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Abstract—Often in practice one deals with a large amount
of unlabeled data, while the fraction of labeled data points
will typically be small. Therefore one prefers to apply a semi-
supervised algorithm, which uses both labeled and unlabeled
data points in the learning process, to have a better per-
formance. Considering the large amount of unlabeled data,
making a semi-supervised algorithm scalable is an important
task. In this paper we adopt a recently proposed multi-class
semi-supervised KSC based algorithm (MSS-KSC) and make it
scalable by means of two different approaches. The first one is
based on the Nyström approximation method which provides a
finite dimensional feature map that can then be used to solve
the optimization problem in the primal. The second approach is
based on the reduced kernel technique that solves the problem
in the dual by reducing the dimensionality of the kernel matrix
to a rectangular kernel. Experimental results demonstrate the
scalability and efficiency of the proposed approaches on real
datasets.

I. INTRODUCTION

IN practice one needs to address the issue of scalability

to deal with vast amounts of data. In many applications,

ranging from data mining to machine perception, obtaining

the labels of input data is often difficult and expensive.

Therefore in many cases one encounters a large amount

of unlabeled data while the labeled data are rare. Semi-

supervised learning is a framework in machine learning

that aims at learning from both labeled and unlabeled data

points [1]. Using unlabeled data together with labeled data

often gives better results than using the labeled data alone.

Many semi-supervised algorithms perform well on relatively

small problems, (see [2] and references therein), but they do

not scale well when deal with large scale data. Therefore

turning semi-supervised learning algorithms into practice is

important. For instance a family of semi-supervised linear

support vector classifiers for large data sets is introduced in

[3].

Most of the developed semi-supervised approaches attempt

to improve the performance by incorporating the information

from either the unlabeled or labeled part. Among them are

graph based methods that assume that neighboring point pairs

with a large weight edge are most likely within the same

cluster. The Laplacian support vector machine (LapSVM)

[4], a state of art method in semi-supervised classification,

is one of the graph based methods which provide a natural

out-of-sample extension.

Kernel spectral clustering (KSC) is an unsupervised algo-

rithm introduced in [5]. The primal problem of the kernel

spectral clustering is formulated as a weighted kernel PCA.
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In [6] the out-of-sample extension property of KSC is used

to introduce sparsity to the KSC model for large-scale data

sets. The authors in [7] have extended the kernel spectral

clustering to semi-supervised learning by incorporating the

information of labeled data points in the learning process.

Recently Mehrkanoon et al. [8] proposed a multi-class semi-

supervised algorithm (MSS-KSC) where KSC is used as

a core model. The available side-information (labels) is

incorporated to the core model through a regularization term.

In the MSS-KSC approach, one needs to solve a linear sys-

tem of equations to obtain the model parameters. Therefore

with n number of training points, the algorithm has O(n3)
training complexity with naive implementations.

It is the purpose of this paper to make the recently

proposed MSS-KSC algorithm of [8] scalable. To this end,

we propose two possible schemes:

• The first approach, which will be referred to as

Fixed-Size MSS-KSC (FS-MSS-KSC), is based on the

Nyström approximation and the primal-dual formulation

of the MSS-KSC. This is done by using a sparse

approximation of the nonlinear mapping induced by the

kernel matrix and solving the problem in the primal.

• The second approach is by means of the reduced ker-

nel technique that solves the problem in the dual by

reducing the dimensionality of the kernel matrix to a

rectangular kernel. The second approach will be referred

to as Reduced MSS-KSC (RD-MSS-KSC) approach.

This paper is organized as follows. In Section II, a brief

review of binary kernel spectral clustering is given. Section

III briefly reviews the Nyström method for approximating the

finite dimensional feature map. In Section IV the Fixed-size

MSS-KSC approach for large scale problem is formulated.

Section V, introduces the Reduced MSS-KSC approach for

large scale problems. In section VI model selection aspects

are discussed. Simulation results are presented in Section VII

to show the performance of the proposed algorithms.

II. BRIEF OVERVIEW OF KSC

The KSC method corresponds to a weighted kernel PCA

formulation providing a natural extension to out-of-sample

data i.e. the possibility to apply the trained clustering model

to out-of-sample points. Given training data D = {xi}
n

i=1,

xi ∈ R
d, the primal problem of kernel spectral clustering is

formulated as follows [5]:

min
wℓ,bℓ,eℓ

1

2

k−1
∑

ℓ=1

w
(ℓ)

T

w
(ℓ) −

1

2n

k−1
∑

ℓ=1

γℓe
(ℓ)

T

V e
(ℓ)

subject to e
(ℓ) = Φw

(ℓ) + b
(ℓ)1n, ℓ = 1, . . . , k − 1

(1)
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where k is the number of desired clusters, e
(ℓ) =

[eℓ

1, . . . , e
ℓ

n
]T are the projected variables and ℓ = 1, . . . , k−1

indicates the number of score variables required to encode

the k clusters. γℓ ∈ R
+ are the regularization constants. Here

Φ = [ϕ(x1), . . . , ϕ(xn)]T ∈ R
n×h

where ϕ(·) : R
d → R

h is the feature map and h is

the dimension of the feature space which can be infinite

dimensional. A vector of all ones with size n is denoted

by 1n. w
(ℓ) is the model parameters vector in the primal.

V = diag(v1, ..., vn) with vi ∈ R
+ is a user defined

weighting matrix.

Applying the Karush-Kuhn-Tucker (KKT) optimality con-

ditions one can show that the solution in the dual can be

obtained by solving an eigenvalue problem of the following

form:

V PvΩα
(ℓ) = λα

(ℓ)
, (2)

where λ = n/γℓ, α
(ℓ) are the Lagrange multipliers and Pv

is the weighted centering matrix:

Pv = In −
1

1T

n
V 1n

1n1T

n
V,

where In is the n × n identity matrix and Ω is the kernel

matrix with ij-th entry Ωij = K(xi, xj) = ϕ(xi)
T
ϕ(xj).

