
Support Vector Regression of Multiple Predictive Models of
Downward Short-wave Radiation
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Abstract— Accurate forecasts of weather conditions are of
the utmost importance for the management and operation
of renewable energy sources with intermittent (stochastic)
production. With the growing amount of intermittent energy
sources, the need for precise weather predictions increases.
Production of energy from renewable power sources, such as
wind and solar, can be predicted using numerical weather
prediction models. These models can provide high-resolution,
localized forecast of wind speed and solar irradiation. However,
different instances of numerical weather prediction models may
provide different forecasts, depending on their properties and
parameterizations. To alleviate this problem, it is possible to
employ multiple models and to combine their outputs to obtain
more accurate localized forecasts. This work uses the machine-
learning tool of Support Vector Regression to amalgamate
downward short-wave radiation forecasts of several numerical
weather prediction models. Results of SVR-based multi-model
forecasts of irradiation at a large set of locations show a
significant improvement of prediction accuracy.

I. INTRODUCTION

Photovoltaic (PV) electricity generation has been rapidly
increasing in many countries around the world. Installed
capacity over the last decade reached at least 96.5 GW and, at
the end of 2012 (IEA PVPS 2013), PV could produce around
115 TWh of electricity on a yearly basis. This represents
0.6% of the world electricity consumption in 2012. PV also
represents 20% of the world’s installed capacity of renew-
ables, excluding hydropower. Some countries have the ability
to produce more than 5% of their electricity production (e.g.
Italy and Germany). Accelerated development of new PV
industry can be expected in several major countries outside
Europe: in China, India and in other Asian countries, and
also in the Middle East, South and Central America, and in
Africa.

However, the outputs of PV systems are very volatile and
they exhibit variability at all timescales from seconds to
years. The forecasting of PV output is very difficult and new
methods and approaches are rapidly being developed and
tested. Among them, numerical weather prediction (NWP)
plays a key role in the short term prediction horizon from
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several hours up to several days ahead. However, these
models are very sensitive to initial and boundary conditions
provided as the input to the forecasting process, along with
digital elevation models and gridded characteristics of the
Earth surface. One way to improve solar and PV forecasting
is to combine forecasts from different NWP models. In this
article, we use Support Vector Regression (SVR) techniques
to combine outputs of four different NWP models to obtain
a more accurate forecasts of downward short-wave radiation
for a specific location.

This article is organized in five sections. Section II pro-
vides an introduction to PV power forecasting process and
outlines methods used for solar irradiance prediction at
different time horizons. Other studies related to forecasting
of energy-related weather phenomena are summarized in
Section III. The next section IV briefly introduces SVR,
the machine learning method used to combine multiple
NWP models. The models, data and procedures used for
experiments are described in section V. The last section VI
provides major conclusions and suggests several possibilities
for future work.

II. BACKGROUND

Forecasting of PV power production is typically based
on the prediction of solar irradiance. The entire forecasting
chain usually involves: prediction of global horizontal solar
irradiance→ transformation of these predictions to irradiance
on a slanted solar panel → transformation of the obtained
irradiance on slanted solar panel to prediction of PV power
production. All the steps of this tool chain are critical for a
successful prediction.

The first step contributes a substantial part of forecast error
into final prediction due to the complexity of atmospheric
dynamics in general and the complexity of physical processes
related to optical properties of atmosphere in particular.
Therefore a lot of attention is given to proper prediction of
horizontal solar irradiance.

Approaches used for the forecasting of global horizontal ir-
radiance include methods of mathematical statistics, artificial
intelligence and machine learning, and methods of numerical
weather prediction. Their performance depends mainly on
forecasting horizon and the type of underlying data. Several
or all these methods can be combined to form an ensemble
of predictors.

Time series modeling usually outperforms other tech-
niques for short prediction horizons (typically up to 2 hours).
Methods used for this type of predictions can be based
on statistical time series methods (comparison of several
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time series approaches can be found, e.g., in [1]) or on the
artificial neural networks or other methods of computational
intelligence (CI). Reviews of CI methods for solar radiation
prediction can be found in [2] and in [3]. Methods based
on the extrapolation of cloud motions can be advantageous
for horizons ranging from several minutes up to 6 hours.
Underlying data for the prediction are either satellite data
or images from ground-based sky imagery. Examples of the
work based on cloud motion extrapolation can be found
in [4], [5] and [6].

