

e

Abstract— In our previous works [1, 2], we proposed NEVE,

a model that uses a weighted ensemble of neural network
classifiers for adaptive learning, trained by means of a
quantum-inspired evolutionary algorithm (QIEA). We showed
that the neuro-evolutionary classifiers were able to learn the
dataset and to quickly respond to any drifts on the underlying
data. Now, we are particularly interested on analyzing the
influence of an unlimited ensemble, instead of the limited
ensemble from NEVE. For that, we modified NEVE to work
with unlimited ensembles, and we call this new algorithm
NEVE++. To verity how the unlimited ensemble influences the
results, we used four different datasets with concept drift in
order to compare the accuracy of NEVE and NEVE++, using
two other existing algorithms as reference.

Keywords— Concept Drift, Adaptive Learning,
Nonstationary Environments, Neuro-Evolutionary Ensemble,
Quantum-Inspired Evolution.

I. INTRODUCTION
EAL world concepts are often not stable: they change
with time. Typical examples of scenarios where these

changes are occurring are problems involving rules for
climate prediction, detection of spam emails and customer
preference. Just as the concepts, data distribution may
change as well. The problem that occurs with learning
algorithms that deal with these scenarios is that, usually, any
of these changes make the model that was built based on old
data inconsistent with the new data, resulting necessary to
change the model accordingly so that learning is not
impaired. This problem of change in concepts or distribution
of data is known as concept drift and is a complication for a
model in the task of learning from data. Specific strategies
are needed, different from the techniques traditionally used
in which arriving data samples are treated as equal
contributors to the final concept [3].

These concept changes, in turn, may be small fluctuations
in the underlying probability distributions, stable, random or
systematic trends, rapid replacement of a classification task,
among others. A classifier, be it individual or an ensemble
must be equipped with some mechanism to adapt to changes

This work was partially funded by FAPERJ (Fundação de Amparo à

Pesquisa do Rio de Janeiro) and CAPES (Coordenação de Aperfeiçoamento
de Pessoal de Nível Superior).

All authors are with the Department of Electrical Engineering, Pontifical
Catholic University of Rio de Janeiro (PUC-Rio), Rua Marquês de São
Vicente, 225, Gávea - Rio de Janeiro, RJ - Brasil - 22451-900.
(corresponding author phone: +55(21)9490-6545; e-mail: [tatiana, andrev,
marley, adriano]@ ele.puc-rio.br, rubens@inf.puc-rio.br).

in the environment [7].Therefore, the ability for a classifier
to learn from incrementally updated data drawn from a
nonstationary environment poses a challenge to the field of
computational intelligence. Moreover, the use of neural
networks as classifiers makes the problem even harder, as
neural networks are usually seen as tools that must be
retrained with the whole set of instances learned so far when
a new chunk of data becomes available.

In order to cope with that sort of problem, a classifier
must, ideally, be able to [5]:

• Track and detect any sort of changes on the
underlying data distribution;

• Learn with new data without the need to present
the whole data set again for the classifier;

• Adjust its own parameters in order to address the
detected changes on data;

• Forget what has been learned when that knowledge
is no longer useful for classifying new instances.

All those abilities try, in a way or another, to address a
phenomenon called “concept drift” [3, 6]. This phenomenon
defines data sets which suffer changes over time, like, for
example, when the relevant variables change or either mean
or variance of the time series is changing. Most work in the
field of learning in non-stationary environments was
published in the last decade and it is observed that until now
there is lack of standard terminology. The use of different
terms by the authors hinders comparison of proposals and
studies in the area. The article [7] proposes a unification and
standardization of this nomenclature and proposes the term
Dataset shift to represent the general problem that occurs
when the test data (not yet viewed) experience a
phenomenon that leads to a change i) in the distribution of a
single feature, ii) a combination of features or iii) in the
boundaries of classes. As a result, the common assumption
that training data and test follow the same distributions is
often violated in real applications and scenarios. The authors
also propose the following terms: Covariate shift, for
changes in the distribution of the input variables x; Prior
probability shift, for changes in the distribution of class
variables y and Concept Shift, when the relationship between
the inputs and class variables changes. Although we believe
the approach presented interesting, in this study we chose to
use the term Concept drift, first, because it is the term most
used in the literature and secondly because we are not
currently interested in analyzing the influence that each
possible type of change would have on the final result of our
model.

Many approaches have been devised in order to
accomplish some or all of the abilities mentioned above. The

NEVE++: A Neuro-Evolutionary Unlimited Ensemble for Adaptive
Learning

Tatiana Escovedo, André Abs da Cruz, Adriano Koshiyama, Rubens Melo, Marley Vellasco

R

2014 International Joint Conference on Neural Networks (IJCNN)
July 6-11, 2014, Beijing, China

978-1-4799-1484-5/14/$31.00 ©2014 IEEE 3331

simplest one consists in using a sliding window on incoming
data and training the classifier with the data delimited by that
window [8]. Another approach consists in detecting drifts
and then making adjustments to the classifier according to
the drift.

