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Abstract— In our previous works [1, 2], we proposed NEVE, 

a model that uses a weighted ensemble of neural network 
classifiers for adaptive learning, trained by means of a 
quantum-inspired evolutionary algorithm (QIEA). We showed 
that the neuro-evolutionary classifiers were able to learn the 
dataset and to quickly respond to any drifts on the underlying 
data. Now, we are particularly interested on analyzing the 
influence of an unlimited ensemble, instead of the limited 
ensemble from NEVE. For that, we modified NEVE to work 
with unlimited ensembles, and we call this new algorithm 
NEVE++. To verity how the unlimited ensemble influences the 
results, we used four different datasets with concept drift in 
order to compare the accuracy of NEVE and NEVE++, using 
two other existing algorithms as reference. 

Keywords— Concept Drift, Adaptive Learning, 
Nonstationary Environments, Neuro-Evolutionary Ensemble, 
Quantum-Inspired Evolution. 

I. INTRODUCTION 
EAL world concepts are often not stable: they change 
with time. Typical examples of scenarios where these 

changes are occurring are problems involving rules for 
climate prediction, detection of spam emails and customer 
preference. Just as the concepts, data distribution may 
change as well. The problem that occurs with learning 
algorithms that deal with these scenarios is that, usually, any 
of these changes make the model that was built based on old 
data inconsistent with the new data, resulting necessary to 
change the model accordingly so that learning is not 
impaired. This problem of change in concepts or distribution 
of data is known as concept drift and is a complication for a 
model in the task of learning from data. Specific strategies 
are needed, different from the techniques traditionally used 
in which arriving data samples are treated as equal 
contributors to the final concept [3]. 

These concept changes, in turn, may be small fluctuations 
in the underlying probability distributions, stable, random or 
systematic trends, rapid replacement of a classification task, 
among others. A classifier, be it individual or an ensemble 
must be equipped with some mechanism to adapt to changes 
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in the environment [7].Therefore, the ability for a classifier 
to learn from incrementally updated data drawn from a 
nonstationary environment poses a challenge to the field of 
computational intelligence. Moreover, the use of neural 
networks as classifiers makes the problem even harder, as 
neural networks are usually seen as tools that must be 
retrained with the whole set of instances learned so far when 
a new chunk of data becomes available. 

In order to cope with that sort of problem, a classifier 
must, ideally, be able to [5]: 

• Track and detect any sort of changes on the 
underlying data distribution; 

• Learn with new data without the need to present 
the whole data set again for the classifier; 

• Adjust its own parameters in order to address the 
detected changes on data; 

• Forget what has been learned when that knowledge 
is no longer useful for classifying new instances. 

All those abilities try, in a way or another, to address a 
phenomenon called “concept drift” [3, 6]. This phenomenon 
defines data sets which suffer changes over time, like, for 
example, when the relevant variables change or either  mean 
or variance of the time series is changing. Most work in the 
field of learning in non-stationary environments was 
published in the last decade and it is observed that until now 
there is lack of standard terminology. The use of different 
terms by the authors hinders comparison of proposals and 
studies in the area. The article [7] proposes a unification and 
standardization of this nomenclature and proposes the term 
Dataset shift to represent the general problem that occurs 
when the test data (not yet viewed) experience a 
phenomenon that leads to a change  i) in the distribution of a 
single feature, ii) a combination of features or iii) in the 
boundaries of classes. As a result, the common assumption 
that training data and test follow the same distributions is 
often violated in real applications and scenarios. The authors 
also propose the following terms: Covariate shift, for 
changes in the distribution of the input variables x; Prior 
probability shift, for changes in the distribution of class 
variables y and Concept Shift, when the relationship between 
the inputs and class variables changes. Although we believe 
the approach presented interesting, in this study we chose to 
use the term Concept drift, first, because it is the term most 
used in the literature and secondly because we are not 
currently interested in analyzing the influence that each 
possible type of change would have on the final result of our 
model. 

Many approaches have been devised in order to 
accomplish some or all of the abilities mentioned above. The 
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simplest one consists in using a sliding window on incoming 
data and training the classifier with the data delimited by that 
window [8]. Another approach consists in detecting drifts 
and then making adjustments to the classifier according to 
the drift. 