In the ideal case of k well separated clusters, for a prop-

erly chosen kernel parameter, the matrix V PvΩ has k − 1
piecewise constant eigenvectors with eigenvalue 1.

The eigenvalue problem (2) is related to spectral clustering

with random walk Laplacian. In this case, the clustering

problem can be interpreted as finding a partition of the graph

in such a way that the random walker remains most of the

time in the same cluster with few jumps to other clusters,

minimizing the probability of transitions between clusters. It

is shown that if

V = D
−1 = diag(

1

d1

, ...,
1

dn

),

where di =
∑

n

j=1
K(xi, xj) is the degree of the i-th

data point, the dual problem is related to the random walk

algorithm for spectral clustering.

From the KKT optimality conditions one can show that

the score variables can be written as follows:

e
(ℓ) = Φw

(ℓ) + b
(ℓ)1n = ΦΦT

α
(ℓ) + b

(ℓ)1n

= Ωα
(ℓ) + b

(ℓ)1n, ℓ = 1, . . . , k − 1.

The out-of-sample extensions to test points {xi}
ntest

i=1
is

done by an Error-Correcting Output Coding (ECOC) de-

coding scheme. First the cluster indicators are obtained by

binarizing the score variables for test data points as follows:

q
ℓ

test = sign(eℓ

test) = sign(Φtestw
(ℓ) + b

(ℓ)1ntest
)

= sign(Ωtestα
(ℓ) + b

(ℓ)1ntest
),

where Φtest = [ϕ(x1), . . . , ϕ(xntest
)]T and Ωtest = ΦtestΦ

T .

The decoding scheme consists of comparing the cluster

indicators obtained in the test stage with the codebook (which

is obtained in the training stage) and selecting the nearest

codeword in terms of Hamming distance.

III. APPROXIMATION TO THE FEATURE MAP

In order to handle large data sets the so called fixed-size

approach, where the feature map is approximated by the

Nyström method [9], [10], is introduced in [11] and has been

applied in [12], [13]. In what follows, we briefly summarize

the fixed-size approach.

The approach is based on the fact that one can obtain

an explicit expression finite dimension for the feature map

ϕ(·) by means of an eigenvalue decomposition of the kernel

matrix Ω. Consider the Fredholm integral equation of the

first kind:
∫

C

K(x, xj)φi(x)p(x)dx = λiφi(xj) (3)

where C is a compact subset of R
d. The approximation of the

eigenfunction φi(x) in (3) can be obtained by the Nyström

method which applies a quadrature rule for discretizing the

left-hand side of (3). This will lead to the eigenvalue problem

[9]:

1

n

n
∑

k=1

K(xk, xj)uik = λ
(s)

i
uij (4)

where the eigenvalues λi and eigenfunctions φi from the

continuous problem (3) can be approximated by the sample

eigenvalues λ
(s)

i
and eigenvectors ui. Therefore, the i-th

component of the n-dimensional feature map ϕ̂ : R
d → R

n,

for any point x ∈ R
d, can be obtained as follows:

ϕ̂i(x) =
1

λ
(s)

i

n
∑

k=1

uki K(xk, x) (5)

where λ
(s)

i
and ui are eigenvalues and eigenvectors of the

kernel matrix Ωn×n. Furthermore, the k-th element of the i-

th eigenvector is denoted by uki. In practice when n is large,

we work with a subsample (prototype vectors) of size m ≪ n

whose elements are selected using an entropy based criterion.

In this case, the m-dimensional feature map ϕ̂ : R
d → R

m

can be approximated as follows:

ϕ̂(x) = [ϕ̂1(x), . . . , ϕ̂m(x)]T (6)

where

ϕ̂i(x) =
1

λ
(s)

i

m
∑

k=1

uki K(xk, x), i = 1, . . . , m (7)

where λ
(s)

i
and ui are now eigenvalues and eigenvectors

of the constructed kernel matrix Ωm×m using the selected

prototype vectors.

IV. FIXED-SIZE MSS-KSC FOR LARGE SCALE DATASETS

In this section, first the Fixed-Size MSS-KSC approach

is formulated in the primal and then in subsection IV.B

derivation of the finite dimensional feature map used in the

proposed FS-MSS-KSC is explained.
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A. Formulation of the method

Consider training data points

D = {x1, ..., xnu
︸ ︷︷ ︸

Unlabeled

(DU )

, xnu+1, .., xn

︸ ︷︷ ︸

Labeled

(DL)

},

where {xi}
n

i=1 ∈ R
d. The first nu data points do not have

labels whereas the last nL = n−nu points have been labeled.

Assume that there are Q classes, then the label indicator

matrix Y ∈ R
nL×Q is defined as follows:

Yij =

{

+1 if the ith point belongs to the jth class

−1 otherwise.
(8)

The information of the labeled data is incorporated to the

kernel spectral clustering (1) by means of a regularization

term. The aim of this term is to minimize the squared

distance between the projections of the labeled data and their

corresponding labels. The formulation of Multi-class semi-

supervised KSC (MSS-KSC) described in [8] in primal is

given as follows:

min
w

(ℓ)
,b

(ℓ)
,e

(ℓ)

1

2

Q
∑

ℓ=1

w
(ℓ)

T

w
(ℓ) −

γ1

2

Q
∑

ℓ=1

e
(ℓ)

T

V e
(ℓ)+

γ2

2

Q
∑

ℓ=1

(e(ℓ) − c
(ℓ))T

A(e(ℓ) − c
(ℓ))

subject to e
(ℓ) = Φw

(ℓ) + b
(ℓ)1n, ℓ = 1, . . . , Q,

(9)

where c
ℓ is the ℓ-th column of the matrix C defined as

C = [c(1)
, . . . , c

(Q)]n×Q =

[

0nu×Q

Y

]

n×Q

, (10)

where 0nu×Q is a zero matrix of size nu×Q and Y is defined

as previously. The matrix A is defined as follows:

A =

[

0nu×nu
0nu×nL

0nL×nu
InL×nL

]

,

where InL×nL
is the identity matrix of size nL × nL. V is

the inverse of the degree matrix defined as previously.

