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Abstract— The problem of handwritten signature recognition
is considered significant in biometrics, in particular for deter-
mining the validity of official documents. The rationale consists
of creating an off-line classifier to discriminate between fake
(forged) and genuine digitalized signatures. In such applications
containing thousands of samples machine learning techniques
such as Support Vector Machines (SVM) play a preponderant
role in overcoming the challenges inherent to this problematic.
However, to deal with the computational burden of calculating
the large Gram matrix, approaches such as Graphics Processing
Units (GPU) computing are required for efficiently processing
big image biometric data. In this paper, first, we present an
empirical study for efficient feature selection concerning the
signature identification problem. Second, an GPU-based SVM
classifier that integrates a component of the open source Machine
Learning Library (GPUMLib) supporting several kernels is
developed. Third, we ran several experiments with improved
performance over baseline approaches. From our study, we gain
insights in both performance and computational cost under a
number of experimental conditions, and conclude that the most
appropriate model is usually a trade-off between performance
and computational cost for a given experimental setup and
dataset.

I. INTRODUCTION

THE problem of handwritten signature recognition is a
challenging one that plays an important role in validating

many important transactions, such as issued checks, credit
card shopping, authorization documents or even contracts. The
idea consists of creating an off-line classifier to discriminate
between fake (forged) and genuine signatures in a database of
digitalized signatures, after identifying the author.

This problem is specially difficult for many reasons. The
biometric data is a scanned 2D image. Therefore, unlike in
on-line verification, dynamic characteristics, such as velocity,
pen pressure and acceleration, which reflect specific individual
motion style and are harder to fake can not be obtained.
To exacerbate the problem, the biometric features of genuine
and forged signatures can be extremely similar. Examples are
the shapes, sizes and variations of signatures that lead to a
confluence of factors extremely tricky to verify. Moreover, the
sheer volume of biometric data in many applications require
fast tools for model selection in order to expose better models.
Preprocessing of offline handwritten biometric data is complex
and motivates the holistic study of many features capable
of proper capturing the intra-variational characteristics of the
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individual signatures and the optimal group of features for
building better models.

Support Vector Machine (SVM) based on the structural
risk minimization [1], [2] can provide good generalization in
many applications. However, significant computational costs
arise from calculating the large Gram matrix [3], in particular
when big data is involved, as it is the case of most biometric
problems. This has motivated research in fast learning meth-
ods [4], [5]. Nevertheless, most implementations still fail to
take advantage of today multi-core architectures of neither
the Central Processing Units (CPUs) nor the more powerful
Graphics Processing Units (GPUs).

In this work we focus on a GPU-based SVM classifier,
by extending our previous work on Multi-Threaded paral-
lel CPU standalone SVM version (MT-SVM), which builds
from scratch an implementation of the Sequential Minimal
Optimization (SMO) algorithm [6]. We proceed in two main
steps, first, by extracting and selecting features from the
GPDS1 biometric database images (see Figure 1 for exam-
ples of genuine and forged signatures in the database) and,
second, by using these features to verify a given image. The
GPU-based classifier SVM component was integrated in the
GPUMLib2. Notwithstanding that our solver is for binary
SVM, our method includes apart from the commonly used
kernel functions, an Universal Kernel Function (UKF) [7]
with good generalization properties. Therefore, our GPU-
based SVM classifier has important advantages both in terms
of computational cost and performance to solve the offline
signature recognition problem. Our proposal is effective both
in terms of the feature selection and also in the GPU-
based SVM classifier. We obtained excellent results on the
identification of an individual’s signature despite the fact that
a generic classifier configuration is difficult to achieve.

The paper is organized as follows. Section II introduces the
related work in the area of signature recognition. Section III
is devoted to feature extraction and selection. Section IV
presents our proposed SVM-GPU component of GPUMLib.
In section V the experimental setup is described, including the
database, data sampling and system configuration. In Section
VI we outline the results and in Section VII further discussion
is given. In section VIII we draw the main conclusions.

II. RELATED WORK

Previously, research was by done by Armand et al [8], Blu-
menstein et al. [9] and Ferrer et al [10] in order to study better

1(Grupo de Procesado Digital de Señales), available at http://www.
gpds.ulpgc.es/download/.

