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Abstract— Whilst bus lanes are an important tool to ensure
bus time reliability their presence can be detrimental to urban
traffic. In this paper a Non-dominated Sorting Genetic Algo-
rithm (NSGA-II) has been adopted to study the effect of bus
lanes on urban traffic in terms of location and time of operation.
Due to the complex nature of this problem traditional search
would not be feasible. An artificial arterial route has been
modelled from real data to evaluate candidate solutions. The
results confirm this methodology for the purpose of studying
and identifying bus lane locations and times of operation.
Additionally it is shown that bus lanes can exist on an arterial
link without exclusively occupying a continuous lane for large
periods of time. Furthermore results indicate a use for this
methodology over a larger scale and potential near real-time
operation.

I. INTRODUCTION

Bus lanes are a commonly used solution to the growing

problem of urban congestion and the increasing need for

reliable public transport. As road use increases there is also

an increase in journey travel time, unless infrastructure better

suited to the new situation is built then the effect is that

not only commuters but the environment and economy can

suffer greatly. A common strategy to combat the increased

need for populations to commute is the promotion of public

transport to move people and goods about more efficiently,

however public transport is only as good as the infrastructure

upon which it is based and the likelihood of commuters

considering it as an alternative. Keeping traffic moving is

preferable to waves of traffic stopping and starting such

as in congested scenarios with regards to air quality and

pollution, as acceleration and deceleration typically consume

far more fuel than normal [19]. Bus Lanes and similar High

Occupancy Vehicle (HOV) lanes are commonly spotted on

arterial links leading into cities and main circular roads in

the United Kingdom and have been shown to have a positive

impact in reducing travel times and improving journey time

reliability. Bus lanes can often appear empty at peak times as

whilst most motorists are moving slowly buses are not held

up as much, presenting the lanes as potentially wasted space

in the minds of some motorists (the Mayor of Liverpool, UK.

recently suggested removing all bus lanes in the city [31]).

The aim of this paper is to use a genetic algorithm (GA)

alongside a simulation of an artificial urban artery to optimise

the parameters of any present bus lanes, including time of

operation and length. It is hypothesised that at critical traffic
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levels disabling or reducing the operation of bus lanes could

help to ease the traffic condition without severe consequences

for public transport reliability.

II. BACKGROUND

This section presents some background information and

related relevant literature on urban traffic management and

control, traffic simulations, traffic condition forecasting, and

HOV lanes as well as Genetic Algorithms.

A. Optimisation

Many strategies are proposed by Intelligent Transport Sys-

tems (ITSs) to solve the increasing problems of congestion

within cities. The strategies that are defined are required

to incorporate additional considerations for the promotion,

and so needs, of reliable and consistent public transport.

These two factors can be viewed as objectives that require

optimisation.

Previous research has proposed the use of GA’s to produce

a near-optimal solution to congestion management. Park

et al. [24] illustrated the use of GA in conjunction with

the CORSIM (CORidor SIMulation) simulation program to

attain near-optimal traffic signal timing plans during con-

gested or over-saturated periods. Park et al. defined over-

saturated as being conditions when a vehicle was prevented

from moving freely, either due to other vehicles in an

intersection or queuing in the exits of a link. For low and high

demand volume cases, the GA-based algorithm was shown

to outperform a representative delay-based model.

A similar approach was adopted by Teklu et al. [28]. A GA

was again used to devise a near-optimal solution to traffic

signal control to improve delays, safety and environmental

measurements. To assist the optimisation process, they in-

corporated the use of driver re-routing in response to travel

times. This was achieved through the addition of a network

equilibrium model as a constraint to the optimisation process.

The existence of multiple objectives in a problem gives

rise to a set of optimal solutions (which can be referred

to as Pareto-optimal solutions), as opposed to a single

optimal solution [14]. As with single-objective problems

(which this paper previously discussed), the objectives can be

both minimised and maximised. Differences occur in multi-

objective optimisation as the objective functions constitute

a multi-dimensional space. Multi-objective optimisation can

be described as a

“vector of decision variables which satisfies

constraints and optimises a vector function whose

elements represent the objective functions”[23].
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The optimal solutions can be defined as having dominance

[13].

B. Non-dominated Sorting Genetic Algorithm-II: NSGA-II

NSGA-II [14] is a popular procedure which attempts

to find multiple Pareto-optimal solutions in multi-objective

optimisation problems. NSGA-II has three features:

• It uses an elitist principle.

• it uses an explicit diversity preserving mechanism

• it emphasises non-dominated solutions.

NSGA-II has the following structure (taken and adapted

from [13] and [14]).

1) At any point the offspring population,Qt is first created

using the parent population Pt and the usual genetic

operators.

2) The populations of both Qt and Pt are combined to

form a new population Rt.

3) Population Rt is filled by points of different non-

dominated fronts. Those fronts that can not be accom-

modated are deleted.

4) Through the use of Crowding distance sorting, a

perimeter cuboid formed from the nearest neighbour

in the objective space, the top ordered list is chosen.

The multi-objective nature of reducing vehicle congestion

whilst endeavouring to maintain bus flow lends itself to the

use of NSGA-II algorithm. As a result, this research has

focused on the use of this approach.

C. Traffic Models and Bus Lanes

Priority lanes (referred to here as bus lanes) are reserved

for traffic of a particular type so as to improve travel times

and travel time reliability for those users, such as buses, high-

occupancy vehicles or as in 2012 in London, official Olympic

traffic. Traditionally these lanes operate within either a

fixed time during peak periods or continually depending

on circumstance, however Zhu et al discover in[33] that

Dedicated Bus Lanes (DBL) are only suitable for instances

where traffic demand is considered to be low. Intermittent

Bus Lanes (IBL) are therefore typically preferable when

congestion is a significant factor in assigning a bus lane.