Since in Equation (9) the feature map ϕ is not explicitly

known, one uses the kernel trick and solves the problem in

the dual. But as it has been shown in [8] in the dual one has

to solve a linear system of size n (number of data points).

Therefore for large scale data, it is not appropriate to solve

the problem in the dual. In what follows we show how one

can use the approximation of the feature map (explained in

section III) to solve the problem in primal. Given the finite

dimensional (m-dimensional) approximation to the feature

map, i.e.

Φ̂ = [ϕ̂(x1), . . . , ϕ̂(xn)]T ∈ R
n×m (11)

one can rewrite the above optimization problem as an un-

constrained optimization problem and solve it in primal:

min
w(ℓ),b(ℓ)

J(w(ℓ)
, b

(ℓ)) =
1

2

Q
X

ℓ=1

w
(ℓ)T

w
(ℓ)
−

γ1

2

Q
X

ℓ=1

(Φ̂w
(ℓ) + b

(ℓ)1N

T
)T

V (Φ̂w
(ℓ) + b

(ℓ)1N )+

γ2

2

Q
X

ℓ=1

(c(ℓ)
− Φ̂w

(ℓ) + b
(ℓ)1n)T

A(c(ℓ)
− Φ̂w

(ℓ) + b
(ℓ)1n)

(12)

where the matrix C is defined as previously.

Lemma 4.1: Given a finite dimensional (m-dimensional)

approximation to the feature map Φ̂ and regularization con-

stants γ1, γ2 ∈ R
+, the solution to (12) is obtained by solving

the following linear system:

[

w
(ℓ)

b
(ℓ)

]

=

(

ΦT

e
RΦe + I(m+1)

)

−1

γ2Φ
T

e
c
(ℓ)

, ℓ = 1, . . . , Q,

(13)

where R = γ2A − γ1V is a diagonal matrix,

ΦT

e
=

[

Φ̂T

1T

n

]

(m+1)×n

and I(m+1) is the identity

matrix of size (m + 1) × (m + 1).

Proof: Taking the derivative of the cost function J with

respect to w
(ℓ) and b

(ℓ) yields:






































∂J

∂w
(ℓ) = 0 →

(I + Φ̂T
RΦ̂)w(ℓ) + Φ̂T

R1nb
(ℓ) = γ2Φ̂

T
c
(ℓ)

, ℓ = 1, . . . , Q,

∂L

∂b
(ℓ) = 0 →

1T

n
RΦ̂w

(ℓ) + (1T

n
R1n)b(ℓ) = γ21

T

n
c
(ℓ)

, ℓ = 1, . . . , Q,

(14)

which then by using some algebraic manipulation can be

rewritten as in (13).

The codebook CB used for out-of-sample extension is defined

based on the encoding vectors for the training points. If Y

is the encoding matrix for the training points, the CB =
{cq}

Q

q=1, where cq ∈ {−1, 1}Q, is defined by the unique

rows of Y (i.e. from identical rows of Y one selects one row).

The score variables evaluated at the test set Dtest = {xi}
ntest

i=1

become:

e
(ℓ)

test = Φ̂testw
(ℓ) + b

(ℓ)1ntest
ℓ = 1, . . . , Q, (15)

where Φ̂test = [ϕ̂(x1), . . . , ϕ̂(xntest
)]T ∈ R

ntest×m.

The decoding scheme consists of comparing the binarized

score variables for test data points with the codebook CB
and selecting the nearest codeword in terms of Hamming

distance. The procedure for the Fixed-Size MSS-KSC ap-

proach is summarized in Algorithm 1.

B. Subsample selection for Nyström approximation

We aim at using an m-dimensional approximation to

the feature map ϕ. Therefore as it is explained in section

III, one needs to select a subset of fixed size m from a
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Algorithm 1: Fixed-size MSS-KSC approach for large

scale data

Input: Training data set D, labels Y , tuning parameters

γ1 and γ2, kernel parameter (if any), test set

Dtest = {xi}
ntest

i=1
and codebook CB = {cq}

Q

q=1

Output: Class membership of test data points Dtest

1 Select m prototype vectors (small working set) using

quadratic Rényi entropy criterion [14]. (see section IV.

B)

2 Obtain the m-dimensional approximation of the feature

map (11) by means of Nyström approximation (7).

3 Compute {w(ℓ)}Q

ℓ=1
and the bias term {b(ℓ)}Q

ℓ=1
using

(13).

4 Estimate the test data projections {e
(ℓ)

test}
Q

ℓ=1
using (15).

5 Binarize the test projections and form the encoding

matrix [sign(e
(1)

test), . . . , sign(e
(Q)

test )]ntest×Q for the test

points (Here e
(ℓ)

test = [e
(ℓ)

test,1, . . . , e
(ℓ)

test,ntest
]T ).

6 ∀i (i = 1, . . . , ntest), assign xi to class q
∗, where

q
∗ = argmin

q

dH(eℓ

test,i, cq) and dH(·, ·) is the Hamming

distance.

pool of training points of size n. Since the training set is

composed of labeled and unlabeled data points, we select

a subset (of size m) such that it consists of m1 and m2

data points from labeled and unlabeled training data points.