2http://gpumlib.sourceforge.net/
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GENUINE SIGNATURES FORGED SIGNATURES

Fig. 1: Examples of genuine and forged signatures from the
GPDS database.

features from the original dataset. More information regarding
the extraction algorithms are referenced in their papers. In
the scope of biometric analysis, an important problem is to
distinguish between genuine and forged signatures, which is
a hard task. The continued motivation to investigate this prob-
lem may be attributed in part to its challenging nature which
depends on various factors such as behavioral characteristics
like mood, fatigue, energy, etc.. Feature extraction and pattern
recognition comprise methods that indubitably have proven
to be effective for setting up a signature verification system.
Research has been very intensive in the last years and many
approaches have been devised using mainly discriminative
techniques [8], [10], [11], [12], [13]. In a recent work [14] the
authors propose a generative approach based on deep learning.
A deep neural network is trained by the contrastive divergence
method introduced by Hinton [15]. The study was conducted
in the biometric database GPDS mentioned above, although
in a reduced number of image folders. However, due to the
high computational cost, in this paper we present a GPU-
based effective model selection methodology that contributes
to circumvent this problem and a robust classifier capable of
handling many different groups of features. The robustness
brings a good trade-off between the False Positive Rate (FPR)
and False Discovery Rate (FDR) while the computational cost
is substantially reduced. In the next section further information
of the database is given, followed by the explanation of the
feature extraction and selection methodology.

TABLE I: Number of attributes per feature.

Feature Attributes

Best Fit 4
Discrete Cosine Transform (DCT) 5
Geometric Parameters (Cartesian) 180
Geometric Parameters (Polar) 192
Gravity Center 1
Histogram Frequencies (hist) 6
K-Means 10
Maximum Intensity Points (maxint) 1
Modified Direction Feature (MDF) 160
Six-fold-Surface 6
Three-fold-Surface 3
Wavelet Transform Feature 12

III. FEATURE EXTRACTION AND SELECTION

A. Dataset

The database contains data from 300 individuals. For
each individual there are 54 signatures (24 genuine plus 30
forgeries). The 24 genuine specimens of each signer were
collected in single day writing sessions. The forgeries were
produced under the following conditions: The forger imitates
a genuine signature from the static image of the genuine
signature (scanned at 300 DPI) and the forger is allowed
to practice writing the signature for as long as s/he wishes.
Each forger has to imitate three signatures of five signers in
a single day writing session. The genuine signature shown
to each forger is chosen randomly from the 24 genuine
ones. Therefore, for each genuine signature, there are 30
simple forgeries made by 10 forgers from 10 different genuine
specimens. Globally, the dataset consists of 16200 handwritten
off-line signature recognition (each signature is a 649 × 462
pixels image). Additional information on this database can be
found in Ferrer et al. [10].

For the test set we used 9 images and the remaining 45 for
the training set. Both training and testing sets were randomly
generated from the initial data, being the test set composed
of 4 genuine signatures and 5 forged. The experiments were
run 10 times per configuration.

In Table I we present the number of attributes for each
extracted feature from the image dataset. For that purpose we
used a tool developed in [16], [14].

B. Feature Extraction

The whole set of images was centered and borders were
added to obtain equal sized objects. The image dataset has
a very big size which make it impractical to use directly in
memory. In this case, it would be composed of 16200×649×
642 = 6.749.859.600 pixels (roughly 6.75 Gigapixels). As
each pixel would be translated to a single precision floating
type (four bytes per pixel) its storage would require 25.15 GB
of RAM.

In this kind of problems, methods such as Principal Com-
ponent Analysis (PCA), Linear Discriminant Analysis (LDA)
or non-linear dimensional reduction methods (KPCA), among
others, would be unfeasible to use here for a number of
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reasons. In particular, because they would be blind towards
the characteristics of the specific individuals. Hence, feature
extraction techniques are an essential step of a signature
verification system in order to achieve a good performance
The following methods give a reasonable coverage of the
broad set of features (see Table I) to tackle this kind of
problems [8], [10] [14]. The results yielded using each one of
these methods are discussed later in Section VI.