NWP models are used for horizons from hours to days
ahead, although the forecast skill decreases gradually for
horizons longer than 3 days; the longest still useful forecast
horizon is somewhere around 15 days ahead. Widely used
choices for solar irradiance forecasting are the NWP models
MM5 [7] and WRF [8]. Both models offer multiple options
for the parameterizations of cloud microphysics, planetary
boundary layer processes and for shortwave and longwave
radiative transfer in the atmosphere. Evaluation of the skill
of numerical weather prediction model with respect to global
horizontal irradiance forecast is discussed e.g. in [9], and [10]
(together with performance of different parameterizations).

Longer horizons cannot be reliably forecast by numerical
weather prediction and various statistical approaches based
on historical data are used. Typical source of the data for
long-term forecasts (weeks, months or even years ahead) are
historical measurements (in-situ or satellite, see e.g. [11]) or
meteorological reanalyses (e.g. [12]).

III. RELATED WORK

An accurate prediction of weather phenomena such as
solar irradiance and wind power is a key factor for effi-
cient PV and wind electricity generation in the context of
power consumption forecasting, infrastructure and mainte-
nance planning, grid connectivity etc. Forecasting models
proposed in the literature predict either solar irradiance and
wind speed or directly the power generated by PV and wind
power plants. The need for accurate predictions has led to an
extensive research in this area. This section provides a brief
overview of recent applications of ANNs, SMVs, and related
(hybrid) techniques to weather phenomena predictions. A
motivation and an overview of various approaches (i.e.
persistent, physical, statistical, and machine learning-based
approaches) to wind power forecasting was given in 2010
by Lydia and Kumar [13]. The machine learning techniques
surveyed in the work included ANNs and SVMs.

A. SVM-based approaches

Illuminance prediction by Support Vector Regression
(SVR) was proposed by Bellocchio et al. in 2011 [14]. The
study showed that the proposed approach outperformed sev-
eral naı̈ve predictors. However, the data used by the authors
for forecast accuracy comparison contained comprehensive
information of previous illuminance (e.g. illuminance one
hour ago, average illuminance etc.). A machine learning-
based method for the creation of site-specific power genera-
tion prediction models for small-scale installations (e.g. smart

homes) has been proposed by Sharma et al. [15]. The study in
fact predicted site-specific solar irradiance in Wm−2 which
was then used to compute power output. Among the models
compared in scope of the study, a SVM with RBF kernel
function performed best when processing 7 weather attributes
(day, temperature, dew point, wind speed, sky coverage,
precipitation, and humidity) on input and predicting the
irradiance for the next 3 hours.

B. ANN-based approaches

Another short-term solar irradiance prediction method
utilizing time delay neural network (TDNN) is due to Ji
and Chan [16]. The authors used a combination of Au-
toregressive and Moving Average (ARMA) and TDNN to
predict hourly solar irradiance in Singapore. It was shown
that a hybrid combination of ARMA and TDNN performs
for the conditions in Singapore better than individual models.
An application of a simple multilayer feed forward neural
network to PV power plant output prediction was investigated
in 2012 by Prokop et al. [17]. The prediction by ANN was
compared to prediction obtained by Adaptive Network-based
Fuzzy Inference System (ANFIS) which performed better.
Zarnani et al. [18] proposed a new SVM based method for the
prediction of a different weather phenomena - ice accretion
on electric power lines. The SVR-based model investigated
in the study was compared to a number of other ice accretion
forecasting techniques and it was concluded that it performs
better than the other state-of-the-art methods. A series of
evaluations covering a “single-storm” scenario (both training
and test data comes from single storm) and ”multiple-storm”
scenario (training data is from one storm, test data comes
from another storm) was performed to support the findings.

C. Hybrid approaches

A number of studies focusing on the prediction of so-
lar irradiance, wind speed, or renewable power production
was published in 2013. Voyant et al. [19] proposed a hy-
brid methodology for short-term global irradiance prediction
in the Mediterranean. The proposed algorithm combined
ARMA and ANN and evaluated a number of ARMA/ANN
configurations on data sets obtained from weather stations
from the south of France. The best model found by the study
selected particular predictor on the basis of the clear sky
index and slightly outperformed other predictors. However,
as noted by the authors, the prediction accuracy improvement
obtained by the hybrid model was not overwhelming. Mellit
et al. [20] used two ANNs (one for cloudy days, one for
clear days) for PV power plant output prediction. The study
showed that the ANNs perform better than other models
(e.g. linear and polynomial regression, analytical model, one-
diode model).

