On a closer look
at the accuracy value obtained from 70% can be explained
with the standard deviation that is relatively high.

B. Effect of Labeled Data

To check the effect of changing the number of labeled
documents. Various proportions of the labeled set (30% of
the whole training data) are considered: 10% (67 docs),
30% (111 docs), 50% (185 docs), 70% (260 docs) and

TABLE VI
ACCURACY OF SUPERVISED AND SEMI-SUPERVISED CLASSIFIER

Supervised Self-supervised
Accuracy mean 0.97764 0.98414
Stan. deviation 0.05278 0.05643

90% (334 docs). The unlabeled size is 70% of the training
data. Note that the subsets are chosen randomly. Table V
depicts the classification results of the thirty runs for each
of the proportion. As expected, the accuracy of the classifier
increases as the number of labeled documents increases.

C. Supervised vs. Self-supervised Learning

In the following a comparison between supervised and
self-supervised is shown. In these experiments, we depart
from the same baseline, that is, the supervised and self-
supervised algorithms uses the same labeled set of docu-
ments. However, the self-supervised algorithm additionally
involves unlabeled documents in the training phase.

Table VI depicts the classification results of the thirty
runs using the labeled 30% of the training data set for
training the supervised RNN and using the whole training
set (30% labeled + 70% unlabeled) for training the self-
supervised RNN. The conclusion drawn from the previous
set of experiments related to the positive effect of unlabeled
data is confirmed by the direct comparison of supervised
RNN and self-supervised RNN. The accuracy of the semi-
supervised classifier is higher than the accuracy of the
supervised classifier.

D. Effect of the Number of Classes

To check the effect of increasing the number of classes,
we have considered 5 classes instead of 3 classes, the results
are shown in Tab. VII and Tab. VIII. Again, we observe
theevolution of the self-learning RNN when increasing the
proportion of labeled and unlabeled documents respectively.
We have considered only 5 classes due to the high time
complexity of training RNN. The results after 30 runs show
similar behavior of the supervised RNN and self-supervised
RNN as the one that emerged with 3 classes. The positive
effect of labeled and unlabeled data is clearly confirmed
despite some of the insignificant fluctuations that can take
place with some proportions.

VI. CONCLUSION

This paper proposes a self-learning version of recursive
neural network which aims at classifying partially labeled
tree-like structured data. We have focused on XML data as
an instance of structured data. The main steps how to pre-
process structured data and how training using hybrid data
are illustrated. Moreover a detailed empirical study to show
the effect of labeled and unlabeled data on the efficiency
of the self-learning RNN are discussed. The results show
that equipping RNN with semi-supervision mechanisms can
enhance the classification accuracy of structured data.

814

TABLE III
PARAMETER SETTINGS

Parameter Conf1 Conf2 Conf3 Conf4 Conf5 Conf6 Conf7 Conf8
η 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
α 0.01 0.01 0.00 0.01 0.00 0.01 0.00 0.00
H 3 4 4 4 4 5 5 5
m 3 3 3 3 3 3 3 3
n 8 8 8 8 8 8 8 8
knn 5 3 3 5 4 3 4 5
Clas. rate 92.98% 97.94% 61.50% 99.80% 96.13% 89.83% 97,22% 99.76%

TABLE V
ACCURACY AFTER 30 RUNS (EFFECT OF LABELED DOCUMENTS)

Proportion 10% 30% 50% 70% 90%
Accuracy mean 0.86634 0.94988 0.94306 0.95993 0.99072
Stan. deviation 0.18105 0.13557 0.16374 0.09485 0.01419

TABLE VII
EFFECT OF INCREASING THE NUMBER OF CLASSES (5 CLASSES) - CHANGING THE PROPORTION OF LABELED DOCUMENTS)

% of total labeled documents 10% 30% 50% 70% 90%
Accuracy mean 0.8663 0.9498 0.9430 0.9599 0.9907
Standard deviation 0.0219 0.0072 0.0115 0.0030 0.0032
Variance coefficient 0.2089 0.1427 0.1736 0.0988 0.0143

TABLE VIII
EFFECT OF INCREASING THE NUMBER OF CLASSES (5 CLASSES) - CHANGING THE PROPORTION OF UNLABELED DOCUMENTS)

Proportion of unlabeled documents 0% 30% 50% 70% 90%
Accuracy mean 0.8375 0.9880 0.9837 0.9589 0.9864
Standard deviation 0.1491 0.0172 0.0628 0.1264 0.0548
Variance coefficient 0.1780 0.0174 0.0638 0.1318 0.0555

REFERENCES

[1] A. Blum, J. Lafferty, M. Rwebangira, and R. Reddy. Semi-supervised
Learning using Randomized Mincuts. In Proc. of the 21th Int. Conf.
on ML, pages 92–100, 2004.