Gravity Center Angle

This feature consists in dividing an image using a centered
vertical axis, cropping two equally sized sections of the image.
The “Centroid” of each section is calculated and the angle
of the vector between the two centroids is used as the final
feature.

Maximum Intensity Points

This feature returns either the line or the column of the
image containing the greatest number of black pixels.

Tri-fold surface

This feature corresponds on the proportion of pixels con-
tained in three vertical divisions of the image. Therefore it
represents the dispersion of pixels within the three sections.

Six-fold surface

Following the last feature this extends the algorithm by
additionally dividing the image in three horizontal sections.
However, the horizontal divisions of each vertical section are
done using the gravity center of the vertical sections.

Best Fit

This feature represents the angle between the signature and
the horizontal axis. Therefore, two lines are interpolated using
the two centroids, one on the left side of the image and
the other on the right side. Additionally, the authors added
the proportion of pixels inside each centroid to represent the
dimension of the centroids.

Geometric Parameters (Polar)

This feature characterizes the distribution of the image
radially, starting on its gravity center. Therefore, the image is
divided into equally sized angular sections using equidistant
points on the outer edge of the image. Extracted features are
the distance of each point to the center, its angle with the
center and the proportion of black pixels contained in each
section.

Geometric Parameters (Cartesian)

This feature identifies the image’s morphology by doing
an analysis using two Cartesian axis. The same principle
behind the extraction of the polar features is applied, however
using sections evenly distributed in a rectangle centered in the
image.

Modified Direction Feature (MDF)

This feature identifies the direction of the different segments
composing the signature’s line and the location of the areas
were pixels change from white to black. This is done either
vertically or horizontally.

K-Means

Another feature which identifies the position of the main
elements of the signature is K-Means clustering using the
image’s black pixels. The number of clusters is fixed for all
the images and set to five.

Histogram Frequencies

In order to characterize the signature’s intensity variations
either vertically and horizontally this feature calculates the
vertical and horizontal frequency histograms of the pixels in
each image. These frequencies are calculated using the Fast
Fourier Transform.

Discrete Cosine Transform (DCT) Frequencies

This feature uses the two dimensional Discrete Cosine
Transform (DCT) to change the initial amplitude-time space
to a new amplitude-frequency space, therefore representing
the intensity in frequencies of the initial image. It is the same
algorithm behind JPEG and some video compression codecs.

IV. GPU-BASED SVM CLASSIFIER

We have developed a GPU SVM component to accelerate
the computations inherent to the determination of the large
Gram matrix. The resulting SVM component integrates the
GPUMLib (GPU Machine Learning Library) software [17],
[18]. GPUMLib is an efficient GPU machine learning library,
implemented in CUDA (Compute Unified Device Architec-
ture), that aims at providing the building blocks for the
development of high-performance Machine Learning (ML)
software, by taking advantage of the GPU enormous com-
putational power [17], [18].

A. SVM formulation

Given a set of n training points in a d dimensional feature
space x ∈ IRd each associated with a label yi ∈ {−1, 1}
the binary soft-margin kernel SVM solves a linearly convex
quadratic problem. The classification of a given sample z uses
a subset of the training set upholding the support vectors. The
SVM classification task is given by (1):

y(z) = sign

(
nSV∑
i=1

αiyiK(xi, z) + b

)
(1)

where nSV is the number of support vectors, αi the Lagrange
multipliers, K the kernel function and b the bias.

The SVM component of this library has been developed
with flexible characteristics such as the most common used
kernels (linear, Radial Basis Function (RBF), polynomial). In
addition it incorporates a robust and generic Universal Kernel
Function (UKF) kernel, which can excel greatly the general-
ization performance of SVM models using other kernels [7].
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Listing 1: CUDA device function for computing the UKF
kernel dot product.
__device__ cudafloat DotProductKernelUKF(int i0,
int i1, cudafloat * samples, int n_samples,
int num_dimensions, cudafloat * kernel_args)

{
// K(x1,x2) = a(||x1 − x2||2 + b2)−c

cudafloat sum_dif_squared = 0;
for (int i = 0; i < num_dimensions; i++) {

cudafloat x0_i = samples[n_samples * i0 + i];
cudafloat x1_i = samples[n_samples * i1 + i];

cudafloat _dif = x0_i - x1_i;
cudafloat _dif_sq = _dif * _dif;
sum_dif_squared += _dif_sq;