(m = m1 +m2). As it has been motivated in [11], the Rényi

entropy criterion [14] is used, twice only, to select m1 points

from the labeled and m2 points from the unlabeled training

data. Once the subset is available, the m-dimensional feature

map is obtained using equation (7).

V. REDUCED MSS-KSC FOR LARGE SCALE DATASETS

For large-scale problems, the difficulty of solving the

MSS-KSC formulation (9) in the dual results from the huge

kernel matrix which cannot be stored into memory. The

authors in [15] proposed to restrict the number of support

vectors by solving the reduced support vector machines

(RSVM) for classification problem. The reduced kernel tech-

nique is utilized to reduce the n × n dimensionality of the

kernel Ω to a much smaller n × n̄ dimensionality. Here n̄

is the size of a randomly selected subset of training data

considered as candidates of support vectors. A smaller matrix

then can be stored into memory.

In what follows, we apply the reduced kernel technique

described in [15] to the MSS-KSC formulation (9) in order

to make it scalable. Suppose the matrix of training data

points which includes both labeled and unlabeled samples

is denoted by:

X = [x1, . . . , xn]T ∈ R
n×d

.

Let us start with a linear kernel and reformulate (9) as

follows:

min
w

(ℓ)
,b

(ℓ)
,e

(ℓ)

1

2

Q
∑

ℓ=1

(

w
(ℓ)

T

w
(ℓ) + (b(ℓ))2

)

−
γ1

2

Q
∑

ℓ=1

e
(ℓ)

T

V e
(ℓ)

+
γ2

2

Q
∑

ℓ=1

(e(ℓ) − c
(ℓ))T

A(e(ℓ) − c
(ℓ))

subject to e
(ℓ) = Xw

(ℓ) + b
(ℓ)1n, ℓ = 1, . . . , Q,

(16)

where here the bias term is also penalized just to make the

subsequent derivations simpler. Setting the gradient of the

associated Lagrangian of (16) with respect to w
(ℓ) to zero

gives the following KKT condition:

w
(ℓ) = X

T

α
(ℓ)

, (17)

where α
(ℓ) are the Lagrange multipliers associated with the

equality constraint of (16). By replacing the primal variables

w
(ℓ) from (17) one obtains:

min
α

(ℓ)
,b

(ℓ)
,e

(ℓ)

1

2

Q
∑

ℓ=1

(

α
(ℓ)

T

α
(ℓ) + (b(ℓ))2

)

−
γ1

2

Q
∑

ℓ=1

e
(ℓ)

T

V e
(ℓ)

+
γ2

2

Q
∑

ℓ=1

(e(ℓ) − c
(ℓ))T

A(e(ℓ) − c
(ℓ))

subject to e
(ℓ) = XX

T

α
(ℓ) + b

(ℓ)1n, ℓ = 1, . . . , Q,

(18)

where the objective function is modified to have the L2

norm regularization of the problem variables α
(ℓ)

, b
(ℓ)

, e
(ℓ).

Following the lines of [15] one can now replace the linear

kernel matrix XX
T by a nonlinear kernel matrix with ele-

ments Ωij = K(xi, xj) to obtain the following optimization

problem:

min
α

(ℓ)
,b

(ℓ)
,e

(ℓ)

1

2

Q
∑

ℓ=1

(

α
(ℓ)

T

α
(ℓ) + (b(ℓ))2

)

−
γ1

2

Q
∑

ℓ=1

e
(ℓ)

T

V e
(ℓ)

+
γ2

2

Q
∑

ℓ=1

(e(ℓ) − c
(ℓ))T

A(e(ℓ) − c
(ℓ))

subject to e
(ℓ) = Ωα

(ℓ) + b
(ℓ)1n, ℓ = 1, . . . , Q.

(19)

Lemma 5.1: Given regularization constants γ1, γ2 ∈ R
+,

the solution to (19) is obtained as follows:
(

R
−1 + GG

T

)

β
(ℓ) = Rγ2c

(ℓ)
, ℓ = 1, . . . , Q, (20)

where R = γ2A−γ1V is a diagonal matrix and G = [Ω, 1n].

β
(ℓ) = [β

(ℓ)

1 , . . . , β
(ℓ)
n ]T are the Lagrange multipliers.

Proof: The Lagrangian of the constrained optimization

problem (19) becomes:

L(α(ℓ)
, b

(ℓ)
, e

(ℓ)
, β

(ℓ)) =
1

2

Q
∑

ℓ=1

(

α
(ℓ)

T

α
(ℓ) + (b(ℓ))2

)

−

γ1

2

Q
∑

ℓ=1

e
(ℓ)

T

V e
(ℓ) +

γ2

2

Q
∑

ℓ=1

(e(ℓ) − c
(ℓ))T

A(e(ℓ) − c
(ℓ))+

Q
∑

ℓ=1

β
(ℓ)

T

(

e
(ℓ) − Ωα

(ℓ) − b
(ℓ)1n

)

,
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where β
(ℓ) is the vector of Lagrange multipliers. Then the

Karush-Kuhn-Tucker (KKT) optimality conditions are as

follows,















































∂L

∂e
(ℓ)

= 0 → e
(ℓ) = R

−1

(

γ2Ac
(ℓ) − βℓ

)

, ℓ = 1, . . . , Q,

∂L

∂b
(ℓ) = 0 → b

(ℓ) = 1T

n
β

(ℓ)
, ℓ = 1, . . . , Q,

∂L

∂α
(ℓ) = 0 → α

(ℓ) = ΩT
β

(ℓ)
, ℓ = 1, . . . , Q,

∂L

∂β
(ℓ)

= 0 → Ωα
(ℓ) + b

(ℓ)1n = e
(ℓ)

, ℓ = 1, . . . , Q,

(21)

where R is defined as previously. Elimination of the primal

variables α
(ℓ)

, e
(ℓ), results in the following equation

(

R
−1 + GG

T

)

β
(ℓ) = Rγ2c

(ℓ)
, ℓ = 1, . . . , Q, (22)

with G defined as previously.

