
 
 

 

  

Abstract— Outliers are unavoidable in many experiments due to 
various complex reasons ranging from equipment resolution to data 
contamination. The presence of outliers in microarray gene expression 
data can affect the quality of gene selection and ranking. This effect is 
severe when a microarray gene expression data is composed of too few 
samples. We classify outliers occurred in microarray gene expression 
data as structural and non-structural outliers. Structural outliers are 
gene dependent or sample dependent (or both) whereas non-structural 
outliers are gene and sample-independent. They are uninformative to 
gene expression differentiation but can cause misclassification of a 
differentially expressed gene as a non-differentially expressed one. 
While there are algorithms for detecting structural outliers, a different 
strategy is required for detecting non-structural outliers. We show the 
impact of non-structural outliers on gene selection/ranking and false 
discovery rate control. We also show the unsuitableness of existing 
outlier detection algorithms for detecting non-structural outliers. We 
propose a new algorithm for detecting non-structural outliers. It models 
the consecutive differences of ordered gene expressions as exponentially 
distributed. We use simulated and real data to demonstrate the efficacy 
of the proposed algorithm in correcting for non-structural outliers and 
improving gene selection/ranking and false discovery rate control. 

I. INTRODUCTION 
IKE many other experimental data, microarray gene 
expression data also contain outliers because of various 
complex reasons. The occurrence of outlier genes (genes 

whose expressions containing outliers) affects the overall 
accuracy of microarray gene expression data analysis such as 
gene selection/ranking [1]. Although the outlier problem in 
microarray data has been widely studied, the status of outliers 
has not been properly classified. We refer to outliers 
consistently found in one or a few arrays (samples) as 
sample-dependent structural outliers. They are often deemed 
erroneous and the removal of a complete array with 
sample-dependent structural outliers can therefore improve 
biomarker predictive capability [2-7]. Gene-dependent 
structural outliers are informative for gene expression 
differentiation and often studied in the context of 
heterogeneous differentially expressed genes [8-11]. Existing 
algorithms for detecting gene-dependent structural outliers 
(referred to as gene-specific outlier detection algorithms) 
include cancer profile outlier analysis (COPA) [12], outlier 
sum (OS) [13], outlier robust t statistic (ORT) [14] and 
maximum ordered subset t statistic (MOST) [15]. These 
algorithms account for the effect of gene-dependent structural 
outliers on the estimated pooled variance by adjusting the 
denominator of the t statistic for each gene. As outlier genes 
are predicted gene-by-gene by these gene-specific outlier 
detection (GOD) algorithms, sufficient number of samples 
(replicates) is required for robust inference and 
decision-making.  
 

Zheng Rong Yang are with School of Biosciences, University of Exeter, 
UK (e-mail: z.r.yang@ex.ac.uk).  

Zihua Ynag is with University of Queen Mary, UK (e-mail: 
z.h.yang@qmul.ac.uk)..  

Non-structural outliers (NSOs) are distributed randomly 
across gene expressions. They do not inform gene expression 
differentiation but their presence can affect the identification 
of differentially expressed genes (DEGs) across conditions, 
e.g. from control to test conditions. For instance, the 
occurrence of a very low expression NSO to a test sample 
may make an originally up-regulated DEG misclassified as a 
non-DEG. The occurrence of a very high expression NSO to a 
control sample may also make an original up-regulated DEG 
misclassified as a non-DEG as well. NSOs thus have the 
impact on gene selection/ranking. In addition, the false 
discovery rate control relies on the quality of p values 
acquired from a gene selection/ranking process using such as 
t test or modified t test. If the distribution of p values obtained 
from a gene selection/ranking process is skewed from an 
expectation, false discovery rate control becomes difficult. 