}

cudafloat a = kernel_args[0];
cudafloat b = kernel_args[1];
cudafloat c = kernel_args[2];

return a * CUDA_POW(sum_dif_squared + b * b, -c);
}

The Universal Kernel Function (UKF) which has been proved
to satisfy Mercer kernel [7] conditions is defined as follows:

K(u,v) = L(‖u− v‖2 + σ2)−α (2)

where L is a normalization constant, σ > 0 is the kernel
width and α > 0 controls the decreasing speed around
zero. This kernel aims to gather nearby points, in a higher
dimension space, since they are strongly correlated. Hence, it
can provide a small number of SVs and thus speeds up both
the training and classification tasks. Additionally, it can yield
better generalization performance [19].

B. SVMs implementations on GPU

To date, there are four implementations of SVM for the
GPU: Catanzaro’s gpuSVM [20], Herrero’s multiSV [21],
Carpenter’s cuSVM and Lin’s sparse SVM [22]. All of these
are written in CUDA for NVIDIA’s GPUs.

This work follows the first implementation of an SVM bi-
nary classifier using programmable GPUs, named “gpuSVM”.
As in Catanzaro’s it explores both the costly compute bound
step of the SMO algorithm and the update of the Karush-
Kuhn-Tucker (KKT) conditions.

An implementation supporting multiple classes was put for-
ward by Herrero“multiSVM” [21]. Their work is very similar
to Catanzaro’s, but it executes different binary classifiers at
the same time on the GPU. Additionally, it uses NVIDIA’s
CUBLAS algebra library to help calculating the kernel matrix.
Another one which is also largely based upon “gpuSVM”
is “cuSVM” by Carpenter. The major improvement over
Catanzaro’s work is the usage of mixed precision floating
point arithmetic. In “cuSVM” most computations are in 32-
bit precision (float) but some computations like the sum of
dot products are done and stored in double precision floating
point (64-bit double). According to the author, this can be
of extreme importance for some data set problems. Likewise

TABLE II: NVIDIA GeForce 570 GTX characteristics.

Characteristic Value

Number of scalar processors (cores) 480
IEEE single precision (float) peak performance 748.8 GFlops
Number of streaming multiprocessors 15
Shading clock speed 1.56 GHz
Memory size 1.25 GB
Memory bandwidth 152.0 GB/s
Shared memory per block 48 KB

[22] used sparse matrices for cache the kernel matrix. Their
work is also very similar to Catanzaro’s SVM. They claim an
speedup over “gpuSVM” of 1.9× to 2.41×.

C. Kernels for GPU Implementation

As stated before, our implementation features the UKF
kernel. Listing 1 shows a CUDA device (GPU) function that
computes the dot product for the UKF kernel.

Our implementation requires a total of five CUDA ker-
nels (InitializeSMO, UpdateAlphas, UpdateKKTConditions,
FirstOrderHeuristic1stPass and FirstOrderHeuristicFinalPass)
which are called in sequence, as depicted in Figure 2, until
the SMO algorithm converges.

V. EXPERIMENTAL SETUP

A. System Configuration

The system’s configuration for running the experiments
is an Intel Core i5 at 3.33 GHz with 12 GB of RAM
and a NVIDIA Geforce GTX 570 whose characteristics are
described in Table II.

Our GPU-based SVM classifier is an SVM binary solver,
improved by methods that represent well the data by means of
enriched kernel functions. Hence, the multi-class functionality
is not supported. Therefore the identification is performed by
comparing one individual against another, “one against one”
or “coupling pairwise” also known as “round robin” strategy.
An interesting study is held in [23] where the posterior
probability of the test error is compared in both strategies
“one against one” and the “one against all” to handle the
multi-class SVM in an handwriting recognition problem; the
results on handwritten recognition databases conclude that
the approach to be used depends on the characteristics of
the problem at hand, although in skewed datasets the “one
against one” performs better. We also developed an external
driver program which controls the GPU SVM allowing for fine
tune of the grid search algorithm, K-Fold cross-validation or
a custom validation scheme as well as supporting multiple
parallel executions of either the Multi-Threaded CPU or the
GPU-based SVMs. This is useful as in most experiments
the training process is faster than the dataset loading time.
Therefore it is possible to run multiple training instances at
the same time in order to minimize the total execution time.