Obviously for large scale data, still matrix G is of size

n×n which is problematic. Therefore here the reduced kernel

technique can be used to overcome this issue by reducing

the n × n dimensionality of kernel Ω to a much smaller

dimensionality of a rectangular kernel matrix Ω̄ ∈ R
n×n̄

with Ω̄ij = K(xi, xj) and xi ∈ X and xj ∈ X̄ . Here

X̄ is a (n̄ × d) random submatrix of X . In this paper the

subset is selected using a Rényi entropy based criterion

[14]). If one works with the reduced kernel Ω̄ in the primal

optimization problem (19), then by using the Sherman-

Morrison-Woodbury formula [16], the solution in the dual

can be obtained as follows:

β
(ℓ) =

[

In −RḠ

(

In̄+1 + Ḡ
T
RḠ

)

−1

Ḡ
T

]

γ2c
(ℓ)

, ℓ = 1, . . . , Q,

(23)

where Ḡ = [Ω̄, 1n] ∈ R
n×(n̄+1) and In is the identity matrix.

The expression (23) involves the inversion of a small matrix

of order (n̄+1)×(n̄+1). After obtaining the β
(ℓ) , the score

variables evaluated at the test set X
test = {xi}

ntest

i=1
become:

e
(ℓ)

test = Ω̄test
α

(ℓ) + b
(ℓ)1ntest

=

[

Ω̄test Ω̄T

]

β
(ℓ) + b

(ℓ)1ntest
, ℓ = 1, . . . , Q, (24)

where Ω̄test
ij

= K(xi, xj) with xi ∈ X
test and xj ∈ X̄ .

The decoding scheme consists of comparing the binarized

score variables for test data points with the codebook CB
and selecting the nearest codeword in terms of Hamming

distance. The procedure for Reduced MSS-KSC is summa-

rized in Algorithm 2.

Remark 5.1: Without loss of generality, in our experi-

ments we set n̄ (in Algorithm 2) equal to the number of

prototype vectors, i.e. m, used in Algorithm 1.

Remark 5.2: Based on the given formulations in section

IV and V, the following differences between the Reduced

and Fixed-size MSS-KSC can be observed:

In the Fixed-Size MSS-KSC approach:

Algorithm 2: Reduced MSS-KSC approach for large

scale data

Input: Training data set X , labels Y , tuning

parameters γ1 and γ2, kernel parameter (if any),

test set X
test = {xi}

ntest

i=1
and codebook

CB = {cq}
Q

q=1

Output: Class membership of test data points X
test

1 Select a subset matrix X̄ ∈ R
n̄×d from the original

training data matrix X ∈ R
n×d using Rényi entropy

based criterion [14]).

2 Solve the linear system (23) to obtain {β(ℓ)}Q

ℓ=1
and

compute the bias term {b(ℓ)}Q

ℓ=1
using the second

equation of the KKT condition (21).

3 Estimate the test data projections {e
(ℓ)

test}
Q

ℓ=1
using (24).

4 Binarize the test projections and form the encoding

matrix [sign(e
(1)

test), . . . , sign(e
(Q)

test )]ntest×Q for the test

points (Here e
(ℓ)

test = [e
(ℓ)

test,1, . . . , e
(ℓ)

test,ntest
]T ).

5 ∀i (i = 1, . . . , ntest), assign xi to class q
∗, where

q
∗ = argmin

q

dH(eℓ

test,i, cq) and dH(·, ·) is the Hamming

distance.

• One relies on the eigen-decomposition of the kernel

matrix (associated with the prototype vectors) to ap-

proximate the feature map.

• The solution vector w
(ℓ) obtained by Fixed-size MSS-

KSC has the same dimension as the number of prototype

vectors.

• One solves the problem in the primal.

• Computational complexity, neglecting lower order

terms, for solving linear system (13) is O(2nm
2 +

2mn + 2m
3 + m

2) with m ≪ n. (The complexity of

calculating the Nyström approximation O(m3 + m
2
n)

is also included).

In the Reduced MSS-KSC approach:

• One does not need to apply the eigen-decomposition of

the kernel matrix associated with the prototype vectors

to obtain the explicit feature map.

• The solution vector β
(ℓ) obtained by Reduced MSS-

KSC has the same dimension as the number of training

points.

• One solves the problem in dual.

• Computational complexity, neglecting lower order

terms, for solving linear system (23) is O(nm
2+3mn+

m
3 + m

2) with m ≪ n.

VI. MODEL SELECTION

The performance of the proposed methods depends on

the choice of the tuning parameters. In this paper for all

the experiments the Gaussian RBF kernel is used. The

optimal values of the regularization constants γ1, γ2 and the

kernel bandwidth parameter σ are obtained by evaluating

the performance of the model (classification accuracy) on

the validation set. A two step procedure which consists of
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Coupled Simulated Annealing (CSA) [17] initialized with

5 random sets of parameters for the first step and the

simplex method [18] for the second step. CSA is used for

determining good initial starting values and then the simplex

procedure refines our selection, resulting in more optimal

tuning parameters.

