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Abstract— This paper presents an experimental analysis of
a revocable biometric verification problem using ensemble
systems. Behavioural Biometric-based systems are a future
emergent area on identification, verification and access control
systems of users. However, there is still progress to be done in
this field, specially related to system security and acceptable
results for practical use. Cancellable Biometrics is a alternative
solution to the security problem of biometric data. This tech-
nique consists of applying transformation functions to biometric
data in order to protect the original characteristics of biometric
template. In this case, if biometric template has compromised, a
new representation of original biometric data can be generated.
Although cancellable biometrics were proposed to solve privacy
concerns, this concept raises new issues, becoming the authen-
tication problem more complex and difficult to solve. Thus,
more effective authentication structures are needed to perform
these tasks. This work aims to investigate the use of ensemble
systems in cancellable behavioural biometric system used by
million people (touchscreen devices). Apart this, we also present
an empirical analysis, comparing the ensemble structures with
single classification algorithms.

I. INTRODUCTION

The most used method to identify/verify users in au-
thentication systems still is through username and pass-
word [1]. Unfortunately, the username-password approach
presents some problems regarding security and reliability on
storage and use of this personal information. The main reason
for this is related to the level of security endowed by such
methods, since the personal information on which they rely
can be easily misplaced, shared, or stolen. In addition, the
use of same username and password for different services
on the Internet leads to the stress to remember secure, long
and complex passwords, which is not an easy task and may
cause the use of the same password to different authentication
systems.

Biometrics can be considered as the science of establishing
the identity of a person using his/her anatomical and/or
behavioural traits. Biometric traits have a number of desirable
properties with respect to their use as an authentication token,
such as reliability, convenience, universality, among others.
Thus, these human characteristics have been used to user
verification and/or identification in several authentication
systems throughout the world. In this way, problems such
as to remember complex passwords are minimized using
biometric characteristics [2].

Marcelo Damasceno is a lecturer in Federal Institute of Rio Grande
do Norte and PhD student in the Department of Informatics and Applied
Mathematics in the Federal University of Rio Grande do Norte, Brazil who
A.M.P Canuto is his supervisor (email: marcelo.damasceno@ifrn.edu.br,
anne@dimap.ufrn.br).

Biometrics can be broadly divided in two classes: Physical
and Behavioural. Physical biometrics are usually related
to the body characteristics, such as face, fingerprint, iris
recognition, hand geometry, among others. Unlike physical
biometrics, behavioural biometrics are related to user be-
haviour/actions [3]. These biometrics use behavioural pat-
terns, such as gait or typing and use them in the authenti-
cation systems. The behavioural biometrics is considered as
non-intrusive. In other words, personal collection is usually
not perceived by users.

The biometric-based authentication systems have some
concerns which must be addressed. The main issue concernes
about security of biometric authentication systems [4]. The
security is important for biometrics-based authentication sys-
tems because the biometric is permanently associated with a
user. In case of a user biometric has compromised, all au-
thentication systems that use this specific user biometric are
also compromised. Therefore, the possibility of revoking or
cancelling a biometric, if compromised, is a required feature
of these systems. Thus, the use of cancellable biometrics
have been increasingly adopted to address such issues [4].

The idea of cancellable biometric approach is transform
or intentionally distort the original biometric data. Thus,
the distorted biometric data (cancellable) are used for user
authentication/identification instead of biometric on its orig-
inal format. Unfortunately, the use of distorted data usually
decreases the performance of biometric-based system, due
to the complexity level of transformed biometric data is
generally higher than original data. Therefore, it is important
for a biometric system to support a good trade-off between
discrimination capability and non-invertibility (high security)
when using cancellable transformations in any biometric
modality. Thus, more effective authentication structures are
needed to perform these tasks. The use of cancellable bio-
metrics is widely reported in the literature related to physical
biometrics use [5, 6]. However, very little has been done to
apply cancellable transformations in behavioural biometrics.