B. Signatures Data Sampling

The first experience (A) comprises the identification of
original and forged signatures. For that purpose, we used all
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end
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Fig. 2: Sequence of kernel calls (SMO algorithm).

the 300 individuals and studied each group of features. We
run two experimental tests. In the first, we used the RBF
kernel with the configuration setup (obtained by grid search)
illustrated in Table III. In the second, the feature combination
Discrete Cosine Transform (DCT) + Modified Direction Fea-
ture (MDF) was tested for all the supported kernel functions
by our GPU implementation, with the configuration setup
(once again obtained by grid search) depicted in table IV.
No other feature combinations were used, in order to reduce
the computational cost of the grid-search algorithm. Moreover,
the results were obtained using 5-Fold cross-validation.

In the second experience (B), instead of using all the
300 groups of signatures we have exploited several groups
or combinations of features for each individual. Therefore,
this experience consisted of identifying, for each person, if a
signature was either original or forged. Only the RBF kernel
was employed.

The third experience (C) consisted on identifying a sig-
nature according to the related individual, using both the
original and forged signatures. As we described before, since

TABLE III: RBF kernel configuration used in the first ex-
periment, the generic identification of original and forged
signatures.

Features C γ

polar 0.08 0.04
cartesian 0.64 0.08
mdf 10.24 0.04
wavelet 0.01 64.00
bestfit 0.01 8.19
dct 0.08 2.56
gravitycenter 0.01 0.00
hist 0.01 8.19
kmeans 0.04 0.00
maxint 0.01 0.01
sixfold 0.02 3.78
tri-fold-surface 1.28 0.02
dct+mdf 11.71 0.02
dct+mdf+cart 8.00 0.01

TABLE IV: The configuration of all kernel functions used in
the experience A with combination of features DCT + MDF.

Kernel C γ L σ α b q

RBF 11.710 0.02
UKF 10.240 1.00 2.56 0.25
Linear 0.001
Polynomial 0.100 0.99 13.40 0.04
Sigmoid 0.100 0.08 10.24

our classifier is currently binary we simulated a One-Against-
One multi-class classifier, that is, we trained and tested each
individual class against one of the others. Thus, for a dataset
with c classes, (c× (c− 1)/2) training tasks are required. In
this third experience we performed (300 × 299)/2 = 44850
runs, excluding the validation procedure for each experience.
As the cost involved in the training process is high, we only
used the RBF kernel and 5 K-Fold cross-validation procedure.
Note that GPU implementation was crucial in performing such
large number of runs.

C. Performance Metrics

In order to evaluate the binary decision task of the iden-
tification models, we defined several measures based on
the possible outcomes of the classification, such as, False
Positive Rate (FPR = FP

FP+TN ), and False Discovery Rate
(FPR = FP

FP+TP ), as well as combined measures, such
as, the van Rijsbergen Fβ measure, which combines recall
(R = TP

TP+FN ) and precision (P = TP
TP+FP ) in a single score

(F1 = 2PR
P+R ), an harmonic average between precision and

recall.

VI. RESULTS

In this section we present the results for the three experi-
ences mentioned above.

1) Experience A: Tables V and VI present the obtained
results for the first experiment where the single objective was
to identify if a given signature is original or forged. Table V
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Fig. 3: Two dimensional projection of LDA for the experiment
1 using features MDF and DCT.

GENUINE FORGED

Fig. 4: Examples of genuine and forged signatures for the
individual 23/300 from the GPDS database.

shows the results achieved using only the RBF kernel while
Table VI shows the performance using all the available kernels
in our SVM implementation. Since, in the first experiment,
the best F-Score was obtained using the DCT+MDF features
(see Table V), in the last experiment only those features were
used. Incidentally, on average, using the DCT+MDF features,
the proposed SVM-GPU yielded a speedup of 11.22 times
over the well-known Library for Support Vector Machines
(LIBSVM) software [24] and a speedup of 3.95 times over
our previous Multi Threaded SVM implementation [6].