Chen et al. [21] used a combination of Fuzzy System
and ANN for the prediction of energy produced by a grid-
connected PV system. In the proposed method, a number
of ANNs were trained to forecast solar energy at different
sky conditions (e.g. cloud coverage). In the prediction phase,
the fuzzy system selected particular ANN on the basis
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of momentary cloud coverage and the ANN predicted the
power output. The hybrid method was compared to statistical
methods and individual fuzzy and ANN-based predictors and
found better.

Yan et al. [22] used in 2013 an optimized Relevance
Vector Machine (RVM) for the prediction of wind power
values and range at certain confidence level. The proposed
method focused on large-scale wind farms and used self-
organizing feature mapping to cluster the turbines into groups
for which models were developed. The models were used
to correct NWP errors in each month (i.e. model for each
month was created for each turbine group). The parameters
of RVM models in the study were optimized by Particle
Swarm Optimization and compared to SVM and Genetic
Algorithm/ANN based prediction models. It was concluded
that the short-term prediction error of the optimized RVM
was lowest, but the training time of SVM was shorter.

Another study dealing with ANNs in order to predict PV
power plant output is due to Zhu and Yao [23]. The neural
network in this work was trained (using the backpropagation
algorithm) to process some NWP information (solar radiation
intensity, temperature, humidity) and provide accurate short-
term power output forecasts. A SVR-based PV power output
predictor was a part of recent study by Prokop et al. [24].
The authors compared a simple ε-SVR based model with
a method based on artificial evolution of fuzzy rules and
concluded that both methods provide acceptable predictions.

A simple method for low-cost micro-forecasts was devel-
oped by Mammoli et al. [25]. The proposed system obtained
images of sky above certain location and processed them
using an ART-type neural network (Lateral Adaptive Priming
Adaptive Resonance Theory) to provide a one-minute-ahead
predictions of the power produced by the PV system. An
emphasis was put on the simplicity and low-cost of the whole
system rather on the comparison with other state-of-the-art
predictors.

Bouzerdoum et al. [26] used a hybrid combination
of Seasonal Auto-Regressive Integrated Moving Average
(SARIMA) and SVM for short term forecasts of power
output of a small PV power plant. It was shown that the
hybrid method was better (in terms of prediction accuracy)
than both individual methods. In [27], Qu et al. used a
combination of ARMA and SVM to correct NWP errors of
wind speed forecasting. The ability of SVM to correct wind
speed forecasts from raw NWP data and from data corrected
by ARMA was compared and it was concluded that the latter
yielded better corrections (i.e. more accurate forecasts).

Another recent hybrid model for wind and PV power pro-
duction forecasting is due to Quan et al. [28]. The algorithm
used a hybrid evolutionary-neuro-fuzzy system to provide
accurate hourly forecasts of the power produced by PV and
wind components of the system. It was shown, among others,
that the wind speed and henceforth wind power was harder
to predict.

Ishak et al. [29] used a number of techniques to cor-
rect the errors in wind speed prediction provided by the

MM5 numerical model. The authors used multiple linear
regression, non-linear regression, ANN, and SVM to reduce
error in MM5 wind speed forecast on the basis of other
parameters estimated by the MM5 (i.e. temperature, relative
humidity, solar radiation, and rainfall) and evaluated them on
data obtained on a single location in Somerset, Southwest
of England. It was shown that SVM performs better than
ANN and simpler models. The simple (regression) models,
however, were easier to implement and parametrize.

IV. SUPPORT VECTOR REGRESSION

Support vector regression (SVR) is an extension of support
vector machines (SVM), a family of popular supervised
machine learning tools based on statistical learning theory
originally proposed by Vapnik [30], [31].

A. SVM algorithm

SVM were designed to find an optimal directed hyperplane
separating two non-overlapping classes of data with the help
of support vectors (i.e. the points in the data closest to
the separating hyperplane) [31]. However, later extensions
enabled the SVM to learn and classify multiple classes of
data, overlapping classes, and noisy data by the introduction
of slack variables ξi, ξ∗i that enable soft-margin classifiers
[32], [31].

The SVM uses a linear separating hyperplane to con-
struct a classifier with maximum margin by the means of
constrained non-linear optimization [30]. Data that is not
linearly separable can be processed by the SVM with the
help of kernel substitution, i.e. a translation of input data to
a high-dimensional feature space where it might be linearly
separable [33], [31]. The SVM combines both, success in
practical applications and well-established theory.

