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Abstract— In this paper, we propose a new semi-
supervised growing neural gas (GNG) model, named
Consensus-Based Semi-Supervised GNG, or CSSGNG,
in which both labeled and unlabeled data are used to
train the network. In contrast to former adaptations
of the GNG to semi-supervised classification, such
as the SSGNG and OSSGNG models, the CSSGNG
does not assign a single scalar label value to each
neuron. Instead of the scalar, a vector containing the
representativeness level of every class is associated
with each neuron. Moreover, to propagate the labels
among the neurons the CSSGNG employs a consensus
approach. Computer experiments show that our mo-
del on average can deliver better classification results
in comparison to the SSGNG and OSSGNG models.

I. Introduction

SEMI-SUPERVISED learning has become an im-
portant research topic in machine learning. It lies

between two orthodox machine learning paradigms: un-
supervised learning and supervised learning. In contrast
to the supervised learning, which requires a completely
labeled dataset as input, or unsupervised learning in
which no knowledge of labeled data is considered, semi-
supervised learning (SSL) techniques can learn from both
labeled and unlabeled data.

Usually, unlabeled data is less costly to obtain than
labeled data; thus, semi-supervised learning becomes an
interesting and cheaper approach in situations where only
a small fraction of the data can be labeled. Moreover,
published results have shown that, in practice, unlabeled
can improve the performance of supervised classification
and also improve clustering when the labeled data is used
as constraints to guide the search for optimal partition
in the data [1]–[3].

There exists a variety of SSL methods built under fairly
distinct approaches, which includes: generative models
[4], [5]; multi-view methods [6]–[10]; cluster-than-label
methods [11], [12]; low-density separation models, such
as Transductive Support Vector Machines (TSVM) [13];
and graph-based methods [14]–[20]. For more information
regarding the SSL methods, we suggest the reading of [1],
[21], [22].

Machine learning approaches based on topological
maps, such as the Kohonen Self-Organizing Maps (SOM)
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[23] and the Growing Neural Gas (GNG) [24] have been
widely applied to unsupervised problems for representing
high-dimensional feature space into a low dimensional
map. In special, the GNG is a self-organizing incremental
network that can learn the intrinsic topological relation
of a dataset in an incremental fashion. During the lear-
ning phase, the GNG can adjust its topology by auto-
matically adding and removing neurons and connections
[24], [25], which is not allowed in the SOM. Thus, the
GNG-based algorithms are suitable for non-stationary
learning settings.

In its original form, GNG is an unsupervised technique
albeit it can be easily applied to perform data classifica-
tion in both supervised and semi-supervised paradigms.
In performing supervised data classification, Heinke and
Hamker [26] have shown that the GNG can outperform
some traditional classifiers, such as the MLP network.
Moreover, their study has also suggested that the GNG
has not a high sensitivity on parameters change, which
is a quite important finding.

Concerning the semi-supervised scenario, one can find
a few studies as in [27], [28]. Zaki and Yin [27] de-
veloped an algorithm named SSGNG (Semi-Supervised
Growing Neural Gas) using a self-training approach to
solve a semi-supervised classification problem. For the
same purpose, Beyer and Cimiano [28] presented the
OSSGNG algorithm (On-line Semi-Supervised Growing
Neural Gas). Unlike in [27], in their model, labeled and
unlabeled samples are processed in an on-line fashion
without the need to store the labeled samples as con-
sidered in [27]. Both SSGNG and OSSGNG are able
to provide good classification results even though some
improvements can still be pursued. For example, for a
number of applications, these strategies may require a
high computational time due to their label propagation
characteristics. More information about these models and
their limitations are depicted in the next section.

In this paper, we propose a novel GNG-based method
for SSL, named Consensus-Based Semi-Supervised GNG,
or CSSGNG. In contrast to the former approaches, th-
rough a consensus process, our model can deliver better
classification results and also more information with
regard to the classification confidence of each sample.
This last information can be used, for example, to query
the specialist about new labels, i.e. active learning, and
also to solve multi-class classification problems.