As a contribution to this important topic, this paper in-
vestigates the performance of different ensemble structures
in the context of cancellable behavioural biometrics, more
specifically a touch-screen dataset. Therefore, we aim to anal-
yse the performance of these pattern recognition structures
in both original and transformed biometric space. The main
aim of this article is to analyse the ensemble performance
using cancellable data in a behavioural biometric context. A
expected result is increase the performance, in accuracy and
safety, of user verification, theme increasingly important in
current days.
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This paper is divided into eight sections and it is organized
as follows. Section I showed the Introduction, Section II
describes the subject background of this paper, while the
ensemble systems are described in Section III. The can-
cellable transformations are described in Section IV and
the behavioural biometric TouchAnalytics is discussed in
Section V. The Experimental Methodology is explained in
Section VI, while the Section VII discusses the results
obtained in the experiments. Finally, Section VIII presents
the final remarks of this paper.

II. BACKGROUND

A. Behavioural Biometrics

Behavioural biometric is based in the identification and
verification of users using activity patterns which can be
measured, for example, walking, talking, gesturing, signature
recognition and computer usage patterns [3, 7].

Recently, many researchers have been studying be-
havioural biometrics due to several advantages over physical
biometrics. Advantages as, data collection methods can be
carried out without the user knowledge and the use of
relatively inexpensive technologies like keyboard, mouse and
webcam.

The use of biometrics arrises a security problem of bio-
metric traits. Security issues as how the user will change their
physical characteristics or computer use patterns in case of
being stolen or lost. Therefore, it is important to provide
ways to revoke a biometric when stolen or lost.

B. Cancellable Biometrics

Biometric data is user-dependent since the biometric char-
acteristics is unique and it is hard to be changed in case
of being stolen or lost. It is difficult, sometimes impossible,
to change or to adapt fingerprint or gait characteristics. One
of the main problems of security faced by biometric system
users is an unauthorized copy of the stored data [8]. Hence,
the biometric templates must be stored in a protected way
using a protection scheme that possess the following four
properties [4].

• Diversity: the secure template must not allow cross-
matching across databases, thereby ensuring the user’s
privacy.

• Revocability: it should be easy to revoke a compromised
template, reissuing a new one based on the same bio-
metric data.

• Security: it must be computationally hard to obtain the
original biometric template from the secure template.
This property prevents an adversary from creating a
physical spoof of the biometric trait from a stolen
template.

• Performance: the biometric template protection scheme
should not degrade the recognition performance of a
biometric system.

Unfortunately it is difficult to define a template protection
that can satisfy all these characteristics due to the trade-off
among them. In this way, several template protection methods

have been proposed in the literature [8]. In [4], these methods
were broadly divided in two approaches, which are:

1) Biometric cryptosystem: Some public information
about the biometric template is stored and it is usually
referred to as helper data. Biometric cryptosystems are
also known as helper data-based methods. Biometric
cryptosystems can be further classified as key binding
and key generation systems depending on how the
helper data is obtained;

2) Cancellable transformation: In this case, a transforma-
tion function (f ) is applied to the biometric template
(T ) and only the transformed template (f(T )) is stored
in the database. The original template T is hard to
be obtained from f(T ), which means, the transformed
template f(T ) can be disposable in case of security
issues.

How the authentication process of cancellable biometric
templates is performed in transformed space is the main
difference between these two approaches, whereas for most
biometric cryptosystems, the storage of public biometric
information is necessary, in which is applied to retrieve
or generate keys (helper data). In this case, the biometric
comparisons are performed indirectly through the verification
of key validities.

The feature transformation schemes can be further ca-
tegorized as salting and non-invertible transformations. In
the first case, the transformation function f is invertible,
while f is (as implied in the name) either non-invertible or
hard to invert in the second case. The use of a one-way
function, f , that is easy to compute (in polynomial time) but
hard to invert (given f(x), the probability of finding x in
polynomial time is small) is the main purpose of using non-
invertible transformations. This paper focus on the use of
non-invertible transformation functions. Hereafter, the terms
transformation function or cancellable transformation will be
taken as referring to the non-invertible case.

III. ENSEMBLE SYSTEMS

One way to combine the results of different classifiers in
biometric data is through the use of ensemble systems, also
known as multi-classifier systems or fusion of experts. These
systems exploit the idea that different classifiers can offer
complementary information about patterns, thereby improv-
ing the effectiveness of the overall recognition process [9].