A more successful approach consists in using an ensemble
of classifiers. This kind of approach uses a group of different
classifiers in order to be able to track changes on the
environment. Several different models of ensembles have
been proposed on the literature [4, 9, 10]:

• Ensembles that create new classifiers to each new
chunk of data and weight classifiers according to
their accuracy on recent data;

• Unweighted ensembles which can cope with new
data that belongs to a concept different from the
most recent training data;

• Ensembles that are able to discard classifiers as
they become inaccurate or when a concept drift is
detected.

Most models using weighted ensembles determine the
weights for each classifier using some sort of heuristics
related to the amount of mistakes the classifier does when
working with the most recent data [6]. Although in principle
any classifier can be used to build the ensembles, the ones
which are most commonly used are decision trees, neural
networks and naive Bayes [8].

This work represents an extension of [1, 2] where we
presented an approach based on neural networks which are
trained by means of a quantum-inspired evolutionary
algorithm. Quantum-inspired evolutionary algorithms [12-
16] are a class of estimation of distribution algorithms which
present, for several benchmarks, a better performance for
combinatorial and numerical optimization when compared to
their canonical genetic algorithm counterparts. The
quantum-inspired evolutionary algorithm for numerical
optimization (QIEA-R), to be presented in section 3, has
shown good performance when used to train a neural
network for time series forecasting and control problems.
Training a neural network by using an evolutionary
algorithm can be beneficial, especially on reinforcement
learning problems, when generating instances of input-
output data is not simple or even possible. Moreover, by
using an evolutionary algorithm for training a neural
network, one can possibly be able to train complex
architectures like networks with non-continuous activation
functions and recurrent neural networks in a straightforward
way and even to define the neural network’s topology during
the training [13, 17].

We also use the QIEA-R to determine the voting weights
for each classifier that is part of the ensemble. Every time a
new chunk of data arrives, a new classifier is trained on this
new data set and all the weights are optimized in order for
the ensemble to improve its performance on classifying this
new set of data.

The main difference between NEVE (Neuro-Evolutionary
Ensemble) [1, 2] and the model presented here is that now,
we are particularly interested on investigating the impact of
the ensemble size, and hence, we modified NEVE to work
with unlimited ensembles, and we call this new model

NEVE++. To evaluate the impact of this modification at the
algorithm accuracy, we used four different datasets to
execute several experiments, in order to compare NEVE++
and NEVE accuracies, using the existing algorithms
Learn++.NSE [9] and Diversity for Dealing with Drifts
(DDD) [18] only as reference values, not intending to
specifically compare the algorithms.

This paper is organized in four additional sections.
Section 2 presents some theoretical concepts related to
concept drift and some existing approaches, including the
Learn++.NSE algorithm and DDD, which are our basis of
comparison in this work. Section 3 details the proposed
model and Section 4 presents and discusses the results of the
experiments. Finally, section 5 concludes this paper and
presents some possible future works.

II. CONCEPT DRIFT

A. Definitions
The term concept drift can be defined informally as a

change in the concept definition over time and, hence,
change in its distribution. An environment from which this
kind of data is obtained is considered a nonstationary
environment.

Concept drift can also be defined as an obstacle caused by
insufficient, unknown or unobservable features in a dataset,
which happens in many real problems. These problems
usually depend on a context that is not explicitly stated in the
predicted features. This scenario is known as hidden context,
and a typical example is the climatic prediction rules, that
can vary radically according to the season of the year.
Another example would be the analysis of consumption
patterns that can vary in time, according to the month,
availability of alternative products, inflation rate, etc. [3].
Analyzing the problem with the benefit of this hidden
context would help solve the nonstationarity problem.

A practical example of concept drift mentioned in [10] is
detecting and filtering out spam e-mails. The description of
the two classes “spam” and “non-spam” may vary in time.
They are user specific, and user preferences are also varying
over time. Moreover, the variables used at time t to classify
spam may be irrelevant at t+k. In this way, the classifier
must deal with the “spammers”, who will keep creating new
forms to trick the classifier into labeling a spam as a
legitimate e-mail.

B. Related Work
Algorithms designed for concept drift can be

characterized in several ways. Based on [4, 9, 10], we
propose a possible classification, as follows:

Active x Passive
• Active: Uses some drift detection mechanism,

learning only when the drift is detected)
• Passive (Assume possibly ongoing drift and

continuously update the model with each new
data(set). If change has occurred, it is learned, else,
the existing knowledge is reinforced.)

Online x Batch

3332

• Online: Learn one instance at a time. They have
better plasticity but poorer stability properties.
They also tend to be more sensitive to noise as well
as to the order in which the data are presented.

• Batch: Requires blocks of instances to learn. They
benefit from the availability of larger amounts of
data, have better stability properties, but can be
ineffective if the batch size is too small, or if data
from multiple environments are present in the same
batch. Typically use some form of windowing to
control the batch size.

Single Classifier x Ensemble
• Single Classifier: Uses only one classifier.
• Ensemble: Combines multiple classifiers.

The ensemble-based approaches that combine multiple
classifiers constitute a new breed of nonstationary learning
(NSL) algorithms. These algorithms tend to be more
accurate, more flexible and sometimes more efficient than
single classifiers [10]. Most of all uses some voting method,
yet there is no agreement in the literature about the best type
to be used.