This paper is organized as follows. Section 2 revisits
the original GNG algorithm and its former adaptation
to SSL. The semi-supervised classification method pro-
posed in this paper is presented in Section 3. Computer
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experiments are presented in Section 4. Finally, Section
5 draws some concluding remarks and points up some
future work.

II. Background
This section revisits the original GNG model [24] and

its two main extensions to semi-supervised classification:
the SSGNG and the OSSGNG algorithms.
A. The Original GNG

Growing Neural Gas (GNG) is a competitive self-
organizing and incremental neural network. It was propo-
sed by Fritzke in 1994 [24] and can been seen as a model
that combines the Competitive Hebbian Learning model
(CHL) [29] with the Growing Cell Structures (GCS) [30].
The CHL model, proposed by Martinetz [29], introduced
the concept of creating edges between two winner neu-
rons for a given input data. On the other hand, the GCS
model, proposed by Fritzke [30], introduced a mechanism
to dynamically create neurons.

Roughly speaking, the GNG algorithm can be des-
cribed as follows: the network starts with two neurons
randomly disposed in the feature space. In each ite-
ration, a sample xi is selected from the input space
and presented to the network. Following a competitive
learning mechanism, a pair of neurons, s1 and s2 which
are, respectively, the first and the second winners, are
selected.

Algorithm 1: Present Sample.
Input: Sample xi

1 Find the first, s1, and the second, s2, winner
neurons.

2 s1 = arg min j∈V (xi −wj)2

3 s2 = arg min j∈V \{s1}(xi −wj)2

4 if there is a link between s1 and s2 then
5 reset the age of the link to 0.
6 end
7 else create the link and set its age to 0.
8 Update the local error Es1 by:
9 ∆Es1 = (xi −ws1)2

10 Update the weights of the winner neuron s1.
11 ∆ws1 = εb(xi −ws1)

12 Update the weights of the neighborhood of the
winner neuron s1.

13 ∆wj = εn(xi −wj) ∀ j ∈ δ(s1).

14 Increment the ages of all links adjacent to s1.
15 Remove all links with age larger than amax.
16 Remove neurons with no links.
17 Decrease the accumulated error of all neurons by

multiplying them with a constant β.
18 Ei = βEi ∀ i ∈ V.

Between this pair of neurons, a connection is
(re)established. Afterwards, the weights of the winner

neuron and its neighborhood, according to the network,
are updated leading to the movement of those neurons
towards the position of the input signal in the feature
space. These updates are with regard to the neuron
attributes, as summarized in Algorithm 1.

After a predefined number of iterations λ, new neurons
are included in the network, as shown in Algorithm 2.
These neurons are inserted in order to reduce the accu-
mulated error in the network. The accumulated error of a
neuron i is denoted by Ei. The insertion process works by,
firstly, selecting a pair of neurons in the GNG network
which will be the new neuron’s neighbors. This pair is
composed by the neuron q with the highest accumulated
error, (Eq ≥ Ej ∀j), and the neuron f within the
neighborhood of neuron q (here, the neighborhood of
a neuron q is denoted by δ(q)) with the highest error
(Ef ≥ Ej ∀j ∈ δ(q)). An overall description of the
original GNG algorithm is depicted in Algorithm 3.

Algorithm 2: Insert new neuron
Input: Input data

1 Insert a new neuron r according to the following
procedure:

2 Find the neuron q with the larger accumulated error.
3 q = arg max i∈R(Ei)

4 Among the neighbors of q, find f with the largest
accumulated error.

5 f = arg max viz∈δ(q)(Eviz)

6 Insert a new neuron, r, between q and f .
7 wr = (wq+wf )

2

8 Create links {q, r} and {r, f} and delete the original
link {q, f}.

9 Decrease the error of q and f by means of the
constant α and set the error of r according to the
mean of the errors of q and f .