The existence of NSOs causes misclassified DEGs but not 
non-DEGs. We generated a data set with 5,000 up-regulated 
DEGs and 5,000 non-DEGs, with 10% outlier genes. Note 
that simulation using down-regulated DEGs will end up with 
the same conclusion because of the symmetrical property. 
The control samples and the test samples of non-DEGs were 
drawn from )1 ,10(N . The test samples of DEGs were drawn 
from )1 ,12(N . The number of samples was set to ten, 15, 20, 
25 and 30. Low-expression outliers in test samples or 
high-expression outliers in control samples were randomly 
subtracted/added across the samples with outlier distances 
randomly drawn from )1.0,2(N . We repeated the 
simulation 100 times. We estimated the probability that a 
DEG with an outlier was predicted as a non-DEG (missing 
hypothesis), the probability that a DEG without an outlier was 
predicted as a non-DEG (missing hypothesis) and the 
probability that a non-DEG was predicted as a DEG (false 
hypothesis). The outcome shows that both false hypothesis 
(FH) and missing hypothesis (MH) rates for non-outlier 
DEGs were low whereas the missing hypothesis rate for 
outlier DEGs was high (especially for small sample sizes) - 
Fig. 1.  

It is also expected that large outlier percentage or small 
sample number will weaken gene selection/ranking accuracy. 
We therefore carried out a simulation with the same data used 
above but varying sample number from two to ten and 
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Fig. 1. FH and MH rates (%) for the study of how NSOs affect missing 
prediction of DEGs. 
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varying outlier gene percentage from 10% to 50%. The 
simulation proved this relationship - Fig. 2. 

 

 
The existence of NSOs leads to overestimation of null gene 

proportion and increased false discovery rate. Gene 
significance analysis (or gene selection/ranking) is typically 
carried out on multiple genes simultaneously (multiple 
hypothesis testing). In the absence of outliers, the resulting p 
values typically follow a mixture density, 

)()1()()( 1000 pgpgpg ππ −+= , where 0π
 
is the null gene 

(non-DEGs) proportion, )(0 pg
 
is the uniform density of null 

genes and )(1 pg  is some fast decaying density of alternative 
genes (DEGs). A well-distributed mixture is the basis for 
proper false discovery rate control [16-19]. However, the 
existence of outlier genes distorts the p value distribution and 
in particular leads to overestimated null gene proportion 0π

 
and an under-estimated alternative gene proportion 01 π− . 
For small sample size microarrays, a few outliers can be 
sufficient to change a DEG to a non-DEG. To illustrate this, 
we simulated a data set with 0π = 0.5 for 5,000 DEGs and 
5,000 non-DEGs with and without outliers. All control 
samples and test samples of non-DEGs were drawn from 

)1 ,10(N  and the test samples of DEGs were drawn from 
)1 ,11(N . Outliers were added either by subtracting the 

minimum expression by a value drawn from )1.0,2(N  or by 
adding a value drawn from )1.0,2(N  to the maximum 
expression (random alternation between high and low 
expression outliers). We used eBayes [16] - a modified t test - 
to calculate p values. The null gene proportion 0π

 
is 

estimated using the method described in [18] 
mpi )1(}{#)(ˆ0 λλλπ −>= , where ip  is the p value 

calculated using eBayes for the ith gene, m is the number of 
genes in a microarray gene expression data set, λ  a 
pre-determined critical p value and )(ˆ0 λπ means the 
estimation of 0π

 
in terms of λ . A positive bias in the 

number of genes predicted as non-DEGs
 

}{# λ>ip
 
then 

leads to an overestimated 0π  because the denominator of the 
above equation is fixed when λ  and m are fixed. The 
simulation was repeated for 100 times for sample sizes of five 
and ten. It is evident from Fig. 3 that the 0π

 
increases along 

with the increase of outlier percentage. According to Storey 
[18], the positive false discovery rate (pFDR) is estimated 
using 

})1(1}{1}{{#

ˆ
pFDR 0

m
ip γγ

γπ
−−∨≤

=  

where ],1[ γ  is the rejection region and ∨  the OR operator 
(to avoid singularity). It can be seen that when 0π  is 
increased and }{# γ≤ip

 
is decreased, pFDR  is increased if 

γ  is fixed. This means that when the null gene population is 
overestimated, poorer false discovery rate control will 
happen.  
 

 

 
Fig. 4 shows the mean pFDR across all combinations of 

}01.0,,002.0,001.0{∈λ  and }2.0,,02.0,01.0{∈γ . It can 
be seen that data with outliers typically resulted in increasing 
pFDRs due to overestimated 0π . The difference was less 
noticeable when the sample size increased to ten. 