A more successful approach consists in using an ensemble 
of classifiers. This kind of approach uses a group of different 
classifiers in order to be able to track changes on the 
environment. Several different models of ensembles have 
been proposed on the literature [4, 9, 10]: 

• Ensembles that create new classifiers to each new 
chunk of data and weight classifiers according to 
their accuracy on recent data; 

• Unweighted ensembles which can cope with new 
data that belongs to a concept different from the 
most recent training data; 

• Ensembles that are able to discard classifiers as 
they become inaccurate or when a concept drift is 
detected. 

Most models using weighted ensembles determine the 
weights for each classifier using some sort of heuristics 
related to the amount of mistakes the classifier does when 
working with the most recent data [6]. Although in principle 
any classifier can be used to build the ensembles, the ones 
which are most commonly used are decision trees, neural 
networks and naive Bayes [8]. 

This work represents an extension of [1, 2] where we 
presented an approach based on neural networks which are 
trained by means of a quantum-inspired evolutionary 
algorithm. Quantum-inspired evolutionary algorithms [12-
16] are a class of estimation of distribution algorithms which 
present, for several benchmarks, a better performance for 
combinatorial and numerical optimization when compared to 
their canonical genetic algorithm counterparts. The 
quantum-inspired evolutionary algorithm for numerical 
optimization (QIEA-R), to be presented in section 3, has 
shown good performance when used to train a neural 
network for time series forecasting and control problems. 
Training a neural network by using an evolutionary 
algorithm can be beneficial, especially on reinforcement 
learning problems, when generating instances of input-
output data is not simple or even possible. Moreover, by 
using an evolutionary algorithm for training a neural 
network, one can possibly be able to train complex 
architectures like networks with non-continuous activation 
functions and recurrent neural networks in a straightforward 
way and even to define the neural network’s topology during 
the training [13, 17]. 

We also use the QIEA-R to determine the voting weights 
for each classifier that is part of the ensemble. Every time a 
new chunk of data arrives, a new classifier is trained on this 
new data set and all the weights are optimized in order for 
the ensemble to improve its performance on classifying this 
new set of data. 

The main difference between NEVE (Neuro-Evolutionary 
Ensemble) [1, 2] and the model presented here is that now, 
we are particularly interested on investigating the impact of 
the ensemble size, and hence, we modified NEVE to work 
with unlimited ensembles, and we call this new model 

NEVE++. To evaluate the impact of this modification at the 
algorithm accuracy, we used four different datasets to 
execute several experiments, in order to compare NEVE++ 
and NEVE accuracies, using the existing algorithms 
Learn++.NSE [9] and Diversity for Dealing with Drifts 
(DDD) [18] only as reference values, not intending to 
specifically compare the algorithms.   

This paper is organized in four additional sections. 
Section 2 presents some theoretical concepts related to 
concept drift and some existing approaches, including the 
Learn++.NSE algorithm and DDD, which are our basis of 
comparison in this work. Section 3 details the proposed 
model and Section 4 presents and discusses the results of the 
experiments. Finally, section 5 concludes this paper and 
presents some possible future works. 

II. CONCEPT DRIFT 

A. Definitions 
The term concept drift can be defined informally as a 

change in the concept definition over time and, hence, 
change in its distribution. An environment from which this 
kind of data is obtained is considered a nonstationary 
environment.  

Concept drift can also be defined as an obstacle caused by 
insufficient, unknown or unobservable features in a dataset, 
which happens in many real problems. These problems 
usually depend on a context that is not explicitly stated in the 
predicted features. This scenario is known as hidden context, 
and a typical example is the climatic prediction rules, that 
can vary radically according to the season of the year. 
Another example would be the analysis of consumption 
patterns that can vary in time, according to the month, 
availability of alternative products, inflation rate, etc. [3]. 
Analyzing the problem with the benefit of this hidden 
context would help solve the nonstationarity problem. 

A practical example of concept drift mentioned in [10] is 
detecting and filtering out spam e-mails. The description of 
the two classes “spam” and “non-spam” may vary in time. 
They are user specific, and user preferences are also varying 
over time. Moreover, the variables used at time t to classify 
spam may be irrelevant at t+k. In this way, the classifier 
must deal with the “spammers”, who will keep creating new 
forms to trick the classifier into labeling a spam as a 
legitimate e-mail. 

 

B. Related Work 
Algorithms designed for concept drift can be 

characterized in several ways. Based on [4, 9, 10], we 
propose a possible classification, as follows: 

Active x Passive 
• Active: Uses some drift detection mechanism, 

learning only when the drift is detected)  
• Passive (Assume possibly ongoing drift and 

continuously update the model with each new 
data(set). If change has occurred, it is learned, else, 
the existing knowledge is reinforced.) 

