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New Untrained Aggregation Methods for Classifier Combination

Bartosz Krawczyk, Michal WoZniak

Abstract— The combined classification is a promising direc-
tion in pattern recognition and there are numerous methods
that deal with forming classifier ensembles. The most popular
approaches employ voting, where the final decision of compound
classifier is a combination of individual classifiers’ outputs, i.e.,
class labels or support functions. This paper concentrates on
the problem how to design an effective combination rule, which
takes into consideration the values of support functions returned
by the individual classifiers. Because in many practical tasks
we do not have a training set at our disposal, then we express
our interest in aggregation methods which do not require
learning. A special attention is paid to weighted aggregation,
especially when the different weights depend on particular
support function of a given individual classifier. We propose a
novel approach for untrained combination of support functions
using the Gaussian function to assign mentioned above weights.
The computer experiments carried out on the set of benchmark
data sets confirm the advantages of the proposed approach for
particular cases, especially when the number of class labels is
high.

I. INTRODUCTION

There are numerous propositions on how to automate the
classification process. Nevertheless, according to Wolpert’s
no free lunch theorem there is not a single classifier that
is appropriate for all the tasks we are facing, since each
classifier has its own domain of competence [1]. For a
given classification task we often have a pool of classifiers
at our disposal. What is interesting, the set of incorrectly
classified objects by all individual classifiers is typically
small [2]. This observation means that even if individual
classifiers do not have high qualities, they could produce a
considerably good compound classifier, e.g., by nominating
the most competent individual classifier for a given object.
This approach is called classifier selection and was firstly
described in [3]. Notwithstanding, the problem is how to
find the most competent classifier.

The considered approach is called a multiple classifier system
(MCS), combined classifier or classifier ensemble [4] and this
idea is highlighted as a hot topic in machine learning [5], [6],
[7].

We face three main groups of problems connected with the
MCS design process:

« How the individual classifiers should be interconnected
in the ensemble. Most of the applications use the parallel
topology, but we should notice that it is possible to

Bartosz Krawczyk and Michal WozZniak are with the Department of
Systems and Computer Networks, Wroctaw University of Technology,
Poland (email: {bartosz.krawczyk,michal.wozniak } @pwr.wroc.pl).

This work was supported by the Polish National Science Center under
the grant no. DEC-2013/09/B/ST6/02264. The work was supported by EC
under FP7, Coordination and Support Action, Grant Agreement Number
316097, ENGINE European Research Centre of Network Intelligence for
Innovation Enhancement (http:// engine.pwr.wroc.pl/)

978-1-4799-1484-5/14/$31.00 ©2014 IEEE 617

connect the individual classifiers using a serial or a
hybrid architecture [8]. In the case of serial topology,
we can order the individual classifiers according to their
cost and ask them for the decision sequentially. We start
asking from the cheapest classifier and if the decision
is not robust enough then the next classifier is asked to
make a decision.

o The next issue focuses on how to select a valuable
pool of individual classifiers. Usually, we can collect a
huge number of classifiers. However, we should notice
that such a pool should consist of diverse and high
quality classifiers, i.e., mutually complementary models,
because apart from increasing the computational com-
plexity, combining similar classifiers will not contribute
much to the MCS under construction. We can use so-
called diversity measures [9], [10] to select classifiers to
ensemble. This measure should assure that a pool of the
selected classifiers has desired properties. Here, we have
to notice that there is not an universal diversity measure
for all classification tasks and formulating more appro-
priate diversity measures is an ongoing challenge for the
pattern recognition community. Additionally, process of
classifier selection (known as ensemble pruning) still
waits for a proper attention as well. Due to the high
computational complexity of full-search over all of the
possible classifier subgroups, several heuristic groups of
methods were proposed [11]:

— Ranking-based methods use an evaluation measure
for classifier ranking and choose only the first best
ones.

— Clustering-based methods cluster a pool of classi-
fiers according to the criterion based on a chosen
diversity measure and then prune each of the clus-
ter.

— Optimization-based methods consider ensemble
pruning as an optimization problem and apply
heuristic techniques to solve it.

o The last concern is related to designing a combination
rule, aimed at creating a mechanism that can exploit
the strengths of the selected classifiers and combine
them optimally, i.e, the greatest effort is concentrated
on combining the outputs of elementary classifiers.