In this paper, we introduce a new algorithm for detecting 
NSOs by modelling the ordered consecutive expression 
distances as an exponentially distributed at the population 
level (using whole microarray gene expression data). This 
exponential distance model assesses potential outliers in 
terms of distance to the non-outlier samples. In practice, we 
expect NSOs to constitute a minority of the population of 
pooled expressions, contributing a small amount to the tail of 
the overall (exponential-like) distribution of expressions. We 
name this new algorithm as POD standing for 
Population-based Outlier Detection. We illustrate the efficacy 
of this algorithm using simulated data and cancer microarray 
expression profile data. We also discuss how the power of 
gene selection/ranking and false discovery rate control can be 
enhanced through correcting detected outliers using a simple 
imputation approach.  

 

Fig. 3. Estimated 0π
 
for simulations with five samples (top) and ten 

samples (bottom) for varying outlier percentages. 01.0=λ . 

 
Fig. 4. Estimated Storey's mean pFDR

 
for data (ten samples) with and 

without outliers for varying outlier percentages and sample sizes five and 
ten.

 
Fig. 2. The prediction accuracy drop from data without outlier genes to 
data with outlier genes inserted 
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II. ALGORITHM AND EXPERIMENTAL DESIGN 

A. Algorithm 
We denote a matrix of (log2) expressions by X, which has 

n rows for n genes and m columns for m samples. The 
expressions in X are sorted in an ascending order row by row, 
i.e. )(,)2(,)1(, miii xxx <<< , ],1[ ni ∈∀ . Outlier detection is 
carried out separately for control and test samples. We then 
define a non-negative distance vector }{ ijδ=z , where  

)(,)1(, jijiij xx −= +δ  
 ],1[ ni ∈  and ]1,1[ −∈ mj , )(, jix  is the jth smallest 
expression in the ith row of X. We found the exponential 
distribution to fit ijδ

 
well in most cancer microarray data. 

The outlier p values can be evaluated using the fitted distance 
distribution. A gradient descent learning algorithm is used to 
find the optimal exponential rate parameter β  with an initial 
value of 1=β ,  

) 1(   0zGe βηβ −−=Δ  
where 1.0=η  is an update coefficient and  

0 
0  zfe ββ −−= e  

0f  is the empirical density (histogram) of 0z  and 0z  is the 
set of the middle points across the bins of 0f . G is defined as 

)(diag 0 zβ−e . A non-negative distance is predicted as an 
outlier distance if the outlier p value is less than a pre-defined 
threshold, we set this to be 0.05. In the situation where more 
than one significant outlier distance arise for a gene, the 
distance with the minimum outlier p value is used to 
determine the boundary of the two subpopulations 

} ,  ,, { )(,)2(,)1(, kiii xxx  and } , , , { )(,)2(,)1(, mikiki xxx ++ . 
We set an upper bound of 25% on the outlier proportion. 

B. Simulated data 
Two sets of simulated data were generated for the 

assessment of the proposed algorithm. The first set was 
composed of 10% of outlier genes and the other set was 
composed of 30% outlier genes. Both data sets were 
composed of 900 non-DEGs and 100 up-regulated DEGs. 
The samples of non-DEGs and the control samples of DEGs 
were drawn from )1,10(N . The test samples of DEGs were 
drawn from )1,11(N . Outlier genes were randomly selected. 
Each outlier gene was composed of one outlier. The distance 
(referred to as outlier distance) between non-outlier samples 
and an outlier sample of an outlier gene was drawn from 