Noting that both labeled and unlabeled data points are

involved in the learning process, it is natural to have a

model selection criterion that makes use of both labeled

and unlabeled data points. Therefore as in [7], [19] we use

a criterion which is an affine combination of classification

accuracy and the clustering performance of the underlying

model. The model selection criterion can be expressed as

follows:

argmax
γ1,γ2,σ

κCLP(γ1, γ2, γ3, σ) + (1 − κ)Acc(γ1, γ2, γ3, σ)

where CLP and Acc stand for clustering performance and

classification accuracy respectively. κ ∈ [0, 1] is a user-

defined parameter that controls the trade-off between the im-

portance given to unlabeled and labeled samples. A common

approach for evaluation of clustering results is to use cluster

validity indices [20], [21], [22]. Any internal clustering

validity approach such as Silhouette index [23], Davies-

Bouldin index (DB) or BLF [5] can be utilized. In this paper

we explored the BLF and Silhouette indices and the result

of the one with highest accuracy (on the validation set) is

reported.

VII. NUMERICAL EXPERIMENTS

In this section experimental results on synthetic and real-

life datasets taken from UCI machine learning repository1

[24] and LIBSVM datasets 2 [25] are given. The experiments

are performed on a laptop computer with Intel Core i7 CPU

and 4 GB RAM under Matlab 2012a.

The performance of the proposed FS-MSS-KSC algorithm

on two moons dataset with 4000 data points is shown in

Figure 1. The selected prototype vectors are depicted by

circles.

For the real datasets the size of the data on which the

experiments were conducted ranges from small to large

and covering both binary and multi-class classification. The

amount of labeled data points used in the learning process,

depending on the size of the dataset, ranges from 1% to 40%
of the remaining data points (i.e. test set is not included).

Descriptions of the used datasets from [24] and [25] can

be found in Table I. For Ecoli and Covertype datasets we

merge some of the classes in order to avoid unbalanced

classes. In both Fixed-Size MSS-KSC and Reduced MSS-

KSC approaches the prototype vectors (small working set)

were selected via maximization of the Rényi entropy. The

total amount of prototype vectors consists of prototype vec-

tors selected from labeled and unlabeled data points. Noting

that in the semi-supervised setting one usually encounters a

small amount of labeled and a large amount of unlabeled

1Available at: http://archive.ics.uci.edu/ml/datasets.html
2Available at: http://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/

data points, in our experiments, for the labeled data points

the number of the prototype vectors is set as follows:

PVL =

{

nL if nL < 200
⌈q1

√
nL ⌉ otherwise,

(25)

where q1 ∈ Q
+\{0}. For all the experiments q1 is set to

one. For the unlabeled data points if its number is small

(less than 1000) then the number of the prototype vectors is

set as follows:

PVu =

{

nu if nu < 500
⌈
√

nu ⌉ otherwise.
(26)

In case the amount of unlabeled data points is huge, first we

randomly select a fraction of them of size n
new
u

= ⌈p nL⌉,

where p ∈ N, for training set and then choose the number of

prototype vectors from the new set of unlabeled data points

as follows:

PVu =

{

⌈nnew
u

⌉ if ⌈nnew
u

⌉ < 500
⌈q2

√
nnew

u
⌉ otherwise,

(27)

where q2 ∈ Q
+\{0}. It should be noted that q1, q2 and

p are the user defined parameters that can be designed in

accordance with the available memory of the computer that

is being used to conduct the experiments. The obtained

results of the proposed (Fixed-Size and Reduced) MSS-KSC

approaches together with the Fixed-Size implementation of

the LSSVM approach [11] are tabulated in Table II. The

results reported in Table II, are obtained by averaging over

10 simulation runs with κ = 0.25 used in the model

selection criterion. For the LapSVMp approach, we tuned

the kernel parameter and γA with respect to the accuracy

on the validation set. The remaining parameters, i.e. γI and

NN (the number of neighbors), are set to their default values

(γI = 1 and NN = 6).

TABLE I

DATASET STATISTICS

Dataset # of data points # of attributes # of classes

Iris 154 4 3
Spect 267 21 2
Heart 270 13 2
Ecoli 336 7 5
Pima-Indian 768 8 2
Spambase 4597 57 2
Satimage 6435 36 6
Ring 7400 20 2

Magic 19020 10 2
Cod-rna 331152 8 2
Covertype 581012 54 3

Table II shows that for these data one can improve the

generalization performance by incorporating unlabeled data

points into the learning process. It should be noted that the

FS-LSSVM is a supervised algorithm that uses only the

labeled training points. The training computation times for

the algorithms used to obtain the results of Table II are then

reported in Table III. These results are expected since the FS-

LSSVM does not use unlabeled data in the training process

therefore it is the fastest one. The FS-MSS-KSC requires to
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TABLE II

THE AVERAGE TEST ACCURACY AND THE STANDARD DEVIATION OF THE PROPOSED FIXED-SIZE, REDUCED MSS-KSC APPROACHES AND

FIXED-SIZE LSSVM [11] METHOD ON REAL DATASETS OVER 10 SIMULATION RUNS.

nL/nu Method

Dataset q2/p (% of Labeled data) n
validation
L

/n
validation
u

D

test(%) PVL/PVu FS-MSS-KSC RD-MSS-KSC LapSVMp FS-LSSVM

Heart 1/1 19/76 (20%) 19/75 81 (30%) 19/76 0.803 ± 0.05 0.795 ± 0.05 0.761 ± 0.001 0.759 ± 0.05

Pima-Indian 1/1 54/215 (20%) 54/215 230 (30%) 54/215 0.740 ± 0.02 0.746 ± 0.02 0.748 ± 0.001 0.729 ± 0.03

Spect 1/1 19/75 (20%) 19/74 80 (30%) 19/75 0.832 ± 0.07 0.838 ± 0.02 0.821 ± 0.01 0.825 ± 0.03