10 Eq = αEq Ef = αEf Er = (Eq+Ef )
2

Owning to its structure, the GNG network can be seen
as a graph G = {V,M}, in which V is the set of neurons
(or vertices) and M the set of edges between neurons.

Algorithm 3: The original GNG algorithm for un-
supervised learning
Input: Set of input data

1 while The stopping criterion is not reached do
2 Present Sample(xi)
3 if the current iteration is a multiple of λ then
4 Insert new neuron()
5 end
6 end

Although several parameters must be empirically set
for the suitable functioning of the GNG network, most
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of them have well-known default values. Actually, as
reported in [26], the GNG is not sensitive to parameters’
changes. For instance, good convergence on the classifi-
cation results has been reported by using the following
setup:
• Transient to add a new neuron: λ = (300, 1000)
• Link’s maximum age: amax = (80, 120)
• Winner learning coefficient: εb ≈ 10−2

• Neighborhood learning coefficient: εn ≈ 10−3

• Neighboring error reduction: α = 0.5
• Error reduction rate: β = 0.995

B. Former GNG Adaptations to SSL

There are two main adaptations of the GNG neu-
ral network to semi-supervised classification, the Semi-
Supervised Growing Neural Gas (SSGNG) [27] and the
Online Semi-Supervised Growing Neural Gas (OSSGNG)
algorithm [28], both already mentioned before. The for-
mer, proposed by Zaki and Yin [27], follows a self-training
approach: first the model is trained with the labeled set;
then, the network classifies the unlabeled samples which
are gradually added to the labeled set. Iteratively, the
network is retrained using both the labeled and classified
unlabeled sets until the labels assigned to the unlabeled
samples become stable.

In the same scenario, the OSSGNG algorithm proces-
ses labeled and unlabeled samples in an online fashion
without the need to store the labeled samples as con-
sidered in [27]. Moreover, an additional step is used to
assign a label or even to recalculate the former label of
the winner neuron after the presentation of a labeled
input data. This algorithm also makes use of a prediction
function for labeling unlabeled data. Finally, it is worth
noting that the outcomes provided by the OSSGNG are
quite similar to those generated by the SSGNG.

In the SSL scenario, SSGNG and OSSGNG can pro-
vide good classification results albeit some improvements
can still be pursued. Nevertheless, they are characteri-
zed by the global propagation of the labels among the
dataset. This trait may lead to a high computational
processing, which may not be desirable for medium to
large-scale applications. Moreover, in both models the
label is associated to a single scalar value, thus, the
only information that can be retrieved from a neuron
is whether a sample belongs or to not to that class. It
can be a problem when the sample lies in between two
classes.

Taking this and other relevant issues into account,
we propose, through a consensus approach, an attempt
to overcome the possible drawbacks found in the GNG
adaptations to SSL, mainly those limitations with respect
to memory storage and label information. Hence, we
propose a new GNG-based online method for SSL, aiming
at improving classification results, primarily, with respect
to the classification confidence of each sample.

III. Model Description
In this section, we introduce our Consensus-Based

GNG model for semi-supervised classification (CS-
SGNG). For describing this model, first, consider a
set of n samples from which r of them are labe-
led. These samples, represented by the set X =
{x1,x2, ...,xr,xr+1, ...,xn} ⊂ Rm, compose the input
dataset in a m dimensional space. Each sample xi ∈ X
with i ≤ r has an associated label yi ∈ L, where
L = {1, 2, ..., t} defines the label set, being t the number
of classes.

Our model consists of a GNG network trained with
both labeled and unlabeled samples from X. In addition
to the weight vector that represents the position of the
neuron into the feature space, each neuron also has a
pertinence vector which defines its classification ability.
Instead of using a single scalar to label each neuron, such
as considered in SSGNG and OSSGNG models, here we
adopt a vector that represents the neuron’s pertinence
to each class of the problem. Thus, if necessary more
information about the class assigned to each neuron can
be provided. Further, the model can be straightly applied
to the multi-class classification problem.