)1.0,(δN , where δ  was one, two and three. For a selected 
gene, an outlier was randomly inserted into control or test 
samples. If an outlier was inserted into control samples, a 
high-expression outlier was used. If an outlier was inserted 
into test samples, a low-expression outlier was used. The 
sample number was five and ten. We designed two sets of 
accuracy measurements for DEG prediction and outlier gene 
prediction. 1) We used pFDR and sensitivity for examining 
how POD improves the prediction accuracy of DEGs. This 
means that we compared DEG prediction accuracy after 

outlier detection/correction against DEG prediction accuracy 
before outlier gene detection/correction. The meaning of 
pFDR has been aforementioned. Sensitivity was defined as 
the ratio of predicted DEGs over the designed DEGs. 2) We 
used AUR and sensitivity to evaluating how accurate POD 
and GOD algorithms identify outlier genes. AUR stands for 
area under ROC curve. ROC stands for receiver operating 
characteristic [20, 21] and is typically used as a robustness 
measure in two-class classification analysis tasks. A ROC 
curve describes how the sensitivity (also called the true 
positive rate) varies along with the false positive rate (also 
called the false alarm rate). Varying the cutting point for 
classification between non-outlier genes and outlier genes 
gives the multiple pairs of false positive rates and sensitivities 
on a ROC curve. A robust classifier is characterised by a ROC 
curve which is close to the top-left corner, or equivalently a 
large AUR. We used five GOD algorithms COPA [12], OS 
[13], ORT [14], MOST [15] and LSOSS  [22] for comparison.  

 

 
C. Cancer data 
We downloaded seven data sets from GEO (Gene 

Expression Omnibus, http://www.ncbi.nlm.nih.gov/geo/) and 
IGC (International Genomics Consortium, 
http://www.intgen.org/) - Table 1. 

D. Outlier correction 
We used a simple imputation approach for outlier 

correction, i.e. using the mean of non-outliers to replace an 
identified outlier for an outlier gene. The significance 
analysis was carried out using eBayes (in the R package 
limma) and q value (R qvalue package). The late was used for 
false discovery rate control. 

III. RESULTS 
It was assumed that the detection and correction of outliers 

will turn over the misclassification of a DEG as a non-DEG. 
Therefore it was expected that the sensitivity of predicting 
DEG after outlier detection/correction should be improved 
compared with that before outlier detection/correction. From 
Fig. 5, we can find the following facts. First, the outlier 
detection/correction improved DEG prediction accuracy all 
the way. The improvement was obvious though it was still 
imperfect. Second, when the replicate number was larger, the 
prediction accuracy of DEGs was higher. Third, when the 
outlier distance was larger, the improvement of the DEG 
prediction accuracy was greater.  

As analyzed above, outlier genes make contribution to 
increased pFDR. It was then expected that the correction of 
detected outliers should help reduce pFDR. It was also 

Table 1. Seven data sets downloaded from GEO and IGC. 
 
Accession Cancer type No of probes No of samples 
gds1439 Prostate cancer 54675 7/6 
gse12630 Breast cancer 22283 4/7 
gse12630 Liver cancer 22283 4/4 
gse7410 Cervical cancer 43931 16/13 
IGC Breast cancer 54675 53/4 
IGC Colon cancer 54675 26/20 
IGC Sarcoma cancer 54675 4/15 

1602



 
 

 

expected that the impact of outlier genes on pFDR should be 
smaller when the sample size was larger. Fig. 6 illustrates 
these two facts very well, where we can see the consistent 
drop of pFDR between two stages, i.e. before and after outlier 
gene detection/correction. 

 

 
The next thing which is important is whether outlier genes 

can be well identified. This depends on how outliers were 
present in data. If an outlier sample has a small distance with 
non-outlier samples, the detection should not be very easy. 
When this distance was large, the detection should be easy. 
Fig. 7 shows one such simulation result, where the replicate 
number was five and the outlier distance varied from one to 
three. It can be seen that POD’s performance on outlier gene 
prediction was negatively proportional to the outlier distance. 
However, all GOD algorithms failed to work reasonably. 
Among them, only LSOSS slightly outperformed other four 
GOD algorithms. Fig. 8 shows the AUR measures for two 
data sets with replicate number as five. It also shows that 
POD much outperformed other five GOD algorithms. 

 

 
Based on the above analyses on the simulated data sets, we 

can see that population-based outlier detection can provide 
better outlier gene prediction accuracy. With a simple 
imputation approach for outlier correction, the DEG 
prediction accuracy can also be improved. With this 
confidence, we now analyse some cancer microarray gene 
expression data to examine how outlier genes distribute in 
data and to examine whether outlier correction (using simple 
imputation approach) can improve pFDR measurements. We 
also compare POD against five GOD algorithms. 