The basic SVM for binary classification aims to learn a
decision function [31]

f(x) = sign(w · x+ b), (1)

where · is dot product, x is the set of input data vectors
(points) x1, x2, . . . , xm, f(x) is the vector of corresponding
labels y1, y2, . . . , ym, subject to yi = ±1, sign is the
signum function, and w is the vector of weights. In a
geometrical representation, the hyperplanes w · x + b = 1
and w · x + b = −1 are called canonical hyperplanes and
the area between them margin band. Maximizing the margin
(i.e. finding optimal hyperplane) involves maximization of
the function

W (α) =
m∑
i=1

αi −
1

2

m∑
i,j=1

αiαjyiyjK(xi · xj) (2)

subject to

αi ≥ 0,
m∑
i=1

αiyi = 0, (3)

where K is a kernel used for mapping of input data to high-
dimensional feature space (kernel substitution) and αi, αj are
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Lagrange multipliers. Bias b is given by [31]

b = −1

2

[
max

{i|yi=−1}

( m∑
j=1

αjyjK(xi, yi)
)

+ min
{i|yi=1}

( m∑
j=1

αjyjK(xi, yi)
)]
. (4)

B. SVR algorithm

In contrast with SVM, SVR aims to learn the mapping
of data to real-valued labels [31], [32], [34]. The ε-SVR
algorithm aims at learning a function f(xi) that has at most
ε deviation from corresponding yi [34]

f(x) = w · x+ b (5)

and leads to maximization of linear or quadratic ε-insensitive
loss function. The linear ε-insensitive loss function is given
by [31]

W (a, a∗) =
m∑
i=1

yi(αi − α∗i )− ε
m∑
i=1

(αi + α∗i )

− 1

2

m∑
i,j=1

(αi − α∗i )(αj − α∗j )K(xi, xj) (6)

subject to
m∑
i=1

αi =
m∑
i=1

α∗i , αi, α
∗
i ∈ [0, C] (7)

The ε-SVR can be visualised as a tube around hypothesis
function which outlines training errors from valid training
points.

V. EXPERIMENTAL RESULTS

A. Models and Data

Four different numerical weather prediction (NWP) model
versions have been chosen based on the previous experience
that each of the configurations, and selection of physical
parameterizations can give widely differing forecasts of
cloudiness and solar radiation. Performance of particular
NWP configuration depends on a type of weather situation
and each NWP model can be better that the others based
on the season of year, atmospheric circulation type, vertical
stability of the atmosphere etc.

Following model versions and configurations have been
used:
• Model 1 (MM5 36): MM5 version 3.6, RRTM radiation

scheme, Grell cumulus parameterization, 26 vertical
levels

• Model 2 (MM5 37): MM5 version 3.7, RRTM radiation
scheme, Grell cumulus parameterization, 31 vertical
levels

• Model 3 (WRF 22): WRF version 2.2, Dudhia radiation
scheme, Kain-Fritsch cumulus parameterization, 39 ver-
tical levels

• Model 4 (WRF 34): WRF version 3.4, Goddard radia-
tion scheme, Grell cumulus parameterization, 39 vertical
levels

TABLE I
ε-SVR PARAMETERS USED FOR IRRADIANCE PREDICTIONS

CORRECTION.

Parameter Value

algorithm ε-SVR
kernel radial basis function e−γ|u−v|

2

loss function parameter ε 1e−6

termination tolerance p 1e−6

cost parameter C 2500
kernel function parameter γ 1

Each of the models was run for the same area and time
period. Two nested domains have been used covering central
Europe in 27 km and 9 km resolution. Simulation period was
8 months - from May to December 2011.

The simulation has been reproduced in genuine forecast
regime. Predictions were initialized from NCEP GFS global
model and predictions have been evaluated for the 24-48
hours forecast horizon.

Measurements of horizontal solar irradiance originate from
the network of 51 stations operated by the Czech Hydrome-
teorological Institute. Compared quantity corresponds to av-
erage hourly irradiance (in Wm−2) and its model equivalent.

B. Experiments

The ε-SVR algorithm was used to learn models for accu-
rate correction of downward short-wave radiation predictions
provided by the NWP models. The data for each station
was divided into training (first 50% of the data) and test
(second 50% of the data) subset. Both the test and training
data for each station spanned multiple full days of model
forecasts (e.g. traning data from AKOBA station covered the
period from 06/03/2011 5:00AM to 08/04/2011 11:00 AM
and the test data covered the period from 08/04/11 12:00
PM to 12/31/11 3:00 PM). A separate correction model was
developed for each station by ε-SVR.