Several ensemble approaches were already proposed in
the literature, such as the Street’s Streaming Ensemble
Algorithm (SEA) [19], the Chen and He’s Recursive
Ensemble Approach (REA) [20], the Tsymbal’s Dynamic
Integration [21], the Kolter and Maloof’s online algorithm
Dynamic Weighted Majority (DWM) [22]. In this work, we
used Learn++.NSE [9] and Diversity for Dealing with Drifts
(DDD) [18] to compare the results reached by our proposed
model. These algorithms will be presented briefly as
follows.

1) Learn++.NSE

Developed based on the guidelines for building learning
algorithms in nonstationary environments, previously
presented in this section, Learn++.NSE [9] is an ensemble-
based batch learning algorithm that uses weighted majority
voting, where the weights are dynamically updated with
respect to the classifiers’ time-adjusted errors on current and
past environments. The algorithm uses a passive drift
detection mechanism, and uses only current data for training.
It can handle a variety of non-stationary environments,
including sudden concept change, or drift that is slow or fast,
gradual or abrupt, cyclical, or even variable rate drift. It is
also one of the few algorithms that can handle concept
addition (new class) or deletion of an existing class.

The algorithm assumes that at each step may or may not
have occurred change in environment and, if occurred, the
rate of change is unknown and it is assumed that it is not
constant. It is also assumed that all previously seen data
(relevant or not for the learning) is not accessible or it is not
possible to access it, meaning that the algorithm works
incrementally. All relevant information about the previous
data must be stored in the parameters of the previously
generated classifiers. Depending on the nature of the change,
the algorithm retains, builds or temporarily discards
knowledge, so that new data can be categorized.

The knowledge base is initialized by creating a single

classifier in the first data block available. Once prior
knowledge is available, the current ensemble (knowledge
base) is evaluated by current data: the algorithm identifies
which new samples were not recognized by the existing
knowledge base and this is updated by adding a new
classifier trained on current training data. Each classifier
(including the recently created) is evaluated on the training
data. As previously unknown data have been identified, the
penalty for misclassifying is considered in the error
calculation. This way, more credit is given to the classifiers
capable of identify previously unknown instances, while
classifiers that misclassify previously known data are
penalized. Then, classifier error is weighted considering the
time: recent competence is taken more into account when
categorizing knowledge. After that, the voting weights are
determined: if knowledge of a classifier is not compatible
with the current environment, it receives little or no weight
and is temporarily removed from the knowledge base. It is
not discarded: if its knowledge becomes relevant again, it
will receive higher voting weights. The final decision is
taken on with the weighted majority vote of the current
ensemble members.

2) Diversity for Dealing with Drifts (DDD)

DDD [18] is an online ensemble approach that operates in
2 modes: prior to drift detection and after drift detection. It
uses a drift detection method that detect drifts the earliest
possible and it is designed to be robust to false alarms.

Before a drift is detected, the learning system is composed
of two ensembles: an ensemble with lower diversity and an
ensemble with higher diversity. Both ensembles are trained
with incoming examples, but only the low diversity
ensemble is used for system predictions, because the high
diversity ensemble is likely to be less accurate on the new
concept. DDD assumes that, if there is no convergence of
the underlying distributions to a stable concept, new drift
detections will occur, triggering the mode after drift
detection. DDD then allows the use of the high diversity
ensemble in the form of an old high diversity ensemble.

After a drift is detected, new low diversity and high
diversity ensembles are created. The ensembles
corresponding to the low and high diversity ensembles
before the drift detection are kept and denominated old low
and old high diversity ensembles. The old high diversity
ensemble starts to learn with low diversity in order to
improve its convergence to the new concept.

Both the old and the new ensembles perform learning and
the system predictions are determined by the weighted
majority vote of the output of the old high diversity, the new
low diversity and the old low diversity ensemble. During the
mode after drift detection, the new low diversity ensemble is
monitored by the drift detection method. If two consecutive
drift detections happen and there is no shift back to the mode
prior to drift detection between them, the old low diversity
ensemble after the second drift detection can be either the
same as the old high diversity learning with low diversity

3333

after the first drift detection or the ensemble corresponding
to the new low diversity after the first drift detection,
depending on which of them is the most accurate.

All the four ensembles are maintained in the system until
either some conditions are satisfied, then, the system returns
to the mode prior to drift detection. When returning to the
mode prior to drift, either the old high diversity or the new
low diversity ensemble becomes the low diversity ensemble
used in the mode prior to drift detection, depending on
which of them is the most accurate.

III. THE PROPOSED MODEL

A. The Quantum-Inspired Neuro-Evolutionary Model
Neuro-evolution is a form of machine learning that uses

evolutionary algorithms to train artificial neural networks.
This kind of model is particularly interesting for
reinforcement learning problems, where the availability of
input-output pairs is often difficult or impossible to obtain
and the assessment of how good the network performs is
made by directly measuring how well it completes a
predefined task. As training the weights in a neural network
is a non-linear global optimization problem, it is possible to
minimize the error function by means of using an
evolutionary algorithm approach.