In this work we focus on the last issue, i.e., the collective
decision making method, which is called the combination
rule, fuser or combiner. Nevertheless, we have to emphasize
that each of the mentioned above concern is important
and has a significant impact in the quality of MSC. Let
us systematize methods of classifier combination, taking
into consideration what kind of the information is used to
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Fig. 1. Idea of a combined classifier based on support functions [7].

establish the decision of a combination rule.

« Methods that make decisions on the basis of class labels
returned by the individual classifiers.

o Methods that propose constructing new support func-
tions based on supports returned by the individual
classifiers.

The former group includes mainly voting algorithms [12],
[13]. Many works have been devoted to combined classifier
quality, but most of them formulated the conclusions under
the strong and convenient assumptions, such as particular
cases of the majority vote [14]. Unfortunately, such assump-
tions and restrictions are useless to solve typical practical
problems. We should also mention those works that suggest
to train the weights [15], usually assigned to individual
classifiers, which seems to be an attractive alternative method
[16], [17]. Initially only voting schemes were implemented,
but in later works more advanced methods were proposed
as Multistage Organization with Majority Voting [18] or the
Behavior Knowledge Space [19].

The second group of combination methods is based on
support functions. Firstly, the Borda count [20] should be
mentioned, which makes a decision on the basis of class
ranks returned by each classifiers. In general the support
function is a measure of support given in favor of a dis-
tinguished class, as neural network output, posterior prob-
ability [21] or fuzzy membership function. There are many
approaches dealing with this problem as [22], in which the
optimal projective fuser was presented. Opitz and Shavlik
[23] combined neural networks outputs according to their
accuracy, while Rokach and Maimon [24] employ proba-
bilistic approach. Several analytical properties of aggregat-
ing methods were discussed e.g. in [25], [26]. Basically,
the aggregating methods, which do not require a learning
procedure, use simple operators as the maximum, minimum,
sum, product, or average value. Also, the framework of the
combined classifier based on support functions of individual
classifiers is depicted in Fig. I. It is worth mentioning that an
important approach called *mixture of experts’ [27] combines
classifiers’ outputs using so-called gating function depending
on classifiers’ input. Moreover, Tresp and Taniguchi [28]
proposed a linear weighted function for this model. On the
basis of the mentioned model, Cheeseman [29] proposed the
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mixture of Gaussian. We should also mention the Decision
Templates [30] which estimates the most typical profiles
for each support function values (returned by individual
classifiers) for each of the class and to make a decision
the most similar profile (to the set of supports returned by
individual classifiers for a given observation) should be find.
Of course, the crucial component of this approach is so-called
similarity measure used to finding the most similar decision
profile.

In this work we concentrate on an alternative approach,

called the weighted aggregating. The main contribution of
this work is the proposition of the novel weighted aggre-
gation operators which do not require learning and their
evaluation on the basis of computer experiments carried
out on the pool of benchmark data sets which confirm the
usefulness of proposed approach for a particular classification
tasks.
The next section presents a short introduction to weighted
aggregating, discusses the motivations of the research, and
includes introduction into proposed combination rule. Then,
the results of the experimental comparative study of proposed
combiners and well known untrained aggregation methods
are presented. The last section concludes the paper.

II. UNTRAINED AGGREGATION METHODS

In this section we focus on the weighted aggregating,
therefore let’s assume that each individual classifier makes a
decision on the basis of the values of support functions.

A. Weighted aggregation

Let I = {TW, w® . @M1} be the pool of n individual
classifiers and I}y (x) stands for a support function that
is assigned to class ¢ (i € M ={1,...,M}) for a given
observation z [ x € X = {x(l)’“'?m

by the k-th classifier ¥*) from the pool II.
The combined classifier ¥ () uses the following decision
rule

} , and which is used

U (z) = argmax Fy(z),
keM

ey

where Fy(x) is the weighted combination of the support
functions of the individual classifiers from II for the class
k . Let us consider the possibilities of weight assigning [17]:

1) Weights dependent on classifier - this is a traditional
approach where weights are connected with classifier
and each support function of the k-th classifier is
weighted by the same value wy.