Figure 1 presents a general structure of an ensemble
system, which is composed of a set of N individual classifiers
(ICn), organized in a parallel way. The individual classifiers
receive the input patterns and send their output to a combi-
nation process which is responsible for providing the final
output of the system. The individual classifiers may have
different subsets of attributes or not.

There are two main issues to consider in the design of
an ensemble, which are: the ensemble components, and the
combination methods which will be used. In relation to the
first issue, the ensemble members are chosen and executed.
The appropriate choice of a set of individual classifiers is
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Fig. 1. An illustration of the general framework of an ensemble system

fundamental to the overall performance of an ensemble. The
ideal situation would be to choose a set of base classifiers
with uncorrelated errors - which would be combined in
such a way as to minimize the effect of these failures.
In other words, the individual classifiers should be diverse
among themselves. Depending on its particular structure,
an ensemble can be realised using two main approaches:
heterogeneous and homogeneous. The first approach com-
bines different types of classification algorithms as individual
classifiers. In contrast, the second approach combines clas-
sification algorithms of the same type.

Once a set of individual classifiers has been created, the
next step is to choose an effective way of combining their
outputs, which is a typical decision-level fusion method.
According to [10], the possible ways of combining the
outputs of N classifiers in an ensemble depend on which
information we obtain from each individual classifier (ICn).
The combination of the outputs diverge from the simplest
approach using class labels or rank values to the utilization of
more elaborate information, such as support degree D [10].

A. Learning Strategies in Ensemble Systems

The composition of a set of identical classifiers in a
ensemble system do not add no gain in terms of perfor-
mance. Thus, it is important to emphasize that diversity
plays an important role in the design of accurate and well-
generalized ensembles [10]. The ideal situation, in terms
of combining classifiers, would be a set of classifiers with
uncorrelated errors (diversity). Diversity in ensemble systems
can be reached by using different parameter settings, different
training datasets and different classifier types. A stardard way
to promote diversity is through the use of learning strategies,
also known as learning architectures or simply architectures,
that provide different datasets for the individual classifiers
of an ensemble system. Most common architectures are:
Bagging [11], Boosting [12], Stacking [13] and Voting [14].

B. Ensemble Systems for Cancellable Biometrics

Several transformation functions have been reported for
different biometric modalities, face [15], signature [16, 17],
fingerprint [5, 6], iris [18], voice [19], among others. How-
ever, most of them use single classification/matching algo-
rithms.

In the context of ensemble systems, Canuto et al. [8, 20]
applied ensemble systems to cancellable biometrics and
achieved very promising results, demonstrating that the use
of ensemble systems improves the accuracy of cancellable
biometrics. However, they used only physical biometric
modalities in the identification process using ensemble sys-
tems . Unlike these studies, this paper applies ensemble
systems in the context of behavioural biometrics for user
verification task.

IV. CANCELLABLE TRANSFORMATIONS

The non-invertible transformation functions transform the
biometric data in a way that it is computationally hard to get
the original form [4]. The application of these functions dis-
torts the original data arising some undesired consequences
as high variance, consequently making the user verification
more difficult. Thus, verification and authentication systems
which use distorted data must provide better performance
than systems using original data.

The literature reports that ensemble systems offer better
performance than single classifiers [10]. Therefore, in this
work we analyse the performance of ensemble systems in
cancellable behavioural data. It is applied four transformation
functions to the data. The transformation function chose were
Interpolation, BioHashing, BioConvolving and Double Sum.
All the transformation functions are better described in [21].

A. Interpolation

This technique is based on polynomial interpolations. It
consists in generating a new biometric model by extracting
function points resulting from the attribute interpolation
process. The attributes compose the original biometric model.

Although it is simple, this algorithm makes the inversion
of the transformed function difficult, generating a reasonable
level of security to the system. Therefore, it is very efficient
in satisfying two of the main requirements for transformation
techniques, which are simplicity and efficiency at the same
time. The following steps describe how a transformation
function based on interpolation is applied to a biometric
model.