Online x Batch 
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• Online: Learn one instance at a time. They have 
better plasticity but poorer stability properties. 
They also tend to be more sensitive to noise as well 
as to the order in which the data are presented. 

• Batch: Requires blocks of instances to learn. They 
benefit from the availability of larger amounts of 
data, have better stability properties, but can be 
ineffective if the batch size is too small, or if data 
from multiple environments are present in the same 
batch. Typically use some form of windowing to 
control the batch size. 

Single Classifier x Ensemble 
• Single Classifier: Uses only one classifier. 
• Ensemble: Combines multiple classifiers. 

The ensemble-based approaches that combine multiple 
classifiers constitute a new breed of nonstationary learning 
(NSL) algorithms. These algorithms tend to be more 
accurate, more flexible and sometimes more efficient than 
single classifiers [10]. Most of all uses some voting method, 
yet there is no agreement in the literature about the best type 
to be used. 

Several ensemble approaches were already proposed in 
the literature, such as the Street’s Streaming Ensemble 
Algorithm (SEA) [19], the Chen and He’s Recursive 
Ensemble Approach (REA) [20], the Tsymbal’s Dynamic 
Integration [21], the Kolter and Maloof’s online algorithm 
Dynamic Weighted Majority (DWM) [22]. In this work, we 
used Learn++.NSE [9] and Diversity for Dealing with Drifts 
(DDD) [18] to compare the results reached by our proposed 
model. These algorithms will be presented briefly as 
follows. 

 
1) Learn++.NSE 

Developed based on the guidelines for building learning 
algorithms in nonstationary environments, previously 
presented in this section, Learn++.NSE [9] is an ensemble-
based batch learning algorithm that uses weighted majority 
voting, where the weights are dynamically updated with 
respect to the classifiers’ time-adjusted errors on current and 
past environments. The algorithm uses a passive drift 
detection mechanism, and uses only current data for training. 
It can handle a variety of non-stationary environments, 
including sudden concept change, or drift that is slow or fast, 
gradual or abrupt, cyclical, or even variable rate drift. It is 
also one of the few algorithms that can handle concept 
addition (new class) or deletion of an existing class. 

The algorithm assumes that at each step may or may not 
have occurred change in environment and, if occurred, the 
rate of change is unknown and it is assumed that it is not 
constant. It is also assumed that all previously seen data 
(relevant or not for the learning) is not accessible or it is not 
possible to access it, meaning that the algorithm works 
incrementally. All relevant information about the previous 
data must be stored in the parameters of the previously 
generated classifiers. Depending on the nature of the change, 
the algorithm retains, builds or temporarily discards 
knowledge, so that new data can be categorized. 

The knowledge base is initialized by creating a single 

classifier in the first data block available. Once prior 
knowledge is available, the current ensemble (knowledge 
base) is evaluated by current data: the algorithm identifies 
which new samples were not recognized by the existing 
knowledge base and this is updated by adding a new 
classifier trained on current training data. Each classifier 
(including the recently created) is evaluated on the training 
data. As previously unknown data have been identified, the 
penalty for misclassifying is considered in the error 
calculation. This way, more credit is given to the classifiers 
capable of identify previously unknown instances, while 
classifiers that misclassify previously known data are 
penalized. Then, classifier error is weighted considering the 
time: recent competence is taken more into account when 
categorizing knowledge. After that, the voting weights are 
determined: if knowledge of a classifier is not compatible 
with the current environment, it receives little or no weight 
and is temporarily removed from the knowledge base. It is 
not discarded: if its knowledge becomes relevant again, it 
will receive higher voting weights. The final decision is 
taken on with the weighted majority vote of the current 
ensemble members. 

 
2) Diversity for Dealing with Drifts (DDD) 

DDD [18] is an online ensemble approach that operates in 
2 modes: prior to drift detection and after drift detection. It 
uses a drift detection method that detect drifts the earliest 
possible and it is designed to be robust to false alarms. 

Before a drift is detected, the learning system is composed 
of two ensembles: an ensemble with lower diversity and an 
ensemble with higher diversity. Both ensembles are trained 
with incoming examples, but only the low diversity 
ensemble is used for system predictions, because the high 
diversity ensemble is likely to be less accurate on the new 
concept. DDD assumes that, if there is no convergence of 
the underlying distributions to a stable concept, new drift 
detections will occur, triggering the mode after drift 
detection. DDD then allows the use of the high diversity 
ensemble in the form of an old high diversity ensemble. 