Each correction model was learned from the training
subset and evaluated on the full data set (i.e. training and test
data set) in order to provide a forecast that can be compared
with the NWP models that always spanned the full data set.
The parameters of the ε-SVR algorithm, shown in table I,
were set based on initial trials and previous experience with
the method.

C. Results Description

The results of the conducted experiments are shown in
table II and table III respectively. Table II shows the average
absolute mean error of forecasts provided by each method
for every weather station. The SVR-based correction is com-
pared with raw (uncorrected) NWP forecasts and forecasts
with corrected bias (see [35] for details on irradiance forecast
bias correction). It can be seen that the SVR-corrected
forecasts were in all cases more accurate than both the
original forecasts provided by the NWP models alone and
bias-corrected forecasts.
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TABLE II
MEAN ABSOLUTE ERROR OF IRRADIANCE PREDICTIONS BY EACH METHOD FOR EACH STATION [WM−2]. LOWER IS BETTER.

Forecast model (uncorrected) Forecast model (bias corrected)
Station ε-SVR MM5 36 MM5 37 WRF 22 WRF 34 MM5 36 MM5 37 WRF 22 WRF 34

AKOBA 91.190 119.439 115.841 109.636 129.971 92.0211 107.224 82.8138 88.6244
ALIBA 85.2342 119.453 107.848 98.265 111.582 86.9746 100.651 78.5866 84.3815
AREPA 78.8115 102.503 104.493 110.895 139.761 90.5438 104.913 84.4662 91.1163
ASMIA 93.1683 144.863 128.092 105.899 115.708 92.5371 103.668 84.036 89.4018
ASUCA 63.1851 96.4012 103.259 113.17 142.832 93.1717 109.95 85.6494 93.9905
BMISA 68.8534 96.7447 97.5955 103.795 128.158 97.3625 109.163 85.3875 85.4922
CHVOA 77.9054 108.267 101.725 107.695 115.371 100.582 110.701 83.7971 91.1282
EPAUA 73.5852 108.93 96.4919 95.092 112.376 89.4 99.7781 78.5812 81.2312
HHKBA 72.6831 116.694 99.3801 87.6625 107.618 92.9176 101.511 79.4897 82.5607
HKRYA 105.022 140.574 125.211 115.494 119.53 90.4256 100.272 85.4038 85.7559
HSERA 76.732 98.3612 96.6656 105.85 129.141 86.2947 102.064 83.8034 90.7001
HTRMA 92.1769 137.45 118.121 104.832 114.036 92.343 99.1507 84.7813 86.4406

JJIHA 75.2275 109.714 103.129 95.4972 109.362 93.3919 106.518 83.3158 87.5967
KCHMA 95.378 154.36 135.411 110.03 109.222 97.4519 110.522 92.204 97.0807
KKVMA 82.3831 113.398 102.991 95.9768 117.991 87.3257 99.7186 79.9588 88.4805
KPRBA 76.4059 106.483 96.5602 95.5595 104.446 86.4606 102.733 89.5983 101.261
KSOMA 85.7751 122.811 109.483 99.072 108.768 88.7333 102.897 84.3487 92.7993
LCLMA 80.459 111.544 101.04 99.6344 118.901 85.059 100.361 82.7129 87.8219
LFRUA 68.6459 101.125 89.0805 87.6492 101.328 84.9175 98.6977 74.8309 86.6284
LLIMA 73.7993 94.4371 97.4398 107.471 130.498 89.1884 105.183 86.6645 95.3464
LSOUA 85.0755 117.591 102.453 102.166 109.631 88.6277 100.531 89.3338 100.69
MJESA 82.5898 105.537 102.507 101.755 122.068 87.915 101.686 78.4237 89.2933
MPRRA 78.0429 103.117 102.477 98.3812 114.551 92.8973 106.82 77.1358 77.7275
MPSTA 68.7543 95.7844 97.3943 112.17 141.555 96.572 105.108 83.4614 84.6737
PPLVA 85.6755 112.784 108.762 102.196 118.8 86.1388 106.882 84.2071 85.6631
SBERA 59.7994 89.6569 107.764 135.7 169.75 91.0222 111.368 93.0668 100.89
SKLMA 76.9878 110.798 102.372 91.1876 114.032 85.2268 102.876 75.3562 81.7533
SMBOA 93.3806 147.002 136.964 109.31 112.631 90.1176 108.88 88.2464 89.181
SONRA 66.626 92.7768 101.064 115.305 144.587 90.0134 108.677 88.3429 94.5302
TBKRA 89.7243 109.319 109.93 116.358 135.592 97.3676 106.557 87.2725 97.3874
TKARA 98.1242 113.018 117.759 128.239 153.463 96.5927 112.573 93.7163 96.9476
TOFFA 66.281 95.6009 94.4563 95.4963 122.39 91.3276 103.316 81.164 85.1841
TOVKA 79.3879 113.349 100.175 90.9064 107 89.9584 98.2172 76.3266 81.7606
TSTDA 68.6323 97.0063 95.1463 95.1218 126.169 90.7928 104.808 80.8334 87.945