1) Given the original biometric model Γ ∈ Rn , where
n is the number of attributes of Γ. A function f(x) is
obtained through interpolation of the attributes of the
model. It is created one function f(x) for each user.
Therefore, in order to have approximate functions of
the discretized data, it is important to use a polynomial
function with a significant degree g, usually given by
the greater degree supported by the system;

2) Within range of the function domain
x ∈ R | 0 < x ≤ n, a vector of random numbers
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is generated for all biometric data δ ∈ Rd. δ consists
of uniformly distributed pseudo-random numbers,
where d is the dimension. The number of coefficients d
is given empirically and can interfere in the behaviour
of the model (usually d = n);

3) The coefficients x of the vector δ are then individually
applied to function f(x), generating as output the
transformed model M . The revocability of this model
depends exclusively on the creation of a new random
vector, in case the current vector is corrupted or stolen.
The interpolation technique can be adapted to any
biometric modality, since they provide a biometric
feature vector. Also, the interpolation model depends
on some variables, such as the size d (step 2) of the
random vector and the degree g of the polynomial
interpolator.

B. BioHashing

BioHashing technique has originally used in other biomet-
ric modalities, such as fingerprint, palm and face [21]. Bio-
Hashing algorithm is characterized by transforming original
biometric into a non-invertible binary sequence. This invert-
ible binary sequence is based in a inner product between the
original biometric vector and each pseudo-random orthonor-
mal vector oi ∈ Rn | i = 1, ...,m. Each oi is obtained using
the Gram-Schmidt algorithm with original biometric data as
input.

BioHashing technique has originally used in other bio-
metric modalities, such as fingerprint, palm and face [22].
In [23], the authors started the adaptation of BioHashing
to iris data. In this work we use the original BioHashing
algorithm but in future we will use the adaptation developed
by our group, described in [8]. The original algorithm works
as:

1) Given the original biometric model Γ ∈ Rn, with n
being the number of attributes of Γ, a set of pseudo-
random vectors pi ∈ Rn | i = 1, ...,m is generated,
where m is the number of vectors of dimension n and
m ≤ n;

2) The Gram-Schmidt algorithm is applied in
pi ∈ Rn | i = 1, ...,m to obtain m orthonormal
vectors oi ∈ Rn | i = 1, ...,m;

3) The inner product between the original biometric vec-
tor Γ and each pseudo-random orthonormal vector
oi is calculated, 〈Γ | oi〉 | i = 1, ...,m, where 〈• | •〉
indicates the inner product operation.

4) It is then created a m-bit Biohashing model through a
binary discretization of the values obtained in the inner
products, b = bi | i = 1, ...,m, where:

bi =

{
1, if 〈Γ | oi〉 ≤ τ .
0, if 〈Γ | oi〉 > τ.

(1)

with τ being an empirically determined threshold. In this
work we choose τ = 0.5.

The performance of Biohashing function is exclusively
dependent on the variable m, which is the number of pseudo-

random orthonormal vectors. The number of vectors must
be determined empirically and corresponds to the number of
attributes for each instance of the transformed dataset.

C. BioConvolving

BioConvolving method was originally proposed for sig-
nature [21]. In this method, the transformed functions are
created through linear combinations of sub-parts of the
original biometric template Γ. Basically, this method divides
each original biometric sequences into W non-overlapping
segments, according to a randomly selected transformation
key d. Then, the transformed functions are obtained by
performing a linear convolution between the obtained seg-
ments. A general description of BioConvolving is presented
as follows.

1) Define the number of segments to divide the original
biometric model (W ).

2) Select randomly a number (W − 1) of values dj . The
selected numbers have to be between 1 and 99 and they
must be ranked in an increasing order. The selected
values are arranged in a vector d = [d0, . . . , dW ],
having kept d0 = 0 and dW = 100. The vector d
represents the key of the employed transformation.

3) Convert the values dj into bj based on the following
function bj = round((

dj

100 ∗ n)), j = 0, . . . ,W , where
n is the number of attributes and round represents the
nearest integer;

4) Divide the original sequence Γ ∈ Rn, into W segments
Γ(q) of length Nq = bq − bq−1 and which lies in the
interval [bq−1, bq] of the attributes;

5) Apply the linear convolution of the functions
f(Γ(q)), q = 1, . . . ,W to obtain the transformed
function f = Γ(1)∗, . . . ,Γ(W ).