The quantum-inspired evolutionary algorithm (QIEA) is a
class of “estimation of distribution algorithm” (EDA) that
has a fast convergence and, usually, provides a better
solution, with less evaluations than the traditional genetic
algorithms [10, 11]. In this model, quantum-inspired genes
are represented by probability density functions (PDF)
which are used to generate classical individuals through an
observation operator. After being observed, the classical
individuals are evaluated, as in traditional genetic
algorithms, and, by means of using fitness information, a set
of quantum-inspired operators are applied to the quantum
individuals, in order to update the information they hold in
such a way that on the next generations, better individuals
will have a better chance to be selected. Further details on
how this global optimization method works can be found in
[12-16].

Based on this algorithm, the proposed quantum-inspired
neuro-evolutionary model consists in a neural network (a
multilayer perceptron (MLP)) and a population of
individuals, each of them encoding a different configuration
of weights and biases for the neural network. If the neural
network has ni inputs, nh hidden processors and no outputs,
then the total number of weights and biases that must be
encoded by the genes in the individuals is given by

 tp = ni * nh + nh + nh * no + no (1)

which considers the connections between the inputs and the
hidden processors, the connections between the hidden
processors and the output processors and the biases for the
hidden and output processors.

The training process occurs by building one MLP for each
classical individual using the genes from this individual as
weights and biases. After that, the full training data set (or

the set of tasks to be performed) is presented to the MLP and
the average error regarding the data set is calculated for each
MLP. This average error is used as the fitness for each
individual associated to that MLP, which allows the
evolutionary algorithm to adjust itself and move on to the
next generation, when the whole process will be repeated
until a stop condition is reached. The individual is shown in
figure 1. The whole process of training the neural network
by using the quantum-inspired evolutionary algorithm can be
summarized as shown in figure 2.

Fig. 1. The QIEA-R individual structure.

Fig. 2. The quantum-inspired neuro-evolutionary model.

B. NEVE++: The Neuro-Evolutionary Unlimited Ensemble
To some applications, such as those that use data streams,

the strategy of using simpler models is most appropriate
because there may not be time to run and update an
ensemble. However, when time is not a major concern, yet
the problem requires high accuracy, an ensemble is the
natural solution. The greatest potential of this strategy for
detecting drifts is the ability of using different forms of
detection and different sources of information to deal with
the various types of change [4].

One of the biggest problems in using a single classifier (a
neural network, for example) to address concept drift
problems is that when the classifier learns a dataset and then
we need it to learn a new one, the classifier must be retrained
with all data, or else it will “forget” everything already
learned. Otherwise, using the ensemble, there is no need to
retrain it again, because it can “retain” the previous
knowledge and still learn new data.

Hence, in order to be able to learn as new chunks of data
arrive, we implemented an ensemble with neural networks
that are trained by an evolutionary algorithm, presented in

3334

section 2.B. This approach makes the ensemble useful for
online reinforcement learning, for example. The algorithm
works as shown in figure 3 and each step is described in
detail on the next paragraphs.

On step 1 we create the empty ensemble with a predefined
size equal to s. When the first chunk of data is received, a
neural network is trained using the QIEA-R until a stop
condition is reached (for example, the number of
evolutionary generations or an error threshold). As the
number of classifiers in the ensemble is smaller than s
considering s=∞, we simply add this new classifier to the
ensemble. This gives the ensemble the ability to learn the
new chunk of data without having to parse old data. This is
the main difference between our previous algorithm NEVE
and the current algorithm NEVE++. In NEVE, if the
ensemble was already full, we needed to evaluate each
classifier on the new data set and remove the one with the
highest error rate (including the new one, which means the
new classifier will only become part of the ensemble if its
error rate is smaller than the error rate of one of the
classifiers already in the ensemble). Since NEVE++
continuously adds classifiers, one may be concerned about
proliferation of classifiers. We decided to try this approach
instead of using a fixed ensemble size and removing
additional classifiers based on their error (as we did at [2]).
At [23], the authors showed that performance benefits of
retaining the ensemble far outweighs the additional and
modest computational and memory costs and they do not
recommend the fixed size approach because , it reduces the
ability of the algorithm to remember recurring environments
as well as its stability during stationary periods.

Fig. 3. The neuro-evolutionary unlimited ensemble training algorithm.

Finally, we use the QIEA-R to evolve a voting weight for
each classifier. Optimizing the weights allows the ensemble
to quickly adapt to sudden changes on the data, by giving
higher weights to classifiers better adapted to the current
concepts governing the data. The chromosome that encodes
the weights has one gene for each voting weight, and the
population is evolved using the classification error as the
fitness function. It is important to notice that when the first s-
1 data chunks are received, the ensemble size is smaller than
its final size and thus, the chromosome size is also smaller.
From the s data chunk on, the chromosome size will remain
constant and will be equal to s.

In this work we used only binary classifiers but there is no
loss of generality and the algorithm can be used with any
number of classes. For the binary classifier, we discretize the
neural network’s output as “1” or “-1” and the voting
process for each instance of data is made by summing the

NN’s output multiplied by its voting weight. In other words,
the ensemble’s output for one instance k from the i-th data

chunk is given
by:

(2)

where P(Dik) is the ensemble’s output for the data instance
Dik, wj is the weight of the j-th classifier and cj(Dik) is the
output of the j-th classifier for that data instance. If P(Dik) <
0, we assume the ensemble’s output is “-1”. If P(Dik) > 0, we
assume the ensemble’s output is “1”. If P(Dik) = 0, we
choose a class randomly.