[2] A. Bouchachia. Learning with Hybrid Data. In Proc. of the 5th Int.
Conf. on Hybrid Intelligent Systems, pages 193–198, 2005.

[3] A. Bouchachia. RBF Networks for Learning from Partially Labeled
Data. In Proc. of the workshop on Learning with Partially Classified
Training Data at the 22nd Int. Conf. on Machine Learning, pages
10–18, Bonn, Germany, 2005.

[4] A. Bouchachia. An evolving classification cascade with self-learning.
Evolving Systems, 1:143–160, 2010.

[5] A. Bouchachia and W. Pedrycz. Data clustering with partial supervi-
sion. International Journal of Data Mining and Knowledge Discovery,
12(1):47–78, 2006.

[6] A. Bouchachia and W. Pedrycz. Enhancement of fuzzy clustering by
mechanisms of partial supervision. Fuzzy Sets and Systems, 157:1733–
1759, 2006.

[7] A. Bouchachia and C. Vanaret. GT2FC : An online growing interval
type-2 self-learning fuzzy classifier. IEEE Transactions on Fuzzy
Systems, In press, 2014.

[8] O. Chapelle, B. Schölkopf, and A. Zien, editors. Semi-Supervised
Learning. MIT Press, Cambridge, MA, 2006.

[9] T. Dalamagas, T. Cheng, K. Winkel, and T. Sellis. A methodology for
clustering xml documents by structure. Information Systems, 31:187–
228, 2006.

[10] R. Ghani. Combining Labeled and Unlabeled Data for MultiClass Text
Categorization. In Proc. of the 19th Internaltional Conf. on Machine
Learning, pages 187–194, 2002.

[11] L. Kaufman and P. Rousseeuw. Finding groups in data: An introduc-
tion to cluster analysis. Wiley, New York, 1990.

[12] A. Küchler and C. Goller. Inductive learning in symbolic domains
using structure-driven recurrent neural networks. In KI-96: Advances
in Artificial Intelligence, pages 183–197. Springer, 1996.

[13] D. Lawrence and I. Jordan. Semi-supervised learning via Gaussian
processes. In NIPS, pages 753–760, 2005.

[14] A. Micheli. Neural network for graphs: A contextual constructive
approach. IEEE Trans. on Neural Networks, 20(3):498–511, 2009.

[15] K. Nigam, A. McCallum, S. Thrun, and T. Mitchell. Text Classification
from Labeled and Unlabeled Documents using EM. Machine Learning,
39(2/3):103–134, 2000.

[16] R. Raina, A. Battle, H. Lee, B. Packer, and A. Ng. Self-taught learning:
transfer learning from unlabeled data. In The 24th International
Conference on Machine Learning, pages 759–766. ACM, 2007.

[17] A. Skabar. Augmenting supervised neural classifier training using
a corpus of unlabeled data. In Proc. of the 25th Annual German
Conference on AI, pages 174–185, 2002.

[18] A. Sperduti and A. Starita. Supervised neural networks for the
classification of structures. IEEE Transactions on Neural Networks,
8:714–735, 1997.

[19] M. Szummer and T. Jaakkola. Information Regularization with
Partially Labeled Data. Advances in Neural Information Processing
Systems, 15:1025–1032, 2002.

[20] A. Verikas, A. Gelzinis, and K. Malmqvist. Using unlabeled data to
train a multilayer perceptron. Neural Processing Letters, 14:179–201,
2001.

[21] Y. Zhou and S. Goldman. Democratic Co-Learning. In Proc. of the
16th IEEE Int. Conf. on Tools with Artificial Intelligence, pages 1082–
3409, 2004.

815