2) Weights dependent on classifier and feature vector -
weight wy(x)) is assigned to the k-th classifier and for
a given x which has the same value for each support
function used by it.

3) Weights dependent on classifier and class number
- weight w; 1, is assigned to the k-th classifier and the
i-th class. For a given classifier, weights assigned for
different classes could be different.



4) Weights dependent on classifier, class number, and
feature vector - weight w; () is assigned to the k-th
classifier, but for given x its value could be diverse for
different support functions assigned to each class.

It is worth noting that Wozniak and Zmyslony [31] argued
that the most promising direction is that the weights depend
on the classifier number and the class label, because cases
where weights are dependent on the feature vector are de
facto function estimation problems that require additional as-
sumptions about them and which usually lead to a parametric
case of function estimation.

n n
Fi(z) = szkﬂk(x) and Vi e M Zw“‘? =1. 2)
k=1 k=1
The considered case does not require any additional as-
sumptions and the formulation of the optimization task is
quite simple. They proposed two simple frameworks of
combination rule learning, the fist one employs neural ap-
proach, while the second one exploit strength of evolutionary
approach. The set of computer experiments carried out on
the wide range of benchmark data set confirmed the useful-
ness and quality of proposed methods. Nevertheless, such
approach requires additional learning information, usually
in the form of learning set to train the combination rule.
For many practical cases such a set could be unavailable,
while we can have a pool of already trained classifiers at
our disposal. Although, we do not have additional learning
examples the aggregating operators are de facto weighted
aggregating taking into consideration weights dependent on
classifier, class label, and feature values.

Fi(z) = Zw,k(aﬁ)sz(w) and Vi e M Zwm(x) =1.
k=1

k=1

3)
Here, we have to stress that such operators assign the weights
arbitrary, i.e., weight values are not results of the learning
task. Therefore untrained aggregation methods can be only
applied in such a case. On the other hand, simple aggregation
are subject to very restrictive conditions what severely limits
they practical use [32].

B. Proposed combination rules

In this work we employ the forth proposition of weight
assigning. Therefore, we should look for new untrained
aggregation operators which could exploit the competencies
of the individual classifiers. The simple operators as max-
imum or average usually behave reasonably well but their
work could be spoil by very unprecise estimators of the
support functions used by only a few classifiers from a pool.
Therefore we propose the modifications of the mentioned
above operators which take into consideration all available
support functions returned by the individual classifiers from
the pool, but the functions which have the similar values
to maximum or average have the strongest impact in the
final value of the common support function calculated by
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using eq. 3. The proposed operators are called N-AVG and
N-MAX and can be calculated according to the Alg. 1. The
only difference is the calculation of the F;(x).

For N-AVG it is calculated according to

N
Fi p(x)
Filx)=*=L 4
() = E @)
and for N-MAX using the following formulae
Fi(r) = max Fj (). 5)

kemM

Algorithm 1 General framework for the weight calculation

Require: II - pool of elementary classifiers
F; ;.(x) - support function value for each class 4 returned
by each individual classifier £ from II
Ensure: w; ;(z) - weights assigned to each support function
F; 1(x) which could be used in eq.3
1: for i :=1 to M do
2: w:=0
3. Calculate F;(x) according to eq. 5 for N-MAX or
according to eq. 4 for N-AVG

4. for k:=1tondo _

s: wik(x) = m}ﬁ exp (7(F""k(;;;Fi(I)))
6: w = w + w; k()

7:  end for

8: for k:=1tondo

9: Wik 1= wL%(x)

10:  end for

11: end for

The only parameter of the proposed operators is ¢ which
equivalent of standard deviation in normal distribution. For
our research we fix o = 0.5.

III. EXPERIMENTAL INVESTIGATIONS

The aims of the experiment were to check the performance
of the two proposed aggregation operators N-AVG and N-
MAX and to compare them with several popular methods
for aggregating classifiers.

A. Datasets

In total we chose 10 datasets from the UCI Repository. For
datasets with missing values (autos, cleveland and dermatol-
ogy), instances without full set of features available were
removed. Details of the chosen datasets are given in Table I.