Formally, let cj = {cj,1, cj,2, ..., cj,t} be the pertinence
vector of neuron j, in which each scalar cj,l defines the
representativeness level of a class l assigned to neuron
j. If we normalize the vector cj in order to make∑
l∈L cj,l = 1, for each sample xi represented by neuron

j, cj,l = p(xi|l) for all class l ∈ L. For assigning a
label to a sample xi, consider its winner neuron j, i.e.,
yi = arg max l∈L(cj,l). Nevertheless, instead of using a
single winner neuron, as we will show in Section 3, better
results can be achieved by considering a set of the κ-
nearest neurons.

The learning phase follows the standard unsupervised
GNG algorithm to evolve the network. In order to per-
form the classification, we must set correct values for
the pertinence vectors cj , for all neurons j. To solve
this problem, we developed two major modifications
into the unsupervised GNG algorithm. First, we show
a mechanism to absorb the available label information.
Afterwards, we introduce a consensus mechanism for pro-
pagating the labels among the neurons from the network.

A. Label Absorption
The label absorption mechanism is responsible for

setting the label information into the pertinence vector
of the winner neuron s1. It means, during the learning
phase, whenever a labeled sample is presented to the
network, the label information is used to set the vector
cs1 of the winner neuron s1. Algorithm 4 shows the
absorption label method proposed in this paper.

The pertinence vector cs1 of the neuron s1 assumes a
value equal to 1 only in l = yi, the other positions are
set to zero (Line 2 of Alg. 4). This approach guarantees
that the winner neuron s1 gets a higher probability of
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Algorithm 4: Label Absorption.
Input: The label yi of sample xi and the winner

neuron s1.
1 for each l ∈ L do

2 cs1,l =
{

1, if l = yi
0, otherwise.

3 end
4 for each j ∈ δ(s1) do
5 cj,yi

= 1
6 end
7 for each j ∈ δ(s1) do
8 Run the consensus method for neuron j III-B.
9 end

being labeled with the same class yi of the input sample
xi. In addition, the label information is also propagated
to the neighbor neurons of s1 albeit, in contrast to the
changes in the cs1 , only cj,l is set to 1. The positions of
this pertinence vector associated with the other classes
do not change.

After the local changes in s1 and in its neigh-
borhood δ(s1), the label information is spread through
the network in order to reach a label equilibrium, or
agreement, among the neighbor neurons. It means the
pertinence vector associated with each neuron is not set
only by the label information provided by samples that
activate this neuron. It is the result of the combination
of the local information provided by the labeled samples
with the neighborhood information, thus, a consensus by
the whole of neighbor neurons. This consensus approach
is thoroughly described in the next section.

B. Consensus
Consensus problems can be found in several study

fields (see [31]). Here, the consensus consists in reaching
to an agreement with respect to the pertinence values
among neighbor neurons. For instance, the consensus for
a neuron j with regard to a class l is defined as the
average of ci,l among every i ∈ δ(j) weighted by the
inverse of their distance to j (dj,i) plus its own pertinence
value for the label l, cj,l:

cj,l = γ

d̂j +
∑
i∈δ(j)

dj,i

cj,l
d̂j

+
∑
i∈δ(j)

ci,l
dj,i

∀l ∈ L
(1)

where γ is an attenuation factor and d̂j = mini∈δ(j) dj,i.
Following Eq. (1), a neuron j represents the class l with a
probability defined by its own pertinence value combined
with pertinence values of its neighborhood.

The attenuation factor γ is responsible for reducing the
pertinence value of a given label according to the distance
of neuron j to a labeled neuron. Thus, the further away
a neuron j is from a labeled neuron i, the lower its
pertinence value is for the label assigned to i.