Iris 1/1 24/36 (40%) 24/36 30 (20%) 24/36 0.946 ± 0.05 0.960 ± 0.02 0.938 ± 0.13 0.601 ± 0.05

Ecoli 1/1 54/81 (40%) 54/80 67 (20%) 54/81 0.746 ± 0.03 0.740 ± 0.04 0.748 ± 0.06 0.468 ± 0.03

Satimage 1/1 1030/1030 (40%) 1030/1030 1287 (20%) 33/33 0.864 ± 0.006 0.831 ± 0.009 0.834 ± 0.007 0.325 ± 0.08

Ring 1/1 592/592 (20%) 592/592 1480 (20%) 25/25 0.975 ± 0.005 0.974 ± 0.005 0.972 ± 0.006 0.968 ± 0.007

Spambase 2/2 368/736 (20%) 368/736 919 (20%) 20/55 0.885 ± 0.01 0.883 ± 0.01 0.880 ± 0.03 0.838 ± 0.02

Magic 2/2 761/1522 (10%) 761/1522 3804 (20%) 28/79 0.836 ± 0.006 0.829 ± 0.006 0.827 ± 0.005 0.825 ± 0.005

Cod-rna 1/1 1325/1325 (1%) 1325/1325 66230 (20%) 37/37 0.957 ± 0.006 0.947 ± 0.008 0.951 ± 0.001 0.941 ± 0.006

Covertype 1/1 2760/2760 (1%) 2760/2760 29050 (5%) 53/53 0.715 ± 0.005 0.684 ± 0.008 0.697 ± 0.001 0.362 ± 0.003

Note: The reported (%) of the labeled data used in the learning process, is the percentage from D\D

test, i.e. the test set is not included. The reported (%) of test set is the

percentage from the entire data set.
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Two moons dataset with 2000 data points each

Fig. 1. The performance of the FS-MSS-KSC method with RBF kernel
on two moons dataset yielding a sparse kernel-based model. In total there
are 4000 data points. The prototype vectors (small working set) selected by
the Rényi entropy criterion are depicted by circles.

apply an eigen-decomposition technique whereas RD-MSS-

KSC does not apply any eigen-decomposition technique.

In Table IV, we examine the situation where the uti-

lized size of unlabeled data is large and therefore applying

LapSVMp will result in out-of-memory problem whereas

the proposed FS-MSS-KSC and RD-MSS-KSC approaches

that use an approximation of the feature map and reduced

kernel matrix respectively, can deal with a large amount of

unlabeled data points. Figure 3 shows the training computa-

tion times with respect to an increasing number of training

points for Covertype data set. The RD-MSS-KSC showed

a considerably reduced computation times due to the fact

that, unlike FS-MSS-KSC, it does not involve an eigen-

decomposition step.

VIII. CONCLUSIONS

In this paper, two approaches were proposed to make

the semi-supervised KSC based algorithm scalable. The first

approach uses the Nyström approximation of the feature

map and solves the semi-supervised in the primal. The

second approach solves the problem in the dual using

a reduced kernel matrix. The first approach requires an

TABLE III

THE AVERAGE TRAINING COMPUTATION TIMES IN SECONDS FOR THE

PROPOSED FIXED-SIZE, REDUCED MSS-KSC APPROACHES IN THIS

PAPER, LAPSVMP [4] AND FIXED-SIZE LSSVM [11] METHODS ON

REAL DATASETS OVER 10 SIMULATION RUNS.

Training computation times in seconds

Dataset FS-MSS-KSC RD-MSS-KSC LapSVMp FS-LSSVM

Heart 0.0090 0.0043 0.0267 0.0017

Pima-Indian 0.0381 0.0192 0.0295 0.0040

Spect 0.0081 0.0051 0.0265 0.0019

Iris 0.0090 0.0055 0.0025 0.0032

Ecoli 0.0395 0.0184 0.0030 0.0095

Satimage 0.1552 0.1192 0.2317 0.0277

Ring 0.0172 0.0139 0.1727 0.0069

Spambase 0.0246 0.0179 0.1497 0.0053

Magic 0.0737 0.0474 0.6026 0.0107

Cod-rna 0.3646 0.2349 7.6779 0.1590

Covertype 1.0721 0.7231 8.0201 0.6572

TABLE IV

THE AVERAGE TEST ACCURACY OF THE PROPOSED METHODS ON

COVERTYPE DATASET. THE TEST SET IS 5% OF THE ENTIRE DATASET.

Method

nL/nu q2/p PVL/PVu FS-MSS-KSC RD-MSS-KSC LapSVMp

2760/2760 1/1 53/53 0.715 ± 0.01 0.684 ± 0.03 ——–

2760/27600 0.5/10 53/84 0.729 ± 0.04 0.709 ± 0.05 ——–

2760/55200 0.5/20 53/118 0.731 ± 0.02 0.712 ± 0.04 ——–

2760/82800 0.5/30 53/144 0.739 ± 0.04 0.716 ± 0.03 ——–

2760/138000 0.5/50 53/186 0.742 ± 0.05 0.723 ± 0.06 ——–

eigen-decomposition technique to obtain the explicit feature

map whereas the second one does not rely on any eigen-

decomposition technique. The validity and applicability of

the proposed methods is shown on real benchmark datasets.

Both proposed approaches outperform the Laplacian SVM

[4] in most cases in term of classification accuracy and

training computation times. The training computational time

taken by FS-MSS-KSC is longer than that of RD-MSS-KSC

due to the involved eigen-decomposition step.