After a drift is detected, new low diversity and high 
diversity ensembles are created. The ensembles 
corresponding to the low and high diversity ensembles 
before the drift detection are kept and denominated old low 
and old high diversity ensembles. The old high diversity 
ensemble starts to learn with low diversity in order to 
improve its convergence to the new concept.  

Both the old and the new ensembles perform learning and 
the system predictions are determined by the weighted 
majority vote of the output of the old high diversity, the new 
low diversity and the old low diversity ensemble. During the 
mode after drift detection, the new low diversity ensemble is 
monitored by the drift detection method. If two consecutive 
drift detections happen and there is no shift back to the mode 
prior to drift detection between them, the old low diversity 
ensemble after the second drift detection can be either the 
same as the old high diversity learning with low diversity 
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after the first drift detection or the ensemble corresponding 
to the new low diversity after the first drift detection, 
depending on which of them is the most accurate.  

All the four ensembles are maintained in the system until 
either some conditions are satisfied, then, the system returns 
to the mode prior to drift detection. When returning to the 
mode prior to drift, either the old high diversity or the new 
low diversity ensemble becomes the low diversity ensemble 
used in the mode prior to drift detection, depending on 
which of them is the most accurate. 

III. THE PROPOSED MODEL 

A. The Quantum-Inspired Neuro-Evolutionary Model 
Neuro-evolution is a form of machine learning that uses 

evolutionary algorithms to train artificial neural networks. 
This kind of model is particularly interesting for 
reinforcement learning problems, where the availability of 
input-output pairs is often difficult or impossible to obtain 
and the assessment of how good the network performs is 
made by directly measuring how well it completes a 
predefined task. As training the weights in a neural network 
is a non-linear global optimization problem, it is possible to 
minimize the error function by means of using an 
evolutionary algorithm approach. 

The quantum-inspired evolutionary algorithm (QIEA) is a 
class of “estimation of distribution algorithm” (EDA) that 
has a fast convergence and, usually, provides a better 
solution, with less evaluations than the traditional genetic 
algorithms [10, 11]. In this model, quantum-inspired genes 
are represented by probability density functions (PDF) 
which are used to generate classical individuals through an 
observation operator. After being observed, the classical 
individuals are evaluated, as in traditional genetic 
algorithms, and, by means of using fitness information, a set 
of quantum-inspired operators are applied to the quantum 
individuals, in order to update the information they hold in 
such a way that on the next generations, better individuals 
will have a better chance to be selected. Further details on 
how this global optimization method works can be found in 
[12-16]. 

Based on this algorithm, the proposed quantum-inspired 
neuro-evolutionary model consists in a neural network (a 
multilayer perceptron (MLP)) and a population of 
individuals, each of them encoding a different configuration 
of weights and biases for the neural network. If the neural 
network has ni inputs, nh hidden processors and no outputs, 
then the total number of weights and biases that must be 
encoded by the genes in the individuals is given by 

 tp = ni * nh + nh + nh * no + no                            (1) 

which considers the connections between the inputs and the 
hidden processors, the connections between the hidden 
processors and the output processors and the biases for the 
hidden and output processors. 

The training process occurs by building one MLP for each 
classical individual using the genes from this individual as 
weights and biases. After that, the full training data set (or 

the set of tasks to be performed) is presented to the MLP and 
the average error regarding the data set is calculated for each 
MLP. This average error is used as the fitness for each 
individual associated to that MLP, which allows the 
evolutionary algorithm to adjust itself and move on to the 
next generation, when the whole process will be repeated 
until a stop condition is reached. The individual is shown in 
figure 1. The whole process of training the neural network 
by using the quantum-inspired evolutionary algorithm can be 
summarized as shown in figure 2. 

 

 
Fig. 1. The QIEA-R individual structure. 

 

Fig. 2. The quantum-inspired neuro-evolutionary model. 

B. NEVE++: The Neuro-Evolutionary Unlimited Ensemble 
To some applications, such as those that use data streams, 

the strategy of using simpler models is most appropriate 
because there may not be time to run and update an 
ensemble. However, when time is not a major concern, yet 
the problem requires high accuracy, an ensemble is the 
natural solution. The greatest potential of this strategy for 
detecting drifts is the ability of using different forms of 
detection and different sources of information to deal with 
the various types of change [4]. 

One of the biggest problems in using a single classifier (a 
neural network, for example) to address concept drift 
problems is that when the classifier learns a dataset and then 
we need it to learn a new one, the classifier must be retrained 
with all data, or else it will “forget” everything already 
learned. Otherwise, using the ensemble, there is no need to 
retrain it again, because it can “retain” the previous 
knowledge and still learn new data. 