C. The CSSGNG algorithm
As aforementioned, the CSSGNG can be seen as an

extension of the unsupervised GNG algorithm with two
main adaptations: the label absorption mechanism (Sec.
III-A), that transforms the unsupervised GNG into a
semi-supervised model; and the consensus (Sec. III-B),
which defines the pertinence of each class over the neu-
rons. Algorithm 5 depicts an overall description of the
proposed algorithm.

The label absorption occurs in an on-line fashion, it
means the labels are absorbed on the fly during the
learning phase. Consequently, in each iteration, the al-
gorithm must take two situations into account: whether
the input sample xi is a labeled or an unlabeled sample. If
xi is an unlabeled sample, the algorithm follows the same
standard steps of the original GNG. Otherwise, if xi is
labeled, the label yi is absorbed by the winner neuron
and by its neighborhood (See lines 3-5 of Alg. 5).

One can see that the consensus method acts on the
neighborhood of s1 just after the end of the label ab-
sorption (lines 7-9 of Alg. 4). As a consequence, neurons
representing regions of the feature space with no labeled
samples will not be part of the consensus process. In
order to solve this limitation, the consensus is run for
the whole network every time a new neuron is inserted,
or at every λ steps.

The insertion of new neurons is very similar to the
unsupervised GNG even though, here, this insertion con-
siders the setting of the pertinence vector. The process
is analogous to the strategy used to define the weight
vector w of the new neuron j:

cj = cq + cf
2 (2)

which is the halfway between neurons q and f .
After the learning phase, responsible for generating

the network and labeling all neurons, the model is ready
to assign labels to the unlabeled data. For performing
this task, there are two different ways. The first consists
in labeling each unlabeled sample xi presented to the
network by straightly using the pertinence vector of the
winner neuron s1. In this case, yi is computed by finding
the largest pertinence value, i.e., yi = arg max(cs1).

The second approach is also a consensus-based strategy
for labeling unlabeled data. For such, the pertinence vec-
tor of each unlabeled data xi presented to the network is
proportional to the average vector among the pertinence
vectors of its κ-nearest neurons. The pertinence vector of
xi also considers the sum of the distances between every
neuron j ∈ δ(κ) and the samples xi, where δ(κ) is the
set of the κ nearest neurons of xi. Therefore, one may
calculate ĉ by using the following equation:

ĉ =

 ∑
j∈δ(κ)

dj,xi

 ∑
j∈δ(κ)

cj,l
dj,xi

 ∀l ∈ L (3)
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Finally, in this second approach, xi is labeled according
to yi = arg max(ĉ). Algorithm 5 presents a pseudocode
summarizing all steps of the proposed consensus strategy,
the CSSGNG algorithm.

Algorithm 5: CSSGNG - Consensus-Based Semi-
Supervised GNG
Input: Set of input data

1 while The stopping criterion is not reached do
2 Present Sample(xi)
3 if xi is labeled then
4 Neuron s1 absorbs the label yi following

to Alg. 4
5 end
6 if the current iteration is a multiple of λ then
7 Insert new neuron()
8 for each neuron j ∈ V do
9 Run the Consensus method

accordingly to Equation 1
10 end
11 end
12 end

Next section presents some computer experiments car-
ried out using our model.

IV. Computer Experiments
In this section, we present a comprehensive evaluation

of the results achieved by the model proposed in this
paper. The simulations are divided into three parts. First,
we display an illustrative simulation using a synthetic
dataset. The main purpose behind this simulation is for
analyzing the performance of the model in a well-known
scenario. Second, we evaluate the classification accuracy
by varying κ-nearest neurons to compute ĉ (Eq. 3).
Finally, for the sake of comparison, we evaluate our model
by using the same methodology and datasets considered
in [1].