Thus, the main difference between our model, the
Learn++.NSE and the DDD algorithms is that we use a
neuro-evolutionary approach, based on a quantum-inspired
algorithm to train the neural networks and to determine the
voting weights for each member of the ensemble. All
algorithms use an ensemble strategy. NEVE++ and
Learn++.NSE algorithms use passive and batch approaches;
DDD uses active and online approaches, according to the
proposed classification presented.

IV. EXPERIMENTAL RESULTS
In order to check the ability of our model on learning data

sets with concept drifts and compare its accuracy with its
previously version (NEVE, which uses a fixed ensemble
size), we used four different data sets (SEA Concepts and
Nebraska, also used at [10]; Circle and Line, also used at
[18, 24]) upon which we performed several simulations in
different scenarios. All experiments begin at t=0 and end at
an arbitrary time t=1. Meanwhile, T consecutive data blocks
are presented for training, each one taken from a possible
drift scenario, where the rate or nature is unknown. The
value T determines the number of time steps (or snapshots)
taken from the data during the drift period.

On each experiment, we used a fixed topology for the
neural networks consisting of 2 inputs for Circle and Line
dataset, 3 inputs for SEA Concepts dataset and 8 inputs for
Nebraska dataset, representing the input variables for each
dataset. In all datasets, we used 1 output, and we used 5
neurons for the hidden layer, because this was the best value
found by some previously analysis [1, 2]. Each neuron has a
hyperbolic tangent activation function and, as mentioned
before, the output is discretized as “-1” or “1” if the output
of the neuron is negative or positive, respectively. The
evolutionary algorithm trains each neural network for 100
generations. The quantum population has 10 individuals and
the classical population 20. The crossover rate is 0:9 (refer to
[12, 13] for details on the parameters). The same parameters
are used for evolving the weights for the classifiers.

The neural network weights and biases and the ensemble
weights are allowed to vary between -1 and 1 as those values
are the ones who have given the best results on some pre-
evaluations we have made. The hidden layer neuron number
and the ensemble size for NEVE, in each experiment, were
given using the results of the best configuration found by a

3335

previously analysis using different values, made in [1].
We made, for each experiment, statistical comparisons

between the results found by Learn++.NSE, DDD, NEVE
and NEVE++ algorithms. These were based on the correct
classification performance throughout the test phase for each
method. The results of Learn++.NSE can be found at [9] and
the results of DDD, at [18]. For each dataset used, due to the
stochastic optimization algorithm used to train NEVE and
NEVE++:

• We made 10 runs of NEVE++ and calculated the
mean error e1;

• We made 10 runs of NEVE using ensemble size =
5 and calculated the mean error e2;

• We made 10 runs of NEVE using ensemble size =
10 and calculated the mean error e3;

• We compared e1, e2 and e2 with the results of
Learn++ (for SEA and Nebraska datasets) and with
the results of DDD (for Circle and Line datasets).

As mentioned above, we are particularly interested on
investigating the impact of the ensemble size, and hence, we
modified NEVE to work with unlimited ensembles, creating
NEVE++. This way, our main interest is to observe how this
modification affects the accuracy of the algorithm. We just
used the results of Learn++.NSE [9] and Diversity for
Dealing with Drifts (DDD) [18] as reference values, not
intending to specifically compare the algorithms.

Based on these runs, we calculate some statistical
parameters (mean, standard deviation, etc.) that were used to
compute the Welch t-test [25] to evaluate which algorithm
had, in average, the best performance in test phase. The
normality assumption necessary for Welch t-test was
verified using Shapiro-Wilk test [26]. All the statistical
analysis were conducted in R statistical package [27].

A. SEA Concepts
The SEA Concepts was developed by Street [19] and has

been used by several algorithms as a standard test for
concept change. The dataset, available at [28], is
characterized by extended periods without any drift with
occasional sharp changes in the class boundary, i.e., sudden
drift or concept change. The dataset consists of 50000
random points in a three-dimensional feature space. The
features are in the [0; 10] domain but only two of the three
features are relevant to determine the output class. These
points are then divided into four blocks, with different
concepts. Class labels are assigned based on the sum of the
relevant features, and are differentiated by comparing this
sum to a threshold that separates a 2-D hyper-plane: an
instance is assigned to class 1 if the sum of its (relevant)
features (f1 + f2) fall below the threshold, and assigned to
class 2, otherwise. At regular intervals, the threshold is
changed with increasing severity (8→9→7.5→9.5), creating
an abrupt shift in the class boundary.

Aiming to enable a better comparison with the results of
the algorithm Learn++. NSE, detailed in section 2, we used
200 blocks of size 250 to evaluate the algorithm in the test
phase. Then, NEVE++, NEVE with ensemble size = 5,
NEVE with ensemble size = 10 and Learn++.NSE results
were displayed in Table 1.