Hence, in order to be able to learn as new chunks of data 
arrive, we implemented an ensemble with neural networks 
that are trained by an evolutionary algorithm, presented in 
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section 2.B. This approach makes the ensemble useful for 
online reinforcement learning, for example. The algorithm 
works as shown in figure 3 and each step is described in 
detail on the next paragraphs. 

On step 1 we create the empty ensemble with a predefined 
size equal to s. When the first chunk of data is received, a 
neural network is trained using the QIEA-R until a stop 
condition is reached (for example, the number of 
evolutionary generations or an error threshold). As the 
number of classifiers in the ensemble is smaller than s 
considering s=∞, we simply add this new classifier to the 
ensemble. This gives the ensemble the ability to learn the 
new chunk of data without having to parse old data. This is 
the main difference between our previous algorithm NEVE 
and the current algorithm NEVE++. In NEVE, if the 
ensemble was already full, we needed to evaluate each 
classifier on the new data set and remove the one with the 
highest error rate (including the new one, which means the 
new classifier will only become part of the ensemble if its 
error rate is smaller than the error rate of one of the 
classifiers already in the ensemble). Since NEVE++ 
continuously adds classifiers, one may be concerned about 
proliferation of classifiers. We decided to try this approach 
instead of using a fixed ensemble size and removing 
additional classifiers based on their error (as we did at [2]). 
At [23], the authors showed that performance benefits of 
retaining the ensemble far outweighs the additional and 
modest computational and memory costs and they do not 
recommend the fixed size approach because , it  reduces the  
ability of the algorithm to remember recurring environments 
as well as its stability during stationary periods.  

 
Fig. 3.  The neuro-evolutionary unlimited ensemble training algorithm. 

Finally, we use the QIEA-R to evolve a voting weight for 
each classifier. Optimizing the weights allows the ensemble 
to quickly adapt to sudden changes on the data, by giving 
higher weights to classifiers better adapted to the current 
concepts governing the data. The chromosome that encodes 
the weights has one gene for each voting weight, and the 
population is evolved using the classification error as the 
fitness function. It is important to notice that when the first s-
1 data chunks are received, the ensemble size is smaller than 
its final size and thus, the chromosome size is also smaller. 
From the s data chunk on, the chromosome size will remain 
constant and will be equal to s. 

In this work we used only binary classifiers but there is no 
loss of generality and the algorithm can be used with any 
number of classes. For the binary classifier, we discretize the 
neural network’s output as “1” or “-1” and the voting 
process for each instance of data is made by summing the 

NN’s output multiplied by its voting weight. In other words, 
the ensemble’s output for one instance k from the i-th data 

chunk is given 
by: 
  

(2) 

 
where P(Dik) is the ensemble’s output for the data instance 
Dik, wj is the weight of the j-th classifier and cj(Dik) is the 
output of the j-th classifier for that data instance. If P(Dik) < 
0, we assume the ensemble’s output is “-1”. If P(Dik) > 0, we 
assume the ensemble’s output is “1”. If P(Dik) = 0, we 
choose a class randomly. 

Thus, the main difference between our model, the 
Learn++.NSE and the DDD algorithms is that we use a 
neuro-evolutionary approach, based on a quantum-inspired 
algorithm to train the neural networks and to determine the 
voting weights for each member of the ensemble. All 
algorithms use an ensemble strategy. NEVE++ and 
Learn++.NSE algorithms use passive and batch approaches; 
DDD uses active and online approaches, according to the 
proposed classification presented.  

IV. EXPERIMENTAL RESULTS 
In order to check the ability of our model on learning data 

sets with concept drifts and compare its accuracy with its 
previously version (NEVE, which uses a fixed ensemble 
size), we used four different data sets (SEA Concepts and 
Nebraska, also used at [10]; Circle and Line, also used at 
[18, 24]) upon which we performed several simulations in 
different scenarios. All experiments begin at t=0 and end at 
an arbitrary time t=1. Meanwhile, T consecutive data blocks 
are presented for training, each one taken from a possible 
drift scenario, where the rate or nature is unknown. The 
value T determines the number of time steps (or snapshots) 
taken from the data during the drift period.  