The values for the parameters of the CSSGNG
network, depicted in Table I, were empirically decided
and held constant in all simulations. Actually, as men-
tioned in Section II-A, the GNG parameters have well-
known values for which good results are achieved, thus
only the parameters γ and κ, introduced in our model,
went through a fine-tuning by a trial-and-error approach
in order to improve further the classification accuracy
of the model. Additionally, we employed a maximum
number of 200 neurons as the stop criterion of CSSGNG.
It is worth noting that the number of neurons is not a
core parameter. For any number between 150 and 250,
we barely obtain the same results for all datasets.

The first simulation we carried out was with the
dataset showed in Fig. 1(a), where just 6% of samples
are labeled (the red and blue squares). This dataset is
composed of 1000 samples equally divided into two clas-
ses. The accuracy achieved in a set of 100 realizations was

TABLE I
Parameters setting of the CSSGNG network.

εb εn λ α β γ amax κ
0.04 0.007 1000 0.5 0.995 0.95 120 4

(a) Input dataset

(b) Network

(c) Classification Result

Fig. 1. Illustration of the proposed model using a synthetic dataset.

superior to 98%. In order to facilitate the visualization
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Fig. 2. Correct classification rate versus κ-nearest neurons. Each
point in the trace represent the average of 100 realization in each
of the datasets depicted in Table II.

of the network, we limited the number of neurons to
100. Figure 1(b) depicts a network with 100 neurons
trained with the dataset presented in (a). Neurons are
labeled with either red or blue colors according to the
class they represent. The color saturation indicates the
label confidence, i.e., if the color of a neuron has a low
saturation (close to the white color), the probability
p(x|y) assumes similar values ∀y. The final classification
result is shown in Fig. 1(c)

Figure 2 shows the classification accuracy by varying
κ-nearest neurons. The results is an average of several
simulations using all datasets considered in [1]. It can be
observed that the accuracy is slightly improved when a
set of neighbor neurons are taken into account. Actually,
in order to not compromise the computational cost of
the classification procedure and to obtain some accuracy
gain, we set κ = 4. This setup is used in the following
simulation.

For the sake of comparison, the third part of the
simulations were conducted with benchmark datasets
studied in [1]1. Some information about these datasets
are presented in Table II. It is worth noting that all
datasets are balanced, except the USPS, in which the
classes are imbalanced with relative sizes of 1 : 4.

The same methodology used in [1] was used in this
work, i.e., the experiments were divided into two scena-
rios: one with 10 samples of each dataset were labeled and
the other with 100 samples of each dataset were labeled.
For each dataset, the same 12 folds provided by [1] were
taken into acount, enabling to a straight comparison
with all methods analyzed in [1]. Specifically, we compare
our results with the best and worst results achieved by
the methods analyzed in [1] for each dataset and also

1Available online at http://www.kyb.tuebingen.mpg.de/
ssl-book

TABLE II
Datasets from [1]

Dataset Class Dimension Samples Type
g241c 2 241 1500 synthetic
g241n 2 241 1500 synthetic
Digit1 2 241 1500 synthetic
USPS 2 241 1500 real
COIL 6 241 1500 real
BCI 2 117 400 real

with the arithmetic average of all methods regarding
to each dataset (worst, best, and average in Tables III-
IV). Moreover, we also compare our results with those
presented in [27], [28], and [19].

It is worth noting that, for the 10 labeled samples
scenario, the results for the SSGNG and the OSSGNG
models are missing. This scenario was not considered by
the authors in [27], [28].

Results with the 10−labeled and 100−labeled samples
configurations are presented in Tables III and IV, respec-
tively.

Regarding to the 10−labeled samples scenario, depic-
ted in Table III, our model achieved competitive results
providing accuracy superior to the average, and, in most
cases, close to the best results reported in [1]. Actually, in
the USPS dataset, our model reached the best accuracy.
In comparison to the model proposed in [19], our results
were superior for all datasets taken into account.

In Table IV, we depict our results in comparison to
those results reported in [1] and also the results achieved
by the SSGNG,the OSSGNG, and [19] models. Again,
it is possible to observe that our model achieved results
superior or equivalent to the SSGNG and the OSSGNG
models in all datasets, except to the BCI dataset. It
should be stated that by analyzing the outcome of both
models, we were not able to identify the reasons why our
model had a lower performance in this particular dataset.