TABLE I. RESULTS OF THE SEA EXPERIMENTS.

Algorithm Mean Standard Deviation

NEVE ++ 2.04% 0.10%

NEVE(5) 1.65% 0.14%

NEVE(10) 1.69% 0.13%

Learn++.NSE (SVM) 1.79% 0.20%

As can be seen, NEVE++ performed a little worse than
NEVE(5) and NEVE(10), indicating that for this dataset, the
use of an unlimited ensemble is not the best strategy. Despite
the better accuracy of Learn++.NSE for this dataset,
numerically the difference is little (less than 0.5%), but when
performing a statistical comparison we can see that
Learn++.NSE performed in average significantly better than
NEVE++ (tcrit = 4.85, p-value < 0.01).Further details of
Learn++.NSE results can be found in [9].

 Next subsection exhibits the second experiment, based
on Nebraska Weather data.

B. Nebraska Weather Prediction Data
This dataset, also available at [28], presents a compilation

of weather measurements from over 9000 weather stations
worldwide by the U.S. National Oceanic and Atmospheric
Administration since 1930s, providing a wide scope of
weather trends. Daily measurements include a variety of
features (temperature, pressure, wind speed, etc.) and
indicators for precipitation and other weather-related events.
As a meaningful real world dataset, we chose the Offutt Air
Force Base in Bellevue, Nebraska, for this experiment due to
its extensive range of 50 years (1949–1999) and diverse
weather patterns, making it a long-term precipitation
classification/prediction drift problem.

Class labels are based on the binary indicator(s) provided
for each daily reading of rain: 31% positive (rain) and 69%
negative (no rain). Each training batch consisted of 30
samples (days), with corresponding test data selected as the
subsequent 30 days. Thus, the learner is asked to predict the
next 30 days’ forecast, which becomes the training data in
the next batch. The dataset included 583 consecutive “30-
day” time steps covering 50 years.

Aiming to enable a better comparison with the results of
the algorithm Learn++. NSE, we performed similarly to that
used in [9]: we used 400 blocks of size 30 to evaluate the
algorithm in the test phase. Then, NEVE++, NEVE with
ensemble size = 5, NEVE with ensemble size = 10 and
Learn++.NSE results were displayed in Table 2.

TABLE II. RESULTS OF THE NEBRASKA EXPERIMENTS.

Algorithm Mean Standard Deviation

NEVE++ 29.51% 0.53%

NEVE(5) 31.85% 0.32%

NEVE(10) 31.44% 0.61%

Learn++.NSE (SVM) 21.20% 1.00%

3336

As can be seen, the mean error rate of Learn++.NSE is the
lowest, but comparing NEVE to NEVE++, we noticed that
the mean error rate of NEVE++ is substantially lower than
NEVE(5) and NEVE(10) (p-value < 0.01, tcrit = 10.7862 and
tcrit = 4.85, respectively), indicating that for this dataset, the
unlimited ensemble is a good strategy. Further details of
Learn++.NSE results can be found in [9]. We see that the
unlimited ensemble from NEVE++ produced better results
compared to the previous version of our algorithm NEVE,
but Learn++.NSE’s results show that we have some
improvement opportunities in our algorithm aiming to reach
better results.

 Next subsection exhibits the third experiment, based on
Circle and Line datasets.

C. Circle and Line Datasets
In order to analyze the effect of diversity in the presence

of concept drift, Minku [24] developed a data sets generator
to create datasets with different types of drift for four
problems, as figure 4 shows:

Fig. 4. Details of the artificial datasets [24].

 The dataset is available at [29]. The examples generated
contain x/xi and y as the input attributes and the concept
(which can assume value 0 or 1) as the output attribute. The
range of x or xi and y was [0,1]. Eight irrelevant attributes
and 10% class noise were introduced in the plane data sets.
Each data set contains 1 drift and different drifts were
simulated by varying among 3 amounts of severity,
generating 3 different datasets for each problem. In this
study, we decided to use only circle and line (moving
hyperplane with d=1) datasets, detailed as follows:

• Circle: a = b = 5; r = 0.2 0.3 (severity 1); r = 0.2
 0.4 (severity 2); r = 0.2 0.5 (severity 3)

• Line: a1 = 0.1; a0=−0.4 −0.55 (severity 1);
a0=−0.25 −0.7 (severity 2); a0=−0.1 −0.8
(severity 3)

Because the DDD algorithm works very different from
NEVE++, as we already mentioned, it is hard to reproduce
the same settings aiming to make comparisons, but we still
decided to use DDD results only as a referential value just to
check if our accuracy is satisfactory. Then, NEVE++, NEVE
with ensemble size = 5, NEVE with ensemble size = 10 and
DDD results were displayed in Table 3 (circle datasets) and
4 (line datasets).