We also look at LDA as a supervised feature reduction
algorithm which aims to reduce the input space dimensionality
while maximizing the classes separation. In Figure 3 an LDA
projection using both features DCT and MDF is shown, in
order to visualize the level of the task’s complexity at hand.

2) Experience B: With respect to the second experience,
in Table VII we present the average results (and standard
deviations) for the performance metrics described above and
for several runs of groups of features. For model selection of
best kernel parameters, we take as an example the individual
of the Folder nr. 23 (out of 300) with signatures samples
represented in Figure 4) for the genuine author (left) and
forged one (right). In Figures 5 and 6 we show the grid-search
contour map for the individual 23 using, respectively, DCT
features and MDF features.

3) Experience C: The third experiment’s results are shown
in Table VIII, which illustrate the average and standard
deviations of the performance metrics as indicated in the above
experiments.

TABLE V: Performance for the first identification experiment
in Experience A using the RBF kernel.

Features Accuracy F-Score FPR FDR

mdf 77.46±0.72 72.87±1.04 15.08±1.08 21.65±1.23
dct 67.18±0.92 69.52±0.87 46.48±1.91 40.80±0.98
cart 66.71±0.65 69.07±0.77 46.85±1.19 41.18±0.99
polar 57.77±1.21 62.71±0.81 59.93±3.70 48.35±1.42
six-fold-surface 52.80±1.16 61.55±0.42 72.98±3.75 51.74±0.68
tri-fold-surface 44.50±0.07 61.54±0.04 99.83±0.16 55.53±0.03
gravity 44.44±0.68 61.54±0.65 100.00±0.00 55.56±0.68
kmeans 44.45±0.89 61.53±0.86 100.00±0.00 55.55±0.89
maxint 44.54±0.81 61.45±0.83 99.44±2.97 55.53±0.68
wavelet 45.08±0.87 61.10±0.82 96.52±0.63 55.42±0.85
bestfit 53.95±0.86 59.18±0.62 63.01±3.02 51.16±0.88
hist 55.97±0.89 54.68±1.04 47.08±1.69 49.60±1.16
dct+mdf 79.42±1.13 79.03±0.92 26.83±2.89 27.69±1.85
dct+mdf+cart 80.53±0.73 77.82±1.07 16.63±3.90 21.01±2.86

TABLE VI: Performance for the second experiment in Expe-
rience A. using the combination of features MDF + DCT for
all kernels.

Kernel Accuracy F-Score FPR FDR

Linear 60.33±7.21 53.34±22.30 41.45±25.65 40.40±12.98
Polynomial 54.33±9.22 62.45± 3.42 70.06±25.19 49.45± 6.14
RBF 79.42±1.13 79.03± 0.92 26.83± 2.89 27.69± 1.85
Sigmoid 44.41±0.14 61.40± 0.20 99.65± 0.91 55.60± 0.05
UKF 79.97±1.63 79.29± 1.16 25.05± 6.04 26.25± 3.76

VII. DISCUSSION

The analysis of results is conducted for the research design
indicated in the previous sections. Regarding Experience A,
from Table V and Table VI a generic analysis indicates that
the results clearly show the global original/forged signature
identification task is quite complex. Most features are (proba-
bly) redundant and/or correlated. Furthermore, for all groups
considered False Positive Rate and False Discovery Rate are
very high, which indicates that the model with RBF kernel
is unable to verify correctly the whole set of signatures.
Intuitively this can suggest that identifying forged signatures,
regardless of the individual they represent, is problematic.
Thus the performance of the resulting classifier is poor with
low mean values of accuracy and F-score with exception for
the DCT and MDF features. In fact, MDF identifies the line
direction of the image signature and extracts somehow its
structure while DCT gives the information of intensity of
frequency in the transformed image. Thus under the above
conditions a generic classifier is out of sight.

In a more detailed analysis, we observe that the feature
MDF alone yielded promising results and when combined
with either the DCT or the Cartesian coordinates resulted in
high F-Scores (79.03%) and low FPR (21.01%).