UCHMA 89.6388 126.067 112.835 102.236 120.468 87.4439 95.8244 74.2407 80.4997
UDCMA 67.4403 87.8871 92.8778 106.848 135.657 84.7573 101.157 86.3081 91.2823
UKRUA 71.1658 93.2403 101.304 111.62 147.2 83.5942 103.016 82.9274 88.3344
ULOMA 83.7468 109.617 102.124 101.786 131.136 87.3762 97.0025 75.264 83.306
ULTTA 74.3828 104.243 100.361 95.5 123.805 84.9657 103.459 78.0534 86.2746

UMOMA 63.6703 96.7313 104.455 118.143 161.881 95.674 109.703 83.8999 95.0267
URVHA 91.4067 154.489 126.806 106.95 105.418 94.2099 97.5649 80.9421 85.9354
USNZA 92.5786 130.978 119.461 109.183 113.263 86.4077 99.1341 85.4203 85.5433
UTPMA 70.8883 93.0521 98.9284 114.627 152.578 85.2432 100.157 79.0647 86.4485
UTUSA 87.2568 129.926 113.176 98.3457 110.858 87.4221 97.5307 74.3886 79.6691
UULKA 77.5282 125.159 107.109 93.4715 103.128 87.042 99.6318 74.2541 75.6839
UULMA 67.4045 98.509 100.45 106.644 137.703 89.3182 103.306 78.5477 83.0732
UVALA 77.7562 115.175 103.451 94.6575 107.237 88.7364 101.634 80.827 85.46
XMOLA 45.3201 147.5 193.539 235.372 270.07 133.227 174.521 141.843 134.73
XMOUA 74.283 102.615 97.513 105.283 121.964 95.7186 108.698 94.2111 103.601
ZSNVA 86.846 118.89 121.546 137.75 146.016 92.0469 108.182 85.765 87.4938
ZZLNA 102.501 120.788 115.394 117.957 132.635 96.8513 109.342 84.6694 85.83
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TABLE III
MEAN ABSOLUTE ERROR OF IRRADIANCE PREDICTIONS BY EACH METHOD FOR ALL STATIONS [WM−2]. LOWER IS BETTER.

Forecast model (uncorrected) Forecast model (bias corrected)
ε-SVR MM5 36 MM5 37 WRF 22 WRF 34 MM5 36 MM5 37 WRF 22 WRF 34

79.7937 112.249 106.525 105.222 124.238 90.4021 103.838 82.9613 88.5457

The mean absolute error of irradiance prediction for all
stations is shown in table III. Again, it can be seen that the
SVR-corrected forecasts yielded lower mean absolute error
than individual NWP models.

Student’s paired t-test [36] at significance level α = 0.05
was performed to compare the average error of predictions
by ε-SVR and forecast models for every weather station.
The test confirmed that the differences between predictions
by ε-SVR and each forecast model (both uncorrected and
corrected) are statistically significant with p-value lower than
0.001 in all cases.

VI. CONCLUSIONS

The results of the numerical experiments suggest that
support vector regression can be used to combine and cor-
rect downward short-wave radiation predictions provided by
multiple NWP models, and achieve a significantly lower
mean absolute prediction error. The mean absolute error
of ε-SVR corrected forecasts is approx. 29% lower than
the mean absolute error of MM5 36 forecasts (12% lower
than bias-corrected MM5 36 forecasts), 25% lower than the
mean absolute error of MM5 37 forecasts (23% lower than
bias corrected MM5 37), 24% lower than the mean absolute
error of WRF 22 forecasts (4% lower than bias-corrected
WRF 22 forecasts), and more than 35% lower than the
error of WRF 34 forecasts (10% lower than bias-corrected
WRF 34 forecasts ).

The research presented in this work will continue in sev-
eral directions. Other SVR variants as well as other machine-
learning meta-heuristics can be evaluated for their use in
multi-model irradiation prediction. Moreover, their results
can be compared with other recently proposed heuristic
methods for the same task (e.g. those by Eben et al. [35]).
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