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Abstract— In this paper, a novel method based on feed-
forward neural network is proposed to optimize the confidence
measure for improving a mandarine keyword spotting system.
Keyword spotting is to detect the occurrences of a pre-defined
list of keywords in the input speech, and confidence measure
is an critical part in the verification stage of keyword spotting.
Posterior confidence has been widely used and was verified to be
effective. In some previous works, the optimization of posterior
confidence has been proposed, which linearly transforms the
phone-level confidence into the word-level confidence. On this
basis, we propose a neural network based method that make
a non-linear transformation. In addition, a sparse activation
and back-propagation strategy is proposed to make this method
feasible and work fast. In the experiments, the proposed method
is compared to other two previous methods. To evaluate per-
formance, two most commonly used measures are considered:
AUC and EER. The experimental result shows that the proposed
method is effective and achieved the best performance among
three methods.

I. INTRODUCTION

KEYWORD Spotting System(KWS) is used to detect
the occurrences of pre-defined keywords in continuous

speech utterance. This technology has been widely used in
many application areas such as speech command control,
voice message classification, audio information retrieval and
automatic queries system.

There are three major categories of keyword spotting
system[1]: LVCSR-based, phone-lattice based and acoustic
keyword spotting. In the experiments of [1], they inves-
tigate that the phone-lattice based method has the worst
performance and the best performance was achieved by the
LVCSR-based method. There are two stages in the LVCSR-
based method. First, the system proceed a large vocabulary
continuous speech recognition on the speech utterance, and
then grep the keywords in hypothesized results which can be
1-best answer, n-best hypothesized lists or word lattice. In the
task of keyword spotting, it’s unnecessary to recognize the
whole sentence of the utterance. Speed and quick response
of the system is supposed to be more important in many
applications of embedded system, e.g., set top box and
unconnected pad.

The performance of acoustic keyword spotting system
approach closely to LVCSR-based method, and could be
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running far more quickly in realtime because of the no
considerations on a large language model, so that it’s chosen
as our system. A variety of methods have been proposed to
improve acoustic keyword spotting. In [2], confusion garbage
model was developed to absorb similar pronunciation words
confused with the specific keywords of a task. The combi-
nation of acoustic and LVCSR based keyword system was
proposed as a method that the lattice generated from LVCSR
was used to improve performance[3]. Even there are so
many methods, the most widely used is the calculation and
optimization of confidence measure.

Confidence measure plays an important role in the verifica-
tion stage of keyword spotting. In the hypothesized detections
from the decoder of acoustic keyword spotting, some are
correct hits and others are false alarms. As usually know,
the optimal target of the confidence measure is to give higher
confidence measure to the correct hits and lower confidence
measure to the false alarms. Based on this assumption, a
threshold T is usually set that a hypothesized detection is
supposed to be accepted if it’s higher than T , and on the
contrary condition that it is lower than T , it should be
rejected. The calculation of a reasonable confidence measure
has a great progress in previous works.

In early years, LR-based confidence measure was pro-
posed. LR means likelihood-ratio which represents the ratio
of keyword’s likelihood to the likelihood of non-keyword.
The modelling of non-keyword is the major problem in LR-
based method. Some modelling methods were proposed such
as online dynamic filler model[4] and anti-subword model[5].
In later years, posterior probability based confidence measure
overcome the disadvantage of requiring alternative model in
LR-based methods, and in the meanwhile, posterior confi-
dence achieve a great much better performance than the LR-
based methods[6].

There are three levels in the calculation of posterior
probability based confidence measure. Frame-level logarithm
posterior probability is calculated using acoustic model with
a strategy called catch-all model. Phone-level confidence
is estimated from the frame-level confidence. Although the
average of phone-level confidence is natural for the estab-
lishment of word-level confidence, some optimized methods
have been proposed for this step of combination. Classifi-
cation of three distinct average values using support vector
machine has been proposed in [7]. Two weighted average
based methods have been proposed which have different
objective functions called MCE[8] and AUC[9]. Essentially,
these weighted average methods are linear regression based
methods that is linearly mapping the phone-level confidence
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to the word-level confidence.
In this paper, we propose using feed-forward neural net-

work for the optimization of the phone-level confidence
measure into the word-level. The phone-level confidence
vector is constructed for the linear regression and the neural
network. They would map a confidence vector to its confi-
dence measure. For fast training and efficient computation, a
strategy called sparse activation and sparse back-propagation
is proposed.