Similarly to the previous scenario, our model also
provided superior results in contrast to those achieved
in [19]. Moreover, in comparison to the models analyzed
in [1], we achieved results superior to the average and, for
some datasets, accuracy close to the best results. Besides,
by analyzing the average results in all datasets, one can
observe that ours are higher than the average achieved
by the SSGNG, OSSGNG, and [19], which demonstrates
the accuracy and applicability of our model.

Finally, a negative aspect highlighted in Tables lies in
the standard deviation, especially when only a few labe-
led samples are considered. This higher standard devia-
tion in comparison to the model [19] can be interpreted
as a higher sensitivity of our model regarding to selection
of the labeled samples. However, as it will be stated
in the conclusions, the consensus approach proposed in
this paper can be used to guide the selection of samples
in an active learning approach. Thus, diminishing or
eliminating this sensitivity problem.
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TABLE III
Accuracy rate for the Chapelle Benchmark datasets: g241c, g24d, Digit1, USPS, COIL, BCI, 10 labeled samples

Datasets Proposed Model Model [19] Average Worst Best
g241c 74.04±11.39% 55.95±3.30% 59.54% 50.41% 77.24%
g241d 70.11±14.97% 56.78±2.89% 55.84% 49.37% 81.27%
Digit1 87.00±6.98% 76.42±5.79% 85.05% 69.40% 94.56%
USPS 85.58±3.95% 80.51±3.55% 80.88% 74.64% 83.93%
COIL 38.95±6.25% 35.50±4.41% 35.83% 32.50% 45.46%
BCI 51.77±2.35% 51.26±2.83% 50.69% 49.64% 52.05%

Average 67.91% 59.40%

TABLE IV
Accuracy rate for the Chapelle Benchmark datasets: g241c, g24d, Digit1, USPS, COIL, BCI, 100 labeled samples

Datasets Proposed Model Model [19] SSGNG [27] OSSGNG [28] Average Worst Best
g241c 79.42±6.44% 59.72±2.25% 49.64% 52.98% 72.91% 55.95% 86.51%
g241d 90.26±2.43% 62.51±1.61% 44.03% 62.66% 72.32% 56.79% 95.05%
Digit1 96.14±1.02% 94.16±1.38% 96.20% 96.77% 96.21% 93.85% 97.56%
USPS 93.76±1.38% 91.37±0.97% 92.58% 93.07% 93.13% 90.23% 95.32%
COIL 81.02±2.16% 81.02±1.83% 75.49% 81.45% 80.05% 71.29% 90.39%
BCI 60.29±1.94% 55.17±1.77% 80.51% 79.47% 58.36% 52.11% 66.75%

Average 83.48% 73.99% 73.08% 77.73%

V. Conclusions

We have proposed a new model based on the Growing
Neural Gas network for semi-supervised classification. In
contrast to previous GNG-Based SSL models in which a
single scalar were used to assign a label to each neuron,
here a pertinence vector has been considered to store
the representativeness level of each class of the problem.
Thus, more information about the classes can be retrie-
ved from each neuron. Moreover, the label propagation
through the network was performed by a consensus
approach proposed in this work. Finally, the experiments
have shown that the proposed approach was able to
achieve superior results in comparison to the SSGNG
and the OSSGNG models and competitive results in
comparison to the best ones reported in the literature.
As a future work we intend to explore the consensus
information of the pertinence vector in order to query the
specialist about labels (active learning). For instance, by
analyzing the pertinence vector, one can find the most
confident neurons and also those who have no confidence
about which class it belongs to. Thus, that outcome
might be used to indicate the regions of the feature space
that need further inspection of the specialist. In addition,
by using the intrinsic characteristics of the pertinence
vector, we intend to used our model to solve multi-class
classification problems.
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