B. Set-up

As a base classifier, we have decided to use neural net-
work (NN) - realized as a multi-layer perceptron, trained
with back-propagation algorithm, with number of neurons
depending on the considered dataset: in the input layer equal
to the number of features, in the output layer equal to the
number of classes and in the hidden layer equal to half of
the sum of neurons in previously mentioned layers. Each
model was initialized with random starting values and their



TABLE I
DETAILS OF DATASETS USED IN THE EXPERIMENTS.

No. | Name Objects  Features  Classes
1. Autos 159 25 6
2. Car 1728 6 4
3. Cleveland 297 13 5
4. Dermatology 366 33 6
5. Ecoli 336 7 8
6. Flare 1389 10 6
7. Lymphography 148 18 4
8. Segment 2310 19 7
9. Vehicle 846 18 4
10. | Yeast 1484 8 10

training process was stopped prematurely after 200 iterations,
in order to assure the initial diversity of the pool and that
we are working on weak classifiers.

The pool of classifiers used for experiments was homoge-
neous and consisted of 10 neural networks.

As a reference methods we decided to use popular clas-
sifier combination algorithms: majority voting (MV), maxi-
mum of support (MAX), average of supports (AVG), median
of supports (MED), product (PRO) and weights calculated
according to the individual accuracy of each classifier (IND)
[4].

For a pairwise comparison, we use a 5x2 combined CV
F-test [33]. It uses a five times two fold cross validation as
its basis. With this, we obtain training and testing sets of
an equal size. It is an all versus all comparison test. Test
score is expressed with the probability that two classifiers
have similar error rates (null hypothesis). An alternative
hypothesis assumes, that these two classifiers have different
error rates. If the difference in error rates is small, it can
mean that two models are constructed with similar error.
This implies that the hypothesis should not be rejected. If the
difference is large, we can assume that two classifiers exhibit
different errors and we should reject the given hypothesis.

For assessing the ranks of classifiers over all examined
benchmarks, we use a Friedman ranking test [34]. It checks,
if the assigned ranks are significantly different from assigning
to each classifier an average rank.

We use the Shaffer post-hoc test [35] to find out which
of the tested methods are distinctive among an n X n
comparison. The post-hoc procedure is based on a specific
value of the significance level «. Additionally, the obtained
p-values should be examined in order to check how different
given two algorithms are.

C. Results

Results of the experiments, presented according to the
accuracy and reduction rate of the examined methods, are
given in Table II. Outputs of Shaffer post-hoc test over
accuracy are given in Table III. We can derive the following
conclusions from the experiments:

o The proposed operators behaved reasonably well and
outperformed, with statistical significance, all of the
traditional methods for 5 out 10 data sets.
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o Modifications of the average operator N-AVG was sig-
nificantly better than the original one in 3 out 10 exper-
iments, while N-MAX (and N-AVG as well) was not
significantly better than the original maximum operator.

e The Shaffer test confirmed that the combination rule
which takes into consideration additional information
(coming e.g. individual classifier accuracy) can outper-
form untrained operators. This confirmed our intuition,
because the trained combination rule usually behave
better than untrained one, what was confirmed in the
literature.

o This test also showed that N-MAX is a slightly better
than N-AVG, and what is interesting it can outperform
most of the traditional untrained approaches except
maximum operator.

o Analyzing characteristics of the used data benchmark
sets we can suppose that proposed operators work
well especially for the classification task where the
number of possible classes is a quite high, but additional
computer experiments should be carried out to confirm
this dependency.

o Each of the proposed operators outperform majority
voting for almost all data sets. We can conclude, that in
the case of an absence of additional learning examples
(which can be used to train the combination rule) the
untrained aggregation is a better choice than voting
methods. This observation is also known and confirmed
by other researches as [36].

e Our proposed methods allow to establish efficient
weighted combination rules with a low computational
complexity. Trained fusers require an additional pro-
cessing time, which increases the complexity of the
ensemble. Our methods, due to their low complexity,
seem as an attractive proposition for real-life problems
with limitations on processing time, e.g., ensembles for
data streams.