 

 

 
Fig. 5. Sensitivity of DEG prediction. Rn stands for n samples 
(replicates). Dm stands for m units of outlier distance. “before” and 
“after” stand for before and after outlier detection/correction. The upper 
panel shows the sensitivity measures for the first data set, which is 
composed of 10% outlier genes. The lower panel shows the sensitivity 
measures for the second data set, which is composed of 30% outlier 
genes. The critical p value was 0.05. 

 

 
Fig. 7. The sensitivity of detecting outlier genes for data set with five 
replicates and 10% (upper) and 30% (lower) outlier gene insertion. The 
outlier distance varied from one to three. All six algorithms were 
compared. The sensitivity was scaled to percentage. 

Table 2. Results for the seven cancer data sets. q0 and q1 are the minimum 
q values before outlier correction. pFDR0 and pFDR1 are the 
corresponding maximum pFDR values. 
 
 q0 q1 pFDR0 pFDR1 
gds1439-prostate 0.02 1.2E-5 7.26E-06 2.09E-06 
gse12630-breast 0.35 1.6E-4 3.12E-05 4.07E-06 
gse12630-liver 0.99 0.0098 5.27E-05 9.50E-06 
gse7410-cervical 0.05 1E-11 1.06E-05 2.01E-06 
IGC-Breast 0.85 0.0006 1.69E-05 1.81E-06 
IGC-Colon 0.13 2.7E-16 1.14E-05 1.39E-06 
IGC-Sarcoma 0.99 0.0026 3.69E-05 2.42E-06 

 

 
Fig. 6. pFDR measures for two data sets. The upper panel is for 10% outlier 
gene insertion and the lower panel is for 30% outlier gene insertion. 
Vertical axes stand for pFDR. 

 

 
Fig. 8. AUR of detecting outlier genes for data set with five replicates and 
10% (upper) and 30% (lower) outlier gene insertion. The outlier distance 
varied from one to three. 
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Table 2 summarises the results for the seven cancer data 
sets. Prior to outlier detection/correction, the minimum q 
value exceeded 0.01 in all data sets. After outlier 
detection/correction, none shows minimum q value larger 
than 0.01. Outlier detection/correction thus significantly 
reduced the minimum q value.  Importantly, pFDR has been 
reduced significantly (about one magnitude lower) after using 
POD. 

We now compare POD against GOD algorithms. First, we 
calculated the maximum gap between consecutive 
expressions for each gene. The control and test expressions 
were separately treated. For each gene, we would have two 
maximum gap values. Among them, we used the larger one 
for further analysis. For each gene, we also have six p values 
acquired from six algorithm including POD. We would like to 
examine how p values correlate with these maximum gaps. It 
was expected that if an outlier detection algorithm works well, 
the p values should more correlate with the maximum gaps. 
Table 3 shows the correlation measures between p values and 
maximum gaps for six algorithms and seven data sets. It can 
be seen that none of GOD algorithms shows good correlation 
with maximum gaps while POD does. 

 

 
We examined whether an outlier gene detected by different 

algorithms does show significant separation between outliers 
and non-outliers. We collected top outlier gene detected by 
six algorithms based on the smallest p values. We plotted 
them in the same scale so as to compare different algorithms. 
Fig. 9 shows the top outlier gene detected by six algorithms 
for the data set GDS1439. Outlier genes ranked top by GOD 
algorithms normally did not show clearly outlier pattern 
compared with POD’s prediction. For instance, gene 

244082_at(BF507959) ranked top by COPA did not show a 
good outlier pattern. The p value of POD for this gene was 1. 
Gene 232215_x_at(PRR11) detected by OS did show outlier 
pattern as well. The outlier distance was not sufficiently large 
enough for POD to agree. Others also show same scenario. 