A transformed function is therefore obtained through the
linear convolutions of parts of original sequence Γ. Due
to the convolution operation in step (5), the length of the
transformed functions is equal to K = N −W + 1, being
therefore almost the same of original data. A final signal
normalization is applied, oriented to obtain transformed
functions with zero mean and unit standard deviation. Dif-
ferent transformed results can be obtained from the same
original functions, simply varying the size of segments W
or the values of the parameter key d. According to [24], the
BioConvolving security approach is based on the fact that a
blind deconvolution problem is needed in order to retrieve
the original template. Moreover, in [24] it was also shown
for signature that even if multiple transformed templates are
stolen, it is not possible to retrieve the original template.

D. Double Sum

Double Sum cancellable transformation is a simple method
and it consists of summing the attributes of original biometric
model with two other attributes of the same sample. In
other words, each attribute of original biometric model is
transformed into the sum of three attributes randomly chosen.
In this case, even if an impostor has access to transformed
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data, it will not be possible to define original data from trans-
formed one. The functioning of Double Sum transformation
is described as follows:

1) For each sample of original biometric model Γ ∈ Rn,
where n is the number of attributes of Γ, we generate a
random vector L ∈ Rn based on security key k that it
can be a general one or it can be defined for each user.
This random vector is responsible for distributing the
attributes of the biometric samples. In other words, the
original biometric model is re-organized based on the
random vector L generating a intermediate biometric
trait β;

2) Define two vectors {C1 and C2 ∈ Rn}, where the
elements of these vectors, {(c1(i) and c2(i)) ∈ N∗|
(c1(i) and c2(i)) ≤ n}, are randomly defined choosing
a number between 0 and n. This random choice is also
made using two security keys k, one for each vector.
These vectors contain the position of the attributes to
be summed. We decided to use two vectors because the
generation of two sets of data doubles the security of
the cancellable transformation, since it is necessary two
deconvolution process in order to obtain the original
data. This deconvolution requires a solution of a double
system with n variables;

3) The attributes of the reorganized biometric data, β, are
summed with the attributes whose positions are defined
by the random vectors C1(i) and C2(i) defined in the
previous item. Thus the transformed model is obtained
according to the following equation.

T (i) = β(i) + Γ(c1(i)) + Γ(c2(i)). (2)

The double sum method can be considered as non-
invertible, since the number of possible combination is very
high and it is based on the number of attributes n of the
biometric model Γ. Equation 3 calculates the number of
possible combination and it is extremely high as well as the
computational time needed to perform the inverse process.
Using Equation 3 can observe that the solution of a double
system of n variable, with n > 50 is almost impossible to
solve in a feasible processing time.

Cs = n!3 (3)

The revocability of this method is guaranteed by the
security key. This key is responsible for the reorganization of
the original biometric data and for the choice of the original
data attributes that will be summed. In case of being lost or
stolen, a new transformation model can be created using a
different security key k. In this paper, we are using the same
security key k and the dimension of the transformed model
is the same of the original dataset.

V. TOUCHANALYTICS

Nowadays, data security on smartphones is a evident
concern. Accordingly, people and companies are interested in
improve the security of their data. The main security issues

related with smartphone are user authentication and data
theft. Thus, we focus this paper in authentication process.

Currently, the authentication process in a touch-screen
device as smartphones is based on pin-numbers (number
sequences) or combination of drawings. The length of a pin-
number is the main security fault, because pin-numbers are
usually composed of 4 numbers, what makes the combination
space small. In contrast, the combination of drawings is a
useful and intuitive user interface used in the authentication
process. Basically, a user connects graphic elements to gen-
erate a path and this path is used as password. Unfortunately,
the drawing method has some problems. These problems are
discussed in [25, 26].

Data from touchscreen interaction is behavioural biometric
used, which represents a combination of strokes collected
from smartphones usage. This dataset, called TouchAnalyt-
ics, was collected by Frank et al. [2]. The authors present how
the data was collected, processed and some initial results.
This section highlights the most important aspects of this
paper.