On each experiment, we used a fixed topology for the 
neural networks consisting of 2 inputs for Circle and Line 
dataset, 3 inputs for SEA Concepts dataset and 8 inputs for 
Nebraska dataset, representing the input variables for each 
dataset. In all datasets, we used 1 output, and we used 5 
neurons for the hidden layer, because this was the best value 
found by some previously analysis [1, 2]. Each neuron has a 
hyperbolic tangent activation function and, as mentioned 
before, the output is discretized as “-1” or “1” if the output 
of the neuron is negative or positive, respectively. The 
evolutionary algorithm trains each neural network for 100 
generations. The quantum population has 10 individuals and 
the classical population 20. The crossover rate is 0:9 (refer to 
[12, 13] for details on the parameters). The same parameters 
are used for evolving the weights for the classifiers. 

The neural network weights and biases and the ensemble 
weights are allowed to vary between -1 and 1 as those values 
are the ones who have given the best results on some pre-
evaluations we have made. The hidden layer neuron number 
and the ensemble size for NEVE, in each experiment, were 
given using the results of the best configuration found by a 
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previously analysis using different values, made in [1]. 
We made, for each experiment, statistical comparisons 

between the results found by Learn++.NSE, DDD, NEVE 
and NEVE++ algorithms. These were based on the correct 
classification performance throughout the test phase for each 
method. The results of Learn++.NSE can be found at [9] and 
the results of DDD, at [18]. For each dataset used, due to the 
stochastic optimization algorithm used to train NEVE and 
NEVE++: 

• We made 10 runs of NEVE++ and calculated the 
mean error e1; 

• We made 10 runs of NEVE using ensemble size = 
5 and calculated the mean error e2; 

• We made 10 runs of NEVE using ensemble size = 
10 and calculated the mean error e3; 

• We compared e1, e2 and e2 with the results of 
Learn++ (for SEA and Nebraska datasets) and with 
the results of DDD (for Circle and Line datasets). 

As mentioned above, we are particularly interested on 
investigating the impact of the ensemble size, and hence, we 
modified NEVE to work with unlimited ensembles, creating 
NEVE++. This way, our main interest is to observe how this 
modification affects the accuracy of the algorithm. We just 
used the results of Learn++.NSE [9] and Diversity for 
Dealing with Drifts (DDD) [18] as reference values, not 
intending to specifically compare the algorithms.   

Based on these runs, we calculate some statistical 
parameters (mean, standard deviation, etc.) that were used to 
compute the Welch t-test [25] to evaluate which algorithm 
had, in average, the best performance in test phase. The 
normality assumption necessary for Welch t-test was 
verified using Shapiro-Wilk test [26]. All the statistical 
analysis were conducted in R statistical package [27]. 

A. SEA Concepts 
The SEA Concepts was developed by Street [19] and has 

been used by several algorithms as a standard test for 
concept change. The dataset, available at [28], is 
characterized by extended periods without any drift with 
occasional sharp changes in the class boundary, i.e., sudden 
drift or concept change. The dataset consists of 50000 
random points in a three-dimensional feature space. The 
features are in the [0; 10] domain but only two of the three 
features are relevant to determine the output class. These 
points are then divided into four blocks, with different 
concepts. Class labels are assigned based on the sum of the 
relevant features, and are differentiated by comparing this 
sum to a threshold that separates a 2-D hyper-plane: an 
instance is assigned to class 1 if the sum of its (relevant) 
features (f1 + f2) fall below the threshold, and assigned to 
class 2, otherwise. At regular intervals, the threshold is 
changed with increasing severity (8→9→7.5→9.5), creating 
an abrupt shift in the class boundary. 

Aiming to enable a better comparison with the results of 
the algorithm Learn++. NSE, detailed in section 2, we used 
200 blocks of size 250 to evaluate the algorithm in the test 
phase. Then, NEVE++, NEVE with ensemble size = 5, 
NEVE with ensemble size = 10 and Learn++.NSE results 
were displayed in Table 1. 

TABLE I.  RESULTS OF THE SEA EXPERIMENTS. 

Algorithm Mean Standard Deviation 

NEVE ++ 2.04% 0.10% 

NEVE(5) 1.65% 0.14% 

NEVE(10) 1.69% 0.13% 

Learn++.NSE (SVM) 1.79% 0.20% 

 

As can be seen, NEVE++ performed a little worse than 
NEVE(5) and NEVE(10), indicating that for this dataset, the 
use of an unlimited ensemble is not the best strategy. Despite 
the better accuracy of Learn++.NSE for this dataset, 
numerically the difference is little (less than 0.5%), but when 
performing a statistical comparison we can see that 
Learn++.NSE performed in average significantly better than 
NEVE++ (tcrit = 4.85, p-value < 0.01).Further details of 
Learn++.NSE results can be found in [9]. 