TABLE III. RESULTS OF THE CIRCLE EXPERIMENTS

 Severity 1 Severity 2 Severity 3

Algorithm Mean Standard
Deviation Mean Standard

Deviation Mean Standard
Deviation

NEVE++ 15.20% 1.00% 19.24% 1.96% 16.08% 1.89%

NEVE(5) 15.37% 2.88% 19.41% 3.54% 17.89% 0.65%

NEVE(10) 16.93% 1.90% 14.74% 1.02% 16.25% 1.49%

DDD 7.39% 0.96% 8.83% 0.91% 10.06% 1.01%

TABLE IV. RESULTS OF THE LINE EXPERIMENTS

 Severity 1 Severity 2 Severity 3

Algorithm Mean Standard
Deviation Mean Standard

Deviation Mean Standard
Deviation

NEVE++ 1.85% 0.52% 2.54% 0.55% 3.65% 0.56%

NEVE(5) 1.22% 0.54% 2.30% 0.47% 3.55% 0.36%

NEVE(10) 1.71% 0.52% 2.29% 0.41% 3.44% 0.36%

DDD 4.83% 0.59% 5.99% 0.51% 6.73% 0.72%

Comparing the mean error rate of NEVE++, NEVE(5)
and NEVE(10) for all 3 Circle datasets, the results are not
the same. As can be seen, at Circle Severities 1 and 3
dataset, NEVE++ presented a better mean error rate,
compared to NEVE(5) and NEVE(10). However, at Circle
Severity 2, NEVE(10) had the best mean error rate, followed
by NEVE++ and then by NEVE(5). For severity 1 and 3 this
difference was not significant (p-value > 0.5), however for
severity 2 mean error rate of NEVE(10) is substantially
lower than NEVE(5) and NEVE++ approach (p-value <
0.01).

Although the difference among NEVE++, NEVE(5) and
NEVE(10) mean error rates were small for all severities (less
than 2%), the DDD algorithm always presented better
accuracy results for this dataset. Nevertheless, the results
indicated that the strategy of using an unlimited ensemble
tends to be better than using a limited ensemble.

In the other hand, at Line dataset, NEVE and NEVE++
always presented better accuracy than DDD; the only
experiment where NEVE++ was better than NEVE,
although, was at severity 3, but the difference among NEVE
and NEVE++ error rates were very small for all severities
(less than 0.5%) and not statistically significant (p-value >
0.05), except in severity 1.

This section presented the results obtained in experiments
taken with the NEVE++ algorithm. We detailed the results
of four different datasets and then those results were
compared with the results of other algorithms. The next
section concludes this work.

V. CONCLUSIONS AND FUTURE WORKS
This paper presented a model that uses an unlimited

ensemble of neural networks trained by a quantum-inspired
evolutionary algorithm to learn datasets (possibly with

3337

concept drifts) incrementally. We analyzed the ability of the
model using four different datasets, using the algorithms
Learn++.NSE and DDD as reference.

Although the NEVE++ algorithm has demonstrated a
better performance when compared to NEVE in some
datasets, these results are not conclusive because we also
had worse results compared to NEVE, demonstrating that
just for some situations and datasets, the unlimited ensemble
strategy is better than the limited one. It is strongly
recommended that further tests may be performed with
different configurations to confirm whether or not the results
presented here. It is also desirable to do a comparison with
others algorithms in others datasets.

In the future, we intend to check the performance of
NEVE and NEVE++ on other real data sets, although it is
not easy to determine if a real world data set has any kind of
significant changes on data. In any case, it is always possible
to introduce these changes on any real data set, artificially.
We also intend in the future to continue this work, analyzing
other existing approaches, such as [22] and [30], and
performing new experiments comparing our work with these
and other algorithms.

We still need to do some changes in NEVE++ to verify if
we can reach better results. For example, a possibility is to
use the voting weights or some of the neural network
weights (for instance, the weights from the input to the
hidden neurons) to detect concept drifts and to be able to
direct better the learning process. Another idea is to use the
evolutionary process to evolve the voting weights for more
generations if we detect a significant change on the
underlying data. This might allow the ensemble to “react”
faster to the concept drift. Another possibility is to use the
QIEA to evolve and find the ideal number of neurons in the
hidden layer for each member of the ensemble. In addition,
we intend to perform a deep sensibility analysis for
parameters that compose NEVE++ (QIEA algorithm and
MLP), in order to better address the impact of each
configuration and find an almost optimal setting.

REFERENCES
[1] T. Escovedo, A. V. Abs da Cruz, M. Vellasco and A. Koshiyama.

"NEVE: A Neuro-Evolutionary Ensemble for Adaptive Learning." In
Artificial Intelligence Applications and Innovations, pp. 636-645.
Springer Berlin Heidelberg, 2013.

[2] T. Escovedo, A. V. Abs da Cruz, M. Vellasco and A. Koshiyama.
"Using ensembles for adaptive learning: A comparative approach." In
Neural Networks (IJCNN), The 2013 International Joint Conference
on, pp. 1-7. IEEE, 2013.

[3] A. Tsymbal, “The problem of concept drift: Definitions and related
work”, Tech. Rep., 2004.

[4] L. I. Kuncheva, “Classifier ensemble for detecting concept change in
streaming data: Overview and perspectives,” in Proc. Eur. Conf. Artif.
Intell, pp. 5–10, 2008.

[5] J. C. Schlimmer and R. H. Granger, “Incremental learning from noisy
data”, Machine Learning, vol. 1, no. 3, pp. 317–354, 1986.