The TouchAnalytics dataset is composed of 30 attributes
and all of them are derived from strokes obtained by 41
users. A stroke is a trajectory encoded as a sequence of vec-
tors sn = (xn, yn, tn, pn, An, o

f
n, o

ph
n ), n ∈ 1, 2, ..., N with

location xn, yn , time stamp tn , pressure on screen pn, area
An occluded by the finger, finger orientation ofn and phone
orientation ophn (landscape or portrait). The attributes have
information about area covered, stroke pressure, direction,
velocity and acceleration.

Strokes are composed by horizontal and scrolling (vertical)
movements. However, the dataset was divided in two parts:
the first with horizontal strokes and the second with scrolling
ones. This division was made to verify some similarities in
user direction patterns (horizontal and vertical movements).

Moreover, as we use a verification process, the dataset was
binarized and a different dataset was created for each user. In
other words, the biometric data was splited by user. Strokes
belonging to the corresponding user is considered positive
(‘1’) and the others are negative (‘0’).

As a result of the binarization transform, we have a huge
number of negative examples and few positives examples,
featuring an imbalanced dataset. Imbalanced datasets pro-
duces biased classifiers in the prevalent class. This problem
was resolved using a lab-made tool that takes into consid-
eration the number of negative classes and the number of
positive examples. T =

Np

Nnc
is the number of negatives

instances that will be randomly selected in each Nnc negative
class. Where Np is the number of positive instances and
Nnc is the number of negative classes. Thus, the number of
negatives instances will be Ncn∗T . The selected instances are
placed together with the positive instances, which becomes
a dataset with the same number of negative and positive
instances.

In Frank et al. [2], the authors presented initial results
using three different scenarios, which are:

1) Inter Session: The goal is to authenticate users across
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multiple sessions performed in the same day.
2) Inter Week: The goal is to authenticate users after in

two different weeks (the period of time between these
two sessions is one week).

3) Intra Session: All the user data was used in the process,
time independently. In this scenario, we used a 10 fold
cross-validation process.

In this paper, we will use only the Intra Session experi-
ment.

In [2], they present some results using k-NN and SVM
(Support Vector Machine) classifiers. In addition, the results
use Equal Error Rate (EER) metric which informs when the
false acceptance and the false rejection become equal. The
EER can be obtained from the ROC curve when the false
positive rate (false acceptance) is equal to false rejection
rate (1 − true positive rate). According to Frank et al. [2],
the mean EER ranges from 0% to 4% across all sessions:
Inter Session, Inter Week and Intra Session. The mean EER
in Intra Session are 0%. It seems that, within one session,
most users do not considerably change their touch behaviour.
Inter Session EER reaches from 2% to 3% and Inter Week
EER reaches from 0% to 4%. These results indicate that
behavioural biometrics (touch data) have good perspectives
in practical use. Therefore, we decided to investigate how
machine learning ensembles behaved using cancellable data,
such as it was promising using original data. In [7] was
developed an analysis of k-NN and SVM methods using
the same 3 experiments (Inter Session, Inter Week and Intra
Session) defined by Frank et al. [2].

VI. EMPIRICAL ANALYSIS

An empirical analysis is conducted in order to validate
the use of ensemble systems in cancellable behavioural
biometrics. This investigation will use only the Intra Session
experiment. The main reason is that this scenario is the most
suitable one to apply elaborated pattern recognition structures
as ensemble systems. In addition, for simplicity we decided
to use different ensemble structures only in one scenario.

We applied three ensemble structures, in which two of
them are emerged from two learning strategies (Bagging and
Stacking) and the third one is a traditional ensemble structure
using the majority voting as combination method. First of
all, for the structures generated by Bagging, we applied two
different ensemble sizes, six and twelve individual classifiers.
As we noticed, the performance delivered by both structures
are very similar, for the other two approaches (Stacking and
Voting), we use ensembles with 6 individual classifiers.

We used two different classification algorithm as combi-
nation methods for ensembles generated by Stacking, which
are: k-NN and Logistic Regression. In addition, for the
heterogeneous structures (Bagging and Voting), we use SVM
and k-NN as individual classifiers in half-by-half proportion.