To inspect how the selected group of features MDF +
DCT would lead to an improved model under better ways
to represent the similarity among data points, a further study
varying the kernel functions is presented in Table VI. The
results show that the performance was slightly improved when
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TABLE VII: Performance for the Experience B (Forged/orig-
inal signature identification per individual).

Features Accuracy F-Score FPR FDR

cartesian 77.23±11.39 67.54±16.92 10.64±12.24 15.98±18.38
mdf 76.74±11.56 66.77±18.05 10.62±12.20 15.82±17.96
polar 71.13±12.84 59.45±18.78 13.84±14.39 21.44±21.88
wavelet 61.63±13.09 42.06±19.90 16.36±16.66 28.96±27.52
kmeans 54.00±13.19 31.32±19.58 22.71±20.11 38.84±30.81
six-fold-surface 67.19±12.58 50.33±18.91 13.10±14.32 22.83±23.70
dct 79.16±10.55 69.06±16.00 7.97± 9.50 13.06±15.54
histogram 64.33±12.68 45.16±19.64 14.44±14.57 26.92±25.40
bestfit 66.18±12.43 48.54±19.08 14.08±14.60 25.30±24.72
tri-fold-surface 65.73±11.96 57.87±16.45 29.02±18.19 35.76±21.37
gravity center 59.34±12.17 52.23±16.19 35.92±19.97 42.92±21.96
max intensity angle 55.93±12.30 46.86±16.99 37.66±20.30 46.93±22.38
mdf + dct 78.76±11.01 69.74±16.67 8.60±10.47 12.87±15.59
polar + cartesian 73.71±12.65 61.02±18.95 10.36±12.59 15.55±18.57
mdf + cartesian 78.33±11.07 69.28±16.58 9.29±11.08 13.45±16.30
dct + cartesian 78.70±11.55 69.81±17.46 9.45±10.98 14.00±16.44
dct + polar + mdf 75.75±12.02 64.87±18.35 10.24±12.12 15.02±17.58
dct + cart + mdf 79.45±11.50 71.16±16.71 8.78±10.80 12.96±15.74
dct + cart + mdf + polar 79.92±11.07 71.62±16.59 8.18± 9.78 12.33±14.93

using the UKF kernel while the FPR decreased by 1.78% and
1.44%, respectively. With this kernel more Support Vectors
(SVs) than with the RBF kernel were found, allowing a better
matching of the decision boundary. For the remaining kernels
the results yield worst values for the performance metrics (e.g.
F-Score < 63%)).

Similar conclusions can be taken for the Experience B
where the goal was the identification of original vs. forged
signatures for each person. Again, we found that the K-Means,
Histogram, Best-Fit, among others, are not good feature
indicators for the image signature recognition problem. In
spite of smaller False Positive Rate (FPR) than in the previous
experience, we observed that Recall (used in the F-score
measure) attained a high value of False Negatives harnessing
the task of correct positives finding. Regarding MDF and DCT
features the results yielded by the model were reasonably
good. Moreover, by combining them with Cartesian and Polar
coordinates we obtained the best original/forged identification,
corresponding to a F-score of 71.62% and a FDR of 12.33%.

Bearing in mind that the best features so far are the
MDF and DCT we used a grid search for finding the RBF
kernel model parameters. Interestingly, the results depicted
in Figure 5 and Figure 6 clearly demonstrate contradictory
results regarding the parameter choice. When using the DCT
feature, the best results are obtained both with increased γ
and penalization constant C. On the other hand, using the
MDF feature requires a smaller γ and a higher C that should
be used in order to achieve higher performance in terms of
the best trade-off between FPR and FDR. Thus, it is hard
to conciliate both features in a unique model unless some
transformation is applied to one of the features, in order
to make both compatible with the same parameters space.
Another observation is that for both features MDF and DCT
a simpler solution could be the use of a specialized SVM
to separate the kernel parameters for each feature in a multi-
kernel learning task. We think multi-kernel would be adequate
for further explore this feature combination.

Regarding the experience C, the One-Against-One person
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Fig. 5: F-Score RBF grid search using the DCT features for
the detection of forged/original signature identification, author
number 23.
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Fig. 6: F-Score RBF grid search using the MDF features for
the detection of forged/original signature identification, author
number 23.