 Next subsection exhibits the second experiment, based 
on Nebraska Weather data. 

B. Nebraska Weather Prediction Data 
This dataset, also available at [28], presents a compilation 

of weather measurements from over 9000 weather stations 
worldwide by the U.S. National Oceanic and Atmospheric 
Administration since 1930s, providing a wide scope of 
weather trends. Daily measurements include a variety of 
features (temperature, pressure, wind speed, etc.) and 
indicators for precipitation and other weather-related events. 
As a meaningful real world dataset, we chose the Offutt Air 
Force Base in Bellevue, Nebraska, for this experiment due to 
its extensive range of 50 years (1949–1999) and diverse 
weather patterns, making it a long-term precipitation 
classification/prediction drift problem. 

Class labels are based on the binary indicator(s) provided 
for each daily reading of rain: 31% positive (rain) and 69% 
negative (no rain). Each training batch consisted of 30 
samples (days), with corresponding test data selected as the 
subsequent 30 days. Thus, the learner is asked to predict the 
next 30 days’ forecast, which becomes the training data in 
the next batch. The dataset included 583 consecutive “30-
day” time steps covering 50 years. 

Aiming to enable a better comparison with the results of 
the algorithm Learn++. NSE, we performed similarly to that 
used in [9]: we used 400 blocks of size 30 to evaluate the 
algorithm in the test phase. Then, NEVE++, NEVE with 
ensemble size = 5, NEVE with ensemble size = 10 and 
Learn++.NSE results were displayed in Table 2. 

TABLE II.  RESULTS OF THE NEBRASKA EXPERIMENTS. 

Algorithm Mean Standard Deviation 

NEVE++ 29.51% 0.53% 

NEVE(5) 31.85% 0.32% 

NEVE(10) 31.44% 0.61% 

Learn++.NSE (SVM) 21.20% 1.00% 
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As can be seen, the mean error rate of Learn++.NSE is the 
lowest, but comparing NEVE to NEVE++, we noticed that 
the mean error rate of NEVE++ is substantially lower than 
NEVE(5) and NEVE(10) (p-value < 0.01, tcrit = 10.7862 and 
tcrit = 4.85, respectively), indicating that for this dataset, the 
unlimited ensemble is a good strategy. Further details of 
Learn++.NSE results can be found in [9]. We see that the 
unlimited ensemble from NEVE++ produced better results 
compared to the previous version of our algorithm NEVE, 
but Learn++.NSE’s results show that we have some 
improvement opportunities in our algorithm aiming to reach 
better results.  

 Next subsection exhibits the third experiment, based on 
Circle and Line datasets. 

C. Circle and Line Datasets 
In order to analyze the effect of diversity in the presence 

of concept drift, Minku [24] developed a data sets generator 
to create datasets with different types of drift for four 
problems, as figure 4 shows: 

 

 
Fig. 4. Details of the artificial datasets [24]. 

 The dataset is available at [29]. The examples generated 
contain x/xi and y as the input attributes and the concept 
(which can assume value 0 or 1) as the output attribute. The 
range of x or xi and y was [0,1]. Eight irrelevant attributes 
and 10% class noise were introduced in the plane data sets. 
Each data set contains 1 drift and different drifts were 
simulated by varying among 3 amounts of severity, 
generating 3 different datasets for each problem. In this 
study, we decided to use only circle and line (moving 
hyperplane with d=1) datasets, detailed as follows: 

• Circle: a = b = 5; r = 0.2  0.3 (severity 1); r = 0.2 
 0.4 (severity 2); r = 0.2  0.5 (severity 3) 

• Line: a1 = 0.1; a0=−0.4  −0.55 (severity 1); 
a0=−0.25  −0.7 (severity 2); a0=−0.1  −0.8 
(severity 3) 

Because the DDD algorithm works very different from 
NEVE++, as we already mentioned, it is hard to reproduce 
the same settings aiming to make comparisons, but we still 
decided to use DDD results only as a referential value just to 
check if our accuracy is satisfactory. Then, NEVE++, NEVE 
with ensemble size = 5, NEVE with ensemble size = 10 and 
DDD results were displayed in Table 3 (circle datasets) and 
4 (line datasets). 