The 10-fold cross-validation methodology was used in
empirical analysis. Thus, all results presented in this paper
refer to the mean over 10 different test sets. In addiction,
an initial investigation was conducted in order to define the
values of parameters used by supervised learning algorithms.

The Mann-Whitney statistical test is applied to compare
the results from different learning methods. The Mann-
Whitney is a statistical pairwise used to compare two samples
(set of results). This paper compares EER of ensemble
systems applied in cancellable data versions with the EER
achieved in original data. For this test, the confidence level
is 95% (α = 0.05).

The classification algorithms of this investigation were
extracted from WEKA 1 package. In general, the algorithms
were used with the following parameters: k-NN with k = 5;
and SVM with polynomial kernel.

VII. RESULTS AND DISCUSSION

Tables I and II show the EER values and standard deviation
of the ensemble systems in each cancellable transformation,
for horizontal and scrolling traits (as described in Section V),
respectively.

Homogeneous Bagging with 6 and 12 classifiers, Stacking
with 6 classifiers, using k-NN and SVM classifiers with
k-NN as combination method (Stacking k-NN SVM k-NN
(Stack kSk)) and Logistics function as combination method
(Stacking k-NN SVM Logistics (Stack kSL)) and finally, the
Voting structure were the ensemble systems used.

The Bagging 6 k-NN (Bag 6 k) and the Bagging 6 SVM
(Bag 6 S) are the bagging structures with 6 k-NN and SVM
classifiers respectively. Bagging 12 k-NN (Bag 12 k) and
Bagging 12 SVM (Bag 12 S) are the bagging structures with
12 k-NN and SVM classifiers.

In this analysis, we also carried out a statistical test,
comparing two-by-two ensembles with and without can-
cellable transformations (columns 3, 4, 5 and 6 against the
original dataset in column 2). In Tables I and II, the bold
numbers represent the cases where the use of cancellable
transformation caused an statistical increase in the accuracy
of ensemble systems. In addition, the shaded cells indicate
when these improvements is not statistically different (the
performance of the original dataset and the transformed ones
are statistically similar).

TABLE I
MEDIAN RESULTS USING SCROOLING TRAITS

Method Original Interpolation BioHashing BioConvol. Double Sum
Bag 6 k 7.6± 4.8 8.9± 5.4 32.3± 12.6 3.3± 10.7 8.7± 5.5
Bag 12 k 7.4± 4.9 8.6± 5.1 32.4± 12.4 3.2± 10.8 8.6± 5.4
Bag 6 S 9.2± 6.4 12.4± 8.2 32.4± 19 2.3± 7.8 11.9± 8.1

Bag 12 S 9.2± 6.4 12.3± 8 31.2± 15.5 2.1± 7.8 11.7± 8.3
Stack kSk 7.8± 5.1 10± 6.3 32.3± 13.1 3.4± 10.6 10± 6.5
Stack kSL 7.2± 4.7 9± 5.5 32.7± 12.7 3.4± 10.9 9.1± 5.8

Voting 8.9± 6.4 10.9± 6.7 32.6± 12.6 3.6± 11 11.4± 7.5

As can be observed from Tables I and II, ensembles gener-
ated by Interpolation and Double Sum functions have similar
statistical results when compared with results achieved by
the Original datasets, for all ensemble structures. These
transformed datasets usually delivered higher EER than the
original dataset, but they are not statistically different.

1http:www.cs.waikato.ac.nz/ml/WEKA
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TABLE II
MEDIAN RESULTS USING HORIZONTAL TRAITS

Method Original Interpolation BioHashing BioConvol. Double Sum
Bag 6 k 8± 4.5 10.6± 6.3 32.8± 9.8 0.1± 0.3 8.7± 4.8
Bag 12 k 7.7± 4.3 10.3± 6.2 32.8± 10.2 0.1± 0.3 8.6± 4.6
Bag 6 S 11.1± 7.3 16.1± 9 34.4± 17.7 0.4± 0.5 13.3± 8.4

Bag 12 S 11.7± 7.8 16.1± 9.2 33.5± 26 0.3± 0.4 13.1± 8.5
Stack kSk 8.5± 4.9 12.1± 7.3 34± 9.5 0.2± 0.4 10.7± 6.3
Stack kSL 7.7± 4.5 10.8± 6.7 33.1± 10 0.2± 0.4 9.6± 5.4