TABLE VIII: Results in Experience C with One-Against-One
signature author identification.

Features Accuracy F-Score FPR FDR

cartesian 97.62± 2.12 97.58± 2.16 2.62± 3.05 2.43± 2.91
mdf 97.94± 1.90 97.80± 2.17 2.28± 2.77 2.11± 2.67
polar 91.97± 5.25 91.56± 5.99 8.71± 8.62 7.73± 7.79
wavelet 82.87± 6.26 82.06± 8.53 17.79±13.72 14.05±10.40
kmeans 69.50± 8.92 68.47±12.51 31.87±21.25 25.72±15.48
six-fold-surface 89.60± 4.63 89.31± 5.53 10.62± 8.91 8.69± 7.31
dct 81.54± 6.62 80.65± 7.64 15.69±12.38 14.55±10.41
histogram 74.55± 7.59 73.12±10.23 24.25±17.48 20.82±13.69
bestfit 90.42± 4.22 89.88± 4.82 8.83± 7.18 8.09± 6.33
tri-fold-surface 85.51± 5.20 85.08± 5.97 14.47± 8.05 14.30± 7.69
gravity center 74.92± 7.07 73.92± 8.38 23.29±10.87 23.43±10.55
max intensity angle 66.99± 7.99 66.16± 9.50 33.12±12.44 32.28±11.93
mdf + dct 98.13± 1.75 98.14± 1.83 2.36± 2.70 2.05± 2.48
polar + cartesian 90.46± 6.27 90.08± 7.29 11.81± 9.57 9.81± 8.46
mdf + cartesian 96.53± 2.65 96.28± 3.05 4.35± 4.52 3.76± 4.03
dct + cartesian 97.50± 2.29 97.30± 2.60 2.81± 3.43 2.56± 3.15
dct + polar + mdf 91.72± 5.97 91.68± 6.43 10.78± 9.67 8.81± 8.03
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identification task, we obtained in general excellent results.
This was made possible by our GPU-based SVM classifier
since the computational cost was handled in a expedite way.
Excluding some features such as K-Means and Max-Intensity-
Angle, the majority of features yielded in Accuracy and F-
Score values above 80%. Again, the best features found so
far like MDF, Cartesian and Polar Coordinates yielded F-
Scores above 90%. Specifically, the MDF attained an F-
Score of 97.80%. Combining both MDF and DCT features
Accuracy was of 98.13%, F-Score of 98.14% corresponding
to the highest Precision and Recall, 97.88% and 98.83%,
respectively. It is worth of mentioning that with MDF feature
alone FPR was of 2.28% and MDF + DCT the FDR was of
2.05% indeed remarkable values for the problem of signature
identification. An excellent trade-off between performance and
computational cost turned out possible due to the excellent
capabilities of both steps involved in setting the solution of
this problem.

VIII. CONCLUSION

Signature identification is a very important problem in
authentication in several areas such as personal identification,
security, bank transactions, etc.. Many efforts have been put to
tackle the verification of signatures which contain biometric
information. Often the databases are very large and such
big data appears difficult to handle. Additionally, in offline
settings, the lack of the dynamic characteristics makes the
problem hard to solve. Fast machine learning algorithms that
are able to extract relevant information from large repositories
play an important role. To this end, in this paper we proposed
a two-step process which examines the best group of features
extracted form the biometric images and a GPU-based SVM
classifier with characteristics to well-feature this problem.
The component integrates the GPUMLib, by extending our
previous work on multi-threaded parallel MT-SVM which
parallelizes the SMO algorithm. Our implementation uses the
power available on multi-core GPUs and efficiently learns
(and classifies) the signatures exposing good properties in
scaling data. Additionally, the UKF kernel which has good
generalization properties in the high-dimensional feature space
has been included. When faced with the problem of identifying
a person’s signature, our study demonstrated that this task is
accessible and provides excellent results, even with a single
feature (MDF). In further work, we intend to generalize
the solver to other types of SVM problems such as (latent)
structural SVMs. In another line of work, further exploration
on multi-kernel learning particularly when the best groups of
features (MDF and DCT) are at stake.
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