The rest of this paper is organized as following: Section 2
introduces the Keyword Spotting System; Section 3 explains
how to calculate the posterior probability based confidence
measure and the weighted mean based methods. Section
4 proposes the feed-forward neural network based method,
including the trick of sparse activation and back-propagation.
Section 5 illustrates the experimental results. Conclusion is
draw in the last Section 6.

II. KEYWORD SPOTTING SYSTEM

The architecture of the keyword spotting system is shown
in Fig. 1. In the front-end, 12-dimensional MFCC, 1-
logarithm energy and 1-pitch with their first and second
derivatives form 42-dimensional feature vector which is ex-
tracted by the feature extraction stage. The silence detection
will mark every silence frame and these marks will be
referred in the decoder. The frame length is 24ms and the
frame shift is 12ms.

Fig. 1. The architecture of the keyword spotting system

For the decoder, a keyword-filler network is supposed to
be constructed from the acoustic model which is tied state
tri-phone modelled HMM/GMM. The keyword part in the
network is the parallel connection of all keywords’ HMM.
The filler part is the parallel connection of all syllables’
HMM. Keywords’ and syllables’ HMM are all built from
the series connection of their tri-phones’ HMM. The decoder
stage conducts a cross-word search on the network while
processing frames. After that, some hypothesized detections
would be sent into the last verification stage. The final results
are the hypothesized detections accepted by the verification
stage. In the next section, we will discuss the principle and
method of calculation confidence in the verification stage.

III. POSTERIOR CONFIDENCE MEASURE

Confidence measure is the critical part of the verification
stage and affect the global performance of the keyword
spotting system on the foundation of the decoder. Posterior
confidence can be seen as calculation at three levels: frame,
phone, word. We will introduce this process from bottom to
top.

A. Frame-level Posterior Probability

At each frame t, the frame-level posterior probability of a
state s to the observation ot can be defined as:

p(s|ot) =
p(ot|s)p(s)
p(ot)

(1)

where p(ot|s) is the likelihood of the observation ot with
respect to the state s, p(s) is prior probability of the state
s, which we assume to be all equal, and p(ot) is calculated
using a catch-all model[6][10][11] as:

p(ot) =

Ns∑
i=1

p(ot|si) (2)

where Ns is the number of all states and si is the i-th state.
In [8], they proposed an alternative method that is more
effective. It convert the equation (2) to:

p(ot) =

Ns∑
i=1

p(ot|si)IA(si) (3)

where IA(si) = 1 only if si is active in the processing at the
frame t while decoding and IA(si) = 0 if si is not active,
i.e, to accumulate of only the active states. This estimation
seems less complete than the accumulation of all states, but
the result in [8] testify it to be more effective, may be cause
of excluding many odd states by the beam pruning in the
decoder.

B. Phone-level Confidence Measure

To compute the word-level confidence, the phone-level
confidence is supposed to be calculated at first. Assume a
hypothesized keyword W is composed of NW phones, and
the i-th corresponding tri-phone is tphWi . The phone-level
confidence of tphWi is the duration mean of the frame-level
logarithm posterior probabilities:

CM(tphWi ) =
1

tei − tsi + 1

tei∑
t=tsi

log p(st|ot) (4)

where tsi and tei are the start and end frame of the i-th tri-
phone tphWi respectively, ot is the observation at the frame
t, and st is the state aligned at the frame t according to a
Viterbi re-alignment.
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C. Word-level Confidence Measure

The confidence measure for a hypothesized keyword W
is combined from its phone-level confidences. The baseline
used in this paper is the average of the phone-level confi-
dence:

CM(W ) =
1

NW

NW∑
i=1

CM(tphWi ) (5)

It has been found that phone-level confidence should con-
tribute to word-level confidence in different degrees. Thence,
a weighted average of phone-level confidence is employed to
acquire word-level confidence:

CM(W ) =
1

NW

NW∑
i=1

(atphW
i
CM(tphWi ) + btphW

i
) (6)

The weights atphW
i

and the bias btphW
i

is supposed to be
optimized by the gradient descent of an objective function
as an optimal target. Two such objective functions have been
proposed. The MCE function can be expressed as[8]:

d(W ) = σ((CM(W )− C)× Sign(W )) (7)

where σ(·) is the sigmoid function, C is a threshold which
will be varying in the gradient descent, and Sign(W ) = 1 if
W is incorrect, else Sign(W ) = −1. The optimal target is
to minimize the MCE function d(W ). It’s a disadvantage
to maintain this varying threshold, whose initial value is
unpredictable for wandering wildly in the iterations of the
gradient descent.

The AUC objective function is to maximize the area
under the ROC curve directly, which is the metric of the
performance. This function can be defined as[9]:

A =
Θmax

|H+| · |H−|
∑
u∈H+

∑
v∈H−

σ(CM(u)− CM(v)) (8)

where, Θmax is the maximal hit rate which the keyword
spotting system could achieve with no considerations on false
alarms, H+ is the set of all positive hits and H− is the set of
all false alarms. The weakness of this method can be seen in
the objective function, that is calculated from each pair of the
positive hits to the false alarms. Therefore, the computational
complexity of training n samples will be O(n2), that it can
not be applied to a large account of samples.

The common essential weakness of these two weighted
mean based methods is that they are all linear transfor-
mations from the phone-level confidence to the word-level.
To compete this disadvantage, we employ a feed-forward
neural network based method to implement the nonlinear
transformation from the phone-level confidence to the word-
level.

IV. OPTIMIZATION USING FEED-FORWARD NEURAL
NETWORK

A. Phone-Level Confidence Vector

In the weighted average methods, there is a weight and
bias for each tri-phone. It can also be seen as a weight vector
and a bias vector whose dimension is corresponding to the

tri-phone. Assume that a total of L tri-phones occurred in
the acoustic model and they are indexed in the range of 1
to L in some order. Hereupon, the phone-level confidences
of a keyword W can be built into a vector VW which has a
form like:

VWI(tphW
i ) = CM(tphWi )/NW (9)

where tphWi is the i-th tri-phone of W and I(tphWi ) is
its index. It’s reasonable to set VWj = 0 if the index j is
not covered by the tri-phones in W . It’s necessary to notice
that the phone-level confidence vectors VW are all extremely
sparse, cause of NW ≪ L all the time. Furthermore, it will
be shown later that this property of sparsity can be fully
used to speed up the calculation and training with the neural
network.

For a keyword W , we send its phone-level confidence
vector as sample into the input layer of a feed-forward neural
network and at the output layer, get the activations of the two
neurons , which are denoted as o0 and o1 respectively. The
target of o0 and o1 in the training will be set as t0 = 1.0 and
t1 = 0.0 if it’s a positive hit, and t0 = 0.0 and t1 = 1.0 on
the contrary. Therefore, it’s natural to use o0−o1 as the word-
level confidence. A demonstration of this transformation is
illustrated in Fig. 2.

Fig. 2. Transformation using the neural network

B. Sparse Activation and Back-propagation

The major cost of the feed-forward neural network’s
activation and back-propagation in this work is between the
input layer and the first hidden layer, since the input vector
is very long. To accelerate the activations, we first analyze
the expression of a neuron’s activation in the hidden layer:

o(j) = σ(
L∑
i=1

wjiV
W
i ) (10)

where i is a neuron in the input layer, j is a neuron in the first
hidden layer, and o(j) is the output activation of the neuron
j. In fact, the sample vector VWi is very long but sparse, i.e,
except the NW tri-phones’ index position, the value in the
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vector is filled with zero. Using this property, we can refine
the expression:

o(j) = σ(

NW∑
p=1

wjI(tphW
p )V

W
I(tphW

p )) (11)

For training a feed-forward neural network, the so-called
back-propagation is always applied. The essential of back-
propagation is the gradient descent to the objective function
defined at the output layer. The objective function used in
this work is the mean-square error:

E =
1

2

2∑
k=1

(tk − ok)2 (12)

By the partial differential of the objective function, we can
see the increment of a weight from input to the hidden layer:

∆wji =
∂E

∂wji
=

∂E

∂o(j)

∂o(j)

∂wji
(13)

∂o(j)

∂wji
= γoj(1− oj)VWi (14)

where E is the objective function, γ is the smoothing param-
eter in the sigmoid function. Neglected of the first derivative
item of the increment, we discover that the variation of the
weight is relevant to VW . Hence ∆wji = 0 if VWi = 0, that
the number of weights needed to be updated processing one
sample is NWH , where H is the size of the hidden layer.
Finally, the sparse activation and back-propagation reduce
the computational complexity between the input and hidden
layer to O(NWH), which is far more quickly than the naive
one, since NW ≪ L.

V. EXPERIMENTS

The samples for training the neural network are gener-
ated by running keyword spotting on a mandarine speech
set which comes from two databases. One is a telephone
mandarine speech database called TeleDB, and another is
a labelled reading-style mandarine speech database called
863DB. There are totally about 43 hours speech, consisting
of 35845 utterances pronounced by 159 speakers.

In order to generate enough samples to cover all tri-
phones, keyword spotting system is running on the speech set
many times with different keyword lists which are random
picked up. At last, after about 500 passes, 2, 181, 729 samples
are generated, in which there are 225, 099 positive hits
and 1, 956, 630 false alarms. To avoid over-fitting, another
evaluation set is built to evaluate the performance in the
training process. The length of the evaluation set is 18
hours, which consist of 14623 utterances pronounced by 80
speakers. The keyword spotting system is running on the
evaluation speech set 2 times with random chosen keyword
lists.

A distribution of the occurrence number of each tri-phone
in the training samples is demonstrated in Fig. 3. The number
of all tri-phones in the model is 19480. Occur time of a
tri-phone is ranged under 10000 times and most commonly

under 2000 times. A histogram of the number of tri-phones
with different occur times is illustrated in Fig. 4. There are
less tri-phones with higher occur times and the distribution
of this histogram appears as a long tail.

Fig. 3. Occurrence number of each tri-phone

Fig. 4. Number of tri-phones within different occurrence numbers

The test set used in this work is a 4-hours speech set, which
consist of 3190 utterances pronounced by 31 speakers. There
are 4 keyword lists random chosen for testing where each list
has 100 keywords.

For the evaluation of the performance, some measures
have been used in different works. In this work, we use two
measures which are most commonly used: AUC and EER.
In early years, Figure of Merit(FOM) is commonly used in
measuring the performance of keyword spotting. FOM is
the average hit rate at 10 false alarm rate:1, 2, ..., 10. The
hit rate is the number of correct detections divided by the
number of all occurrences of keywords in speech set. The
false alarm rate is the number of false alarms divided by
the speech hours and the number of keywords. The ROC
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curve indicates the relationship of the hit rate with respect
to the false alarms rate. The area under the ROC curve is
called AUC. It’s obvious to see that FOM is an approximation
of AUC. In another aspect, EER is the equal error rate on
the DET curve. The DET curve indicates the relationship
between the false acceptance rate(FAR) and false rejection
rate(FRR). The FAR is the number of total false acceptances
divided by the number of total false attempts, and FRR is
the number of total false rejections divided by the number
of total true attempts. The EER is the error rate at the point
of DET where FAR=FRR.

The first experiment expects to verify that the neural
network based method is effective and the performance is
increasing with respect to the decreasing of the mean-square
error rate of the neural network. Fig. 5 shows the variation
of AUC, EER and mean-square error rate in the process of
training iterations on the evaluation set. It can be seen that
the mean-square error rate decrease, AUC increase, and EER
decrease while the iteration proceeding. This trend deduces
that according to whatever measures, the training process of
the neural network enhance the performance accompanied
while the objective error descending. Therefore, it’s also to
be noticed that after about 50 iterations, the AUC, EER and
mean-saure error tend to wave at some level, which indicates
the fitting of the model with the data. Therefore, the training
iteration will be stopped after 50 iterations or the AUC and
EER are becoming bad.