Voting 9.7± 5.8 13.7± 7.1 33.5± 9.7 0.2± 0.4 11.9± 6.9

Still in Tables I and II, we can see that when using
BioConvolving the EER values are statistical better than
EER from Original data, for both strokes directions and for
all ensemble structures. We can conclude that the use of
ensemble systems in behavioural cancellable biometrics do
not deteriorate the EER results, when comparing with the
EER results achieved by Original data. Our only exception
was BioHashing transformation that achieves the worst EER
values, when compared with results of the Original dataset,
using both scrolling and horizontal strokes and all ensemble
structures.

Therefore, these results show that we can use ensemble
systems and cancellable transformation in cancellable be-
havioural biometrics instead of the original data, without
deteriorating the performance of the biometric-based au-
thentication systems. This is an important result because
the cancellable characteristics offer interesting features to
behavioural biometrics context as biometric revocability in
case of some security issue.

Comparing the accuracy of different ensemble structures,
it can be seen that the accuracy of Bagging structures
was higher than the other two structures. This is not an
expected result since we believe that the use of heterogeneous
structures would lead to an increase in the diversity level of
the ensemble systems and, as a consequence, in the accuracy
of these systems.

Our previous work [7] analysed the use of a single
classifier (k-NN and SVM) using the same transformation
functions in all Frank’s experiments (Inter Session, Inter
Week and Intra Session). We can conclude, using these
results, that the use of ensemble structures improves the
results using Interpolation, BioConvolving and Double Sum
functions in scrolling strokes compared with results achieved
in our previous work [7]. The BioHashing dataset was the
only case in which similar results were obtained, in the
scrolling stroke datasets. Using the horizontal strokes, we
archive better results than the results showed in [7], for
all transformed datasets (Interpolation, BioHashing, BioCon-
volving and Double Sum).

The results of this paper support the literature when it
states that ensemble systems are more powerful than single
classifiers. As a future work we will focus on parameter op-
timization to improve the results achieved with BioHashing
dataset. In addition, we believe that the use of soft and multi-
modal behavioral biometrics can increase even further the
performance of the biometric-based systems.

VIII. FINAL REMARKS

In this paper, we performed a comparative analysis
of well-known ensemble structures applied to cancellable
behavioural biometrics. The touchscreen dataset, provided
by [2], on its IntraSession scenario was used in this paper. In
this investigation, four cancellable transformations (Interpo-
lation, BioHashing, BioConvolving and Double Sum) were
applied to this dataset in order to validate the importance and
perspectives of cancellable behavioural biometrics.

The Interpolation and Double Sum results were statistical
similar to Original results. The mean EER of Original dataset
varies from 7.4% to 11.7%, while in Interpolation dataset, the
EER varies between 8.6% and 16.1%. In Double Sum dataset,
EER varies from 8.6% to 13.3%. In contrast, BioConvolving
provided the best results, being statistically better than results
obtained by Original dataset. The mean ERR of BioCon-
volving dataset varies from 0.1% and 3.60%, and it was
statistically superior than all other datasets, for all ensembles
structures. The results obtained by BioConvolving are very
promising and indicate that the use of cancellable behavioural
biometrics can have a positive effect in biometric-based
authentication systems. In addition, we have observed that
the results achieved in this paper are better than in our
previous paper [7], and this shows that the use of ensembles
methods are better than using single classifiers.

Through this analysis, we have demonstrated that the
use of a transformation function usually provides similar or
better performance than the original biometric data, except
in BioHashing function. In addition, the use of cancellable
behavioural biometrics data brings great opportunities for
research, providing the advantages of behavioural biometrics
and the security of cancellable biometrics. We can see that
simple touch movements, even transformed (distorted), can
be used as source of user verification.

As a future work, in order to improve the results obtained
in this paper, we will use different classification algorithms,
such as MultiLayer Perceptrons. In addition, we can apply
optimization technique in order to optimize the cancellable
transformation parameters, mainly for BioHashing function.
Finally, we can enhance diversity in ensemble systems
through the combination of transformation functions, leading
to the multi-biometrics context.
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