IV. CONCLUSIONS

The paper presented two novel untrained aggregation
operators which could be used in the case of the absence
of additional learning material to train the combination rule.
Otherwise the trained combination rule should be advised.
The proposed methods could be valuable alternatives for
the traditional aggregating operators which do not required
learning and could be used in the mentioned above case
instead of voting methods, of course in the case that we can
access to the support function values of individual classifiers.
The computer experiments confirmed that performances of
the proposed methods are satisfactory compared to the tra-
ditionally untrained operators, especially for tasks when the
number of possible classes is high. Therefore, we are going
to continue the work on the proposed models, especially
we would like to carried out the wider range of computer
experiments which would define precisely the type of the
classification tasks when the N-AVG and N-MAX could be
used.
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TABLE 1T

COMPARISON OF THE CLASSIFIER COMBINATION METHODS, WITH RESPECT TO THEIR ACCURACY [%]. SMALL NUMBERS UNDER ACCURACIES STAND

FOR INDEXES OF METHODS, FROM WHICH THE CONSIDERED ONE IS STATISTICALLY SUPERIOR. LAST ROW STANDS FOR THE AVG. RANK AFTER THE
FRIEDMAN TEST.

Dataset MV! MAX? AVG? MED? PRO® INDS N-AVG” N-MAX?®
1. 62.34 65.84 64.23 65.01 63.05 65.43 67.54 66.32
- 1,3,4,5 1,5 1,3,5 - 1,3,5 ALL 1,3,4,5,6
2. 89.12 89.23 88.43 87.34  85.31 87.51 87.26 89.04
3,4,5,6,7 3,4,5,6,7 4,5,6,7 4 4 4 3,4,5,6,7
3. 52.38 57.23 57.43 58.12 55.64 58.71 55.02 57.14
- 1,5,7 1,5,7 1,2,5,7 1 ALL 1 1,5,7
4. 93.23 95.75 95.05 95.48 92.87 95.12 94.67 95.83
- 1,5,7 1,5 1,5,7 - 1,5 1 1,5,7
5. 71.02 77.43 75.36 72.18 71.61 78.79 79.62 77.60
- 1,3,4,5 1,4,5 1 - 1,2,3,4,5,7 ALL 13,4,5
6. 74.31 72.69 75.72 7342  73.12 74.28 73.90 77.12
2,4,5 - 1,2,4,5,6,7 2 2 2,4,5 2,4,5 ALL
7. 82.27 80.32 80.87 81.12 79.32 80.32 81.12 80.32
ALL 5 5 2,5 - 5 2,5 5
8. 86.23 86.74 87.54 84.32  85.62 87.22 86.89 91.21
4,5 4,5 1,2,4,5,7 - 4 1,2,4,5,7 4,5 ALL
9. 66.43 74.03 72.63 69.03 67.90 75.15 70.12 73.87
- 1,3,4,5,7 1,4,5,7 1,5 1 ALL 1,4,5 1,3,4,5,7
10. 43.41 52.36 49.78 46.03  45.02 54.39 50.11 57.98
- 1,3,4,5,7 1,4,5 1,5 1 1,2,3,4,5,7 1,4,5 ALL
Avg. rank 4.51 3.21 5.72 6.48 7.62 2.78 3.02 2.66
TABLE III

SHAFFER TEST FOR COMPARISON BETWEEN THE PROPOSED COMBINATION METHODS AND REFERENCE FUSERS. SYMBOL ’=" STANDS FOR

CLASSIFIERS WITHOUT SIGNIFICANT DIFFERENCES, '+’ FOR SITUATION IN WHICH THE METHOD ON THE LEFT IS SUPERIOR AND -’ VICE VERSA.

hypothesis p-value
N-AVG vs MV + (0.0423)
N-AVG vs MAX = (0.3895)
N-AVG vs AVG = (0.4263)
N-AVG vs MED = (0.2371)
N-AVG vs PRO + (0.0136)
N-AVG vs IND - (0.398)
N-MAX vs MV + (0.0262)
N-MAX vs MAX = (0.4211)
N-MAX vs AVG + (0.0249)
N-MAX vs MED + (0.0106)
N-MAX vs PRO + (0.0097)
N-MAX vs IND = (0.2768)
N-AVG vs N-MAX - (0.0314)
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