 
 
 

TABLE III.  RESULTS OF THE CIRCLE EXPERIMENTS 

 Severity 1 Severity 2 Severity 3 

Algorithm Mean Standard 
Deviation Mean Standard 

Deviation Mean Standard 
Deviation 

NEVE++ 15.20% 1.00% 19.24% 1.96% 16.08% 1.89% 

NEVE(5) 15.37% 2.88% 19.41% 3.54% 17.89% 0.65% 

NEVE(10) 16.93% 1.90% 14.74% 1.02% 16.25% 1.49% 

DDD 7.39% 0.96% 8.83% 0.91% 10.06% 1.01% 

 

TABLE IV.  RESULTS OF THE LINE EXPERIMENTS 

 Severity 1 Severity 2 Severity 3 

Algorithm Mean Standard 
Deviation Mean Standard 

Deviation Mean Standard 
Deviation 

NEVE++ 1.85% 0.52% 2.54% 0.55% 3.65% 0.56% 

NEVE(5) 1.22% 0.54% 2.30% 0.47% 3.55% 0.36% 

NEVE(10) 1.71% 0.52% 2.29% 0.41% 3.44% 0.36% 

DDD 4.83% 0.59% 5.99% 0.51% 6.73% 0.72% 

 

Comparing the mean error rate of NEVE++, NEVE(5) 
and NEVE(10) for all 3 Circle datasets, the results are not 
the same. As can be seen, at Circle Severities 1 and 3 
dataset, NEVE++ presented a better mean error rate, 
compared to NEVE(5) and NEVE(10). However, at Circle 
Severity 2, NEVE(10) had the best mean error rate, followed 
by NEVE++ and then by NEVE(5). For severity 1 and 3 this 
difference was not significant (p-value > 0.5), however for 
severity 2 mean error rate of NEVE(10) is substantially 
lower than NEVE(5) and NEVE++ approach (p-value < 
0.01). 

Although the difference among NEVE++, NEVE(5) and 
NEVE(10) mean error rates were small for all severities (less 
than 2%), the DDD algorithm always presented better 
accuracy results for this dataset. Nevertheless, the results 
indicated that the strategy of using an unlimited ensemble 
tends to be better than using a limited ensemble. 

In the other hand, at Line dataset, NEVE and NEVE++ 
always presented better accuracy than DDD; the only 
experiment where NEVE++ was better than NEVE, 
although, was at severity 3, but the difference among NEVE 
and NEVE++ error rates were very small for all severities 
(less than 0.5%) and not statistically significant (p-value > 
0.05), except in severity 1.  

This section presented the results obtained in experiments 
taken with the NEVE++ algorithm. We detailed the results 
of four different datasets and then those results were 
compared with the results of other algorithms. The next 
section concludes this work. 

V. CONCLUSIONS AND FUTURE WORKS 
This paper presented a model that uses an unlimited 

ensemble of neural networks trained by a quantum-inspired 
evolutionary algorithm to learn datasets (possibly with 
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concept drifts) incrementally. We analyzed the ability of the 
model using four different datasets, using the algorithms 
Learn++.NSE and DDD as reference. 

Although the NEVE++ algorithm has demonstrated a 
better performance when compared to NEVE in some 
datasets, these results are not conclusive because we also 
had worse results compared to NEVE, demonstrating that 
just for some situations and datasets, the unlimited ensemble 
strategy is better than the limited one. It is strongly 
recommended that further tests may be performed with 
different configurations to confirm whether or not the results 
presented here. It is also desirable to do a comparison with 
others algorithms in others datasets.  

In the future, we intend to check the performance of 
NEVE and NEVE++ on other real data sets, although it is 
not easy to determine if a real world data set has any kind of 
significant changes on data. In any case, it is always possible 
to introduce these changes on any real data set, artificially. 
We also intend in the future to continue this work, analyzing 
other existing approaches, such as [22] and [30], and 
performing new experiments comparing our work with these 
and other algorithms. 

We still need to do some changes in NEVE++ to verify if 
we can reach better results. For example, a possibility is to 
use the voting weights or some of the neural network 
weights (for instance, the weights from the input to the 
hidden neurons) to detect concept drifts and to be able to 
direct better the learning process. Another idea is to use the 
evolutionary process to evolve the voting weights for more 
generations if we detect a significant change on the 
underlying data. This might allow the ensemble to “react” 
faster to the concept drift. Another possibility is to use the 
QIEA to evolve and find the ideal number of neurons in the 
hidden layer for each member of the ensemble. In addition, 
we intend to perform a deep sensibility analysis for 
parameters that compose NEVE++ (QIEA algorithm and 
MLP), in order to better address the impact of each 
configuration and find an almost optimal setting. 
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