ACKNOWLEDGMENTS

This work was supported by: • Research Council KUL: GOA/10/09 MaNet,

PFV/10/002 (OPTEC), several PhD/postdoc & fellow grants • Flemish Government:

◦ IOF: IOF/KP/SCORES4CHEM; ◦ FWO: PhD/postdoc grants, projects: G.0377.12

4158



0.95

0.955

0.96

0.965

0.97

0.975

0.98

Ring dataset
T

es
t

ac
cu

ra
cy

FS-LSSVM
RD-MSS-KSC

FS-MSS-KSC LapSVMp

(a)

0.82

0.825

0.83

0.835

0.84

0.845

Magic dataset

T
es

t
ac

cu
ra

cy

FS-LSSVM
RD-MSS-KSC

FS-MSS-KSC LapSVMp

(b)

Fig. 2. Obtained test accuracy over 10 simulation runs using Fixed-
size MSS-KSC, Reduced-MSS-KSC approaches proposed in this paper,
LapSVMp [4] and Fixed-Size LSSVM [11] approaches for the two datasets
(Ring and Magic) when RBF kernel is used.

(Structured systems), G.083014N (Block term decompositions), G.088114N (Tensor

based data similarity); ◦ IWT: PhD Grants, projects: SBO POM, EUROSTARS

SMART; ◦ iMinds 2013 • Belgian Federal Science Policy Office: IUAP P7/19

(DYSCO, Dynamical systems, control and optimization, 2012-2017) • IBBT • EU:

FP7-SADCO ( MC ITN-264735), ERC ST HIGHWIND (259 166), ERC AdG A-

DATADRIVE-B (290923) • COST: Action ICO806: IntelliCIS. Johan Suykens is a

professor at the KU Leuven, Belgium.

REFERENCES

[1] X. Zhu, “Semi-supervised learning literature survey,” Computer Sci-

ence, University of Wisconsin-Madison, 2006.

[2] O. Chapelle, B. Schölkopf, and A. Zien, Semi-supervised learning.
MIT press Cambridge, 2006, vol. 2.

[3] V. Sindhwani and S. S. Keerthi, “Large scale semi-supervised linear
SVMs,” in Proceedings of the 29th annual international ACM SIGIR

conference on Research and development in information retrieval.
ACM, 2006, pp. 477–484.

[4] M. Belkin, P. Niyogi, and V. Sindhwani, “Manifold regularization:
A geometric framework for learning from labeled and unlabeled
examples,” The Journal of Machine Learning Research, vol. 7, pp.
2399–2434, 2006.

[5] C. Alzate and J. A. K. Suykens, “Multiway spectral clustering with
out-of-sample extensions through weighted kernel PCA,” IEEE Trans-

actions on Pattern Analysis and Machine Intelligence, vol. 32, no. 2,
pp. 335–347, 2010.

[6] C. Alzate and J. A. K. Suykens, “Sparse kernel spectral clustering
models for large-scale data analysis,” Neurocomputing, vol. 74, no. 9,
pp. 1382–1390, 2011.

[7] C. Alzate and J. A. K. Suykens, “A semi-supervised formulation to
binary kernel spectral clustering,” in The 2012 International Joint

Conference on Neural Networks (IJCNN). IEEE, 2012, pp. 1992–
1999.

[8] S. Mehrkanoon, C. Alzate, M. Raghvendra, R. Langone, and J. A. K.
Suykens, “Multi-class semi-supervised learning based upon kernel
spectral clustering,” Internal Report 13-146, ESAT-SISTA, K.U.Leuven

(Leuven, Belgium), 2013, submitted, 2013.

2760 27600 55200 82800 138000
0

2

4

6

8

10

12

14

16

 

 

FS−MSS−KSC

RD−MSS−KSC

T
ra

in
in

g
co

m
p
u
ta

ti
o
n

ti
m

e
in

se
co

n
d
s

Covertype dataset

Number of unlabeled training points nu

Fig. 3. Training computation time in seconds for the Covertype dataset
with an increasing number of unlabeled training points and fix number of
labeled points (nL = 2760). The Reduced MSS-KSC approach takes less
training time than the Fixed-Size MSS-KSC approach.

[9] C. Williams and M. Seeger, “Using the Nyström method to speed
up kernel machines,” in Advances in Neural Information Processing

Systems 13, 2001.
[10] C. T. Baker and C. Baker, The numerical treatment of integral

equations. Clarendon press Oxford, 1977, vol. 13.
[11] J. A. K. Suykens, T. Van Gestel, J. De Brabanter, B. De Moor, and

J. Vandewalle, Least squares support vector machines. Singapore:
World Scientific Pub. Co., 2002.

[12] M. Espinoza, J. A. K. Suykens, and B. De Moor, “Fixed-size least
squares support vector machines: A large scale application in electrical
load forecasting,” Computational Management Science, vol. 3, no. 2,
pp. 113–129, 2006.

[13] K. De Brabanter, J. De Brabanter, J. A. K. Suykens, and B. De Moor,
“Optimized fixed-size kernel models for large data sets,” Computa-

tional Statistics & Data Analysis, vol. 54, no. 6, pp. 1484–1504, 2010.
[14] M. Girolami, “Orthogonal series density estimation and the kernel

eigenvalue problem,” Neural Computation, vol. 14, no. 3, pp. 669–
688, 2002.

[15] Y.-J. Lee and O. L. Mangasarian, “RSVM: Reduced support vector
machines,” in Proceedings of the first SIAM international conference

on data mining. SIAM Philadelphia, 2001, pp. 5–7.
[16] G. H. Golub and C. F. Van Loan, Matrix computations. Johns Hopkins

University Press, 2012.
[17] S. Xavier-De-Souza, J. A. K. Suykens, J. Vandewalle, and D. Bollé,
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