[6] M. T. Karnick, M. Ahiskali, M. Muhlbaier, and R. Polikar, “Learning
concept drift in nonstationary environments using an ensemble of
classifiers based approach,” in IJCNN, pp. 3455–3462, 2008.

[7] J. G. Moreno-Torres, T. Raeder, R. Alaiz-Rodríguez, N. V. Chawla, e
F. Herrera. "A unifying view on dataset shift in classification." Pattern
Recognition 45, no. 1, pp. 521-530, 2012.

[8] G. Hulten, L. Spencer, and P. Domingos, “Mining time-changing data
streams,” In Proc. Of The 2001 Acm Sigkdd Intl. Conf. On
Knowledge Discovery And Data Mining, pp. 97–106, 2001.

[9] Ryan Elwell, Robi Polikar: Incremental Learning of Concept drift in
Nonstationary Environments. IEEE Transactions on Neural Networks
22(10): 1517-1531, 2011.

[10] L. I. Kuncheva, “Classifier ensemble for changing environments,” in
Multiple Classifier Systems, vol. 3077. New York: Springer-Verlag,
2004.

[11] N. C. Oza, “Online Ensemble Learning,” Dissertation, University of
California, Berkeley, 2001.

[12] A. V. Abs da Cruz, M. M. B. R. Vellasco, and M. A. C. Pacheco,
“Quantum-inspired evolutionary algorithms for numerical
optimization problems,” in Proceedings of the IEEE World
Conference in Computational Intelligence, 2006.

[13] A. V. Abs da Cruz, “Algoritmos evolutivos com inspiração quântica
para otimização de problemas com representação numérica,” Ph.D.
dissertation, Pontifical Catholic University – Rio de Janeiro, 2007.

[14] K.-H. Han and J.-H. Kim, “Quantum-inspired evolutionary algorithm
for a class of combinatorial optimization”, IEEE Trans. Evolutionary
Computation, vol. 6, no. 6, pp. 580–593, 2002.

[15] K.-H. Han and J.-H. Kim, “On setting the parameters of qea for
practical applications: Some guidelines based on empirical evidence,”
in GECCO, pp. 427–428, 2003.

[16] K.-H. Han and J.-H. Kim, “Quantum-inspired evolutionary
algorithms with a new termination criterion, He gate, and two-phase
scheme,” IEEE Trans. Evolutionary Computation, vol. 8, no. 2, pp.
156–169, 2004.

[17] W. Lieffijn, “Heterogeneous neuro-evolutionary specialization of
collective rover behaviors,” 2008.

[18] L. L. Minku and X. Yao, "DDD: A New Ensemble Approach For
Dealing With Concept Drift,", IEEE Transactions on Knowledge and
Data Engineering, IEEE, v. 24, n. 4, p. 619-633, 2012.

[19] W. N. Street and Y. Kim, “A streaming ensemble algorithm (SEA) for
large-scale classification,” in Proc. 7th ACM SIGKDD Int. Conf.
Knowl. Disc. Data Min., pp. 377–382, 2001

[20] S. Chen and H. He, “Toward incremental learning of nonstationary
imbalanced data stream: A multiple selectively recursive approach,”
Evolv. Syst., vol. 2, no. 1, pp. 35–50, 2011.

[21] A. Tsymbal, M. Pechenizkiy, P. Cunningham and S. Puuronen,
“Dynamic integration of classifiers for handling concept drift,” Inf.
Fus., vol. 9, no. 1, pp. 56–68, 2008.

[22] J. Z. Kolter and M. A. Maloof, “Dynamic weighted majority: An
ensemble method for drifting concepts,” J. Mach. Learn. Res., vol. 8,
pp. 2755–2790, 2007.

[23] R. Elwell and R. Polikar, “Incremental learning in nonstationary
environments with controlled forgetting,” in Proc. Int. Joint Conf.
Neural Netw., Atlanta, GA, pp. 771–778, 2009.

[24] L. L. Minku, A. P. White and X. Yao, "The Impact of Diversity on
On-line Ensemble Learning in the Presence of Concept Drift.", IEEE
Transactions on Knowledge and Data Engineering, IEEE, v. 22, n. 5,
p. 730-742, 2010.

[25] P. Dalgaard. “Introductory Statistics with R”. New York: Springer-
Verlag, 2002.

[26] P. Royston. “An extension of Shapiro and Wilk's W test for normality
to large samples”. Applied Statistics, vol. 31, pp. 115–124, 1982.

[27] R Development Core Team.” R: A language and environment for
statistical computing”. R Foundation for Statistical Computing.
Vienna, Austria. Donwload at: www.r-project.org, 2012.

[28] R. Polikar and R. Elwell. “Benchmark Datasets for Evaluating
Concept drift/NSE Algorithms”. At:
http://users.rowan.edu/~polikar/research/NSE. Last access at
December 2013.

[29] L. L. Minku, “Artificial Concept Drift Data Sets”. At:
http://www.cs.bham.ac.uk/~minkull/. Last access at January 2014.

[30] K. Jackowski. "Fixed-size ensemble classifier system evolutionarily
adapted to a recurring context with an unlimited pool of classifiers."
Pattern Analysis and Applications, 2013.

3338