 
We also examined the turnover genes (from non-DEGs to 

DEGs) after outlier detection/correction. A turnover gene is 
such a gene that it was identified as a non-DEG, but was 
identified as a DEG after outlier detection/correction using 
POD. We also examined how five GOD algorithms dealt with 
them, i.e. whether they were able to recognize the outlier 
characteristic of these genes. Fig. 9 shows the top six turnover 
genes for GDS1439 data set. The selection was based on q 
values. It can be seen why the correction of outliers using 
POD can switch a non-DEG to a DEG, i.e. generating a 
turnover gene. For instance, both control (normal) samples 
and test (cancer) samples of the gene ADC (probe set ID is 
1554393_a_at) contained an outlier. POD's p value of being 
an outlier gene for this gene is 0.000972. The plot shows a 
clear pattern that the differentiation between normal and 
cancer samples was weakened by these two outliers. They 
were far below the non-outlier samples. These significant 
deviations largely enlarged the variances (or pooled variance) 
used for significance analysis using t test or modified t test. 
Because of significantly enlarged pooled variance, the 
calculated t statistic from t test or modified t test was small 
and the corresponding p value was large (0.222416). After 
outlier gene detection/correction, the new p value was 
0.000138. Only COPA was able to identify this outlier gene 
and ORT marginally identified this outlier gene. Other three 
failed to identify this outlier gene. Other top five genes shown 
in Fig. 10 show the same pattern of turnover genes. 

Fig. 11 illustrates the presence of potential NSOs in ten 
outlier genes with the smallest q values in the prostate cancer 
data set (GDS1439). These ten genes show significant up 
regulation which is apparent only after the removal of NSOs 
among the cancer samples. These genes have been studied in 
relation to prostate cancer [23-27]. Gene RAB11FIP4 has 
been found to be up-regulated in an analysis of microRNA 
transcriptome for prostate cancers based on 904 miRNAs 
[28]. NPY has been found to play a key role for prostate 
cancer progression [29] and NPY receptors are highly 
expressed in the androgen-independent prostate cancer cell 
lines contributing to cell proliferation [30]. ZNF595 has been 
found to be over-expressed in prostate cancer tumor [31]. 

Fig. 10. Top six turnover genes for GDS1439. 

Table 3. Correlation between p values of outlier gene detection and 
maximum gaps between consecutive expressions. 
 

POD COPA OS ORT MOST LSOSS 
gds1439 0.81 0.060 0.09 0.02 0.060 0.033 
gse12630 0.67 0.032 0.23 0.12 0.091 0.104 
gse12630 0.71 -0.085 0.21 0.03 -0.05 -0.08 
gse7410 0.61 0.128 0.29 0.21 0.173 0.208 
IGC(B) 0.20 0.128 0.31 0.27 0.018 -0.18 
IGC(C) 0.63 -0.047 0.17 0.08 0.044 0.030 
IGC(S) 0.34 -0.080 0.07 -0.16 0.003 0.067 

 
Fig. 9. The top outlier gene detected by six algorithms for data set 
GDS1439. Open dots stand for samples of normal patients. Filled dots 
stand for samples of cancer patients. The top captions are probe set IDs and 
gene symbols (separated by the hash key). The first line of texts indicates 
which algorithm is used to rank this gene as the top outlier gene. The 
following lines give the p values of six algorithms. 
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IV. CONCLUSION 
Outliers in microarray gene expression data can be classified 
into structural outliers and non-structural outliers (NSOs). 
NSOs are randomly distributed across all arrays and genes 
and are uninformative for gene expression differentiation. We 
showed that the presence of NSOs leads to severe 
under-estimation of gene expression differentiation and thus 
reduction in prediction power. NSOs cannot be efficiently 
detected using existing gene-specific outlier detection 
algorithms. We therefore propose a new algorithm for 
detecting NSOs by modelling the pooled sorted consecutive 
differential expressions as exponentially distributed. 
Imputation of detected NSOs can then lead to significant 
improvement in the quality of gene selection/ranking. We 
have illustrated this algorithm using simulated data sets and 
seven cancer data sets. In particular, we give some likely 
examples of overlooked significant genes due to NSOs. 
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Fig. 11. log2 expressions of the top ten genes for the data set
GDS1439-prostate. The open circles represent non-cancer samples and the
filled circles represent cancer samples. p0 and p1 are the t test p values 
before and after outlier removal respectively. 
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