Fig. 5. Meansquare Error, AUC and EER of ANN Iterations

For a comparison with the linear method, we take two
methods: the baseline(average) and the MCE objective op-
timization. As discussed in Section 3, the AUC objective

optimization can’t handle a big set of samples, thus it’s e-
liminated in this kind of comparison. The second experiment
is to investigate the performance of neural network and MCE
with respect to the number of samples. We suppose that the
neural network will achieve better performance with more
samples. Fig. 6 shows the performance of neural network
and MCE on the test set, while using a subset of all samples
with different size for training. The baseline is also plotted
as a horizonal line in the graph. Whatever in AUC or
EER, the performance of both methods is enhanced with
the accumulation of samples. Since the MCE method starts
iterations from some equal weights, so that its capability
is all the same as the baseline. Unlike this, the neural
network method starts iterations from some random weights.
Therefore when the number of samples is small such as
200, 000, the MCE method is better, but after exceeding
400, 000 iterations, the performance of the NN based method
will surpass the MCE based lienar method.

Fig. 6. AUC and EER of sample numbers

The third experiment investigates the performance of neu-
ral networks with different size on the evaluation set. The
results are listed in Table I. The results show that without
pre-training or different activated function, the deep layers
architecture of the neural network can not be more effective
than the single layer and even worse performance will be
achieved. The single neuron network has no difference from
a linear mapping, but its ability is weaker than the MCE
method because of different objective functions. About 10
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hidden neurons are enough for a tolerable performance.
Based on this experiment on the evaluation set, we choose
this 10 hidden neuron with single-layer as our final architec-
ture of the neural network.

TABLE I
PERFORMANCE OF NN WITH DIFFERENT ARCHITECTURE ON EVAL SET

Layer Num Neuron Num AUC(%) EER(%)
1 70.96 40.54
5 73.07 35.38

1 10 73.10 35.38
20 73.05 35.87
50 73.02 35.44
5 72.88 36.49

2 10 72.91 36.24
20 72.96 35.63
5 72.66 36.98

3 10 72.90 35.52
20 72.71 36.12

Finally, we compare the final performance of the neural
network based method with two other linear methods: the
baseline and the MCE objective weighted average based
optimization. The ROC of three methods is as shown in Fig.
7. It can be seen that both the neural network and MCE
optimization outperform the baseline significantly and the
proposed method achieved a global enhancement over other
two methods. The AUC, EER, and the relative improvement
on EER of three methods are listed in Table II precisely. The
proposed method obtain 9.4% relative improvement in EER
over the baseline and achieve the best performance among
three methods.

Fig. 7. Comparison of three methods on ROC

VI. CONCLUSIONS AND FUTURE WORK

In this paper, a novel method based on the feed-forward
neural network is proposed to optimize the posterior confi-
dence measure for keyword spotting. Unlike the previous
linear methods, it has an advantage that make nonlinear
mapping from the phone-level confidence into the word-level.

TABLE II
PERFORMANCE OF THREE METHODS ON TEST SET

Method AUC EER Relative Improvement
Baseline 76.35% 24.95% -

MCE 77.51% 23.72% 4.9%
NN 78.17% 22.60% 9.4%

Because a phone-level confidence vector is long and sparse,
activations and back-propagations are expected to be running
slowly. In order to overcome this disadvantage, we propose
a strategy to exploit the sparsity of confidence vectors for
speeding up the method to be feasible.

In the experiments, we verify the method to be effective.
Two measures are employed to evaluate the performance:
AUC and EER. The performance is enhanced with the
proceeding of iterations and the accumulation of samples.
To be compared, two other linear methods are used: the
baseline and MCE optimization. Both the proposed method
and MCE method beat the baseline significantly and the
proposed method based on neural network achieve the best
performance among three methods.

This method is promising for enormous evolutions which
have been progressed in deep learning. In the future, a
more effective pre-training and fine-tuning scheme will be
employed for training a feed-forward neural network with
deep layers, or other activated function will be considered.
It’s hopeful to improve the performance of this method
further more.
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