Further to this, Currie et al [11] found that traffic volumes

of over 1000 VPHPL (vehicles per hour per lane), or the rule-

of-thumb “1KL threshold”, bus lanes were no longer useful

in improving the condition of the network and offered more

detriment than benefit.

Microsimulation of a road network can provide high-

resolution metrics[29] on its current state at any given

time step. By simulating individual driver behaviour and

interactions across the network it is possible to obtain av-

eraged metrics for each agent such as wait times, number

of stops, speed, emissions and travel time. By modelling

driver interactions at junctions and signals the effects of

congestion can be observed in fine detail and signals can

be optimised to keep stops and wait times to a minimum.

Microsimulation is usually computationally taxing, requiring

many thousands to hundreds of thousands of agents to

be modelled simultaneously. This limitation has previously

hampered microsimulation[26][27][32][10], however the cost

of processing power has fallen significantly, making mi-

crosimulation cheaper and easier to achieve. Microsimulation

as a result has become much more popular in recent times

and is now widely used [20].

Traffic microsimulations have been widely used in many

publications for a variety of purposes including air quality

monitoring and prediction [22][3], the effects of traffic

calming measures[17],Travel Time Prediction, the prediction

of future traffic states[15][12][4][9] and for many other cases

[2].

There are a number of microsimulation tools in exis-

tence, with products such as TSS’ Aimsun, PTV Group’s

VISSIM/VISSUM and TRL’s TRANSYT. There are also

many open-source alternatives such as SUMO (Simulation

of Urban MObility)[1] and Matsim (Multi-Agent Trans-

port Simulation). Each simulation tool employs different

methodologies and models, presenting a wide choice for

traffic prediction and modelling that allows the user to pick

the best suite for their needs depending on the required

level of detail, compatibility with infrastructure, planning

abilities, signal control applications and efficiency, among

other requirements.

SUMO has been chosen for the purposes of this paper

due to it’s open-source, customisable nature which allowed

integration with an external Genetic Algorithm. It has also

been used previously in similar work [5], [21], [2].

III. OBJECTIVES

The objective of this paper is to study the use of genetic

algorithms to demonstrate the effects bus lanes have on

normal traffic and public transportation on a major arterial

road. It is proposed that a genetic algorithm be used to

evolve the positioning and timing of the bus lane along

the artery to find more optimal settings. The results of this

paper will be used in extension work both on the same scale

as this paper and on a larger scale, such as a model of a

city. Due to the diversity and heterogeneous nature of urban

network infrastructure coupled with the changing behaviours

of drivers it is expected to prove a feasible approach to

the problem domain, significantly reducing the search time

that would be necessary normally. It is envisioned that the

work will highlight the complexity of the effects of bus

lanes in urban networks. The long term scope for this is

to provide a tool to advise local authorities on times of

operation and positions for bus lanes on major urban arterial

links. Success would provide a decrease in mean travel time

for private road users without causing significant detriment

to the public transport systems both in terms of travel time

and user uptake.

IV. METHODOLOGY

A. The traffic model

To model the bus lane the open-source traffic microsimu-

lation suite SUMO (Simulation of Urban MObility) was cho-

sen due to the accessibility and customisability of the tools.
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Fig. 1. Arterial network model as run in SUMO.

SUMO provides a Python API which enables the solutions

presented by the GA to be inserted into the simulation with

ease, including adjusting the bus lane length and timings.

The DEAP library[16] for Python was used to implement

the GA.

A simple arterial network was defined using XML, consist-

ing of a 1km long, 3 lane one way link, and 4 intersections,

with the crossing links consisting of one-lane two way

traffic (Fig. 1). The bus lane is on the right-most lane (as

such, this network is right-hand, contrary to UK roads). The

artificial arterial link is one-way as the models used in the

simulation do not consider oncoming traffic[30], therefore

adding oncoming traffic would add complexity that has little

impact upon the result (excluding the additional turning

phase at the cross roads). Additionally, it can be common

for sections of arterial links in United Kingdom cities to

be completely separated from their contra-flow, such as in

Leicester.

Traffic lights are situated along the corridor, with offsets

of 15s applied to create a Green-Wave[8] effect. Traffic

Assignment Zones (TAZs) are defined along the link which

describe origins and destinations for the agents (to be used to

create an Origin-Destination Matrix). The TAZs were A and

B, which described the link origin and terminus respectively.

Additionally C, D, E and F were defined which described the

zones associated with the crossing links (Two links per zone).

To create the traffic demand for the simulation data

was utilised from the City of Leicester, UK Urban Traffic

Management and Control (UTMC) system, SCOOT. A week

of data was collected from an inductive loop stationed along

London Road just after a busy intersection, one of the final
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Fig. 2. Quantity of Vehicles Detected (PCU’s) Against Time (Minutes)

such intersections before the road joins the city circular.

The data was then fitted to a curve using a Fourier

transform based curve fitting methodology, producing the

signature AM/PM peak shape for Monday to Friday with

the distinctive peaks and troughs, along with the single peak

often seen on weekends (Fig. 2). The curve fitting is an

important step to clean up the data and provide a generic

yet realistic origin-destination matrix. It was decided for the

purposes of this paper that a 5 minute time interval was

suitable for describing the traffic demand. 8 hours of demand

at a 5 minute resolution was produced for each of the TAZs

along the link, 3.5 hours for each peak period with a 30

minute warm-up period for both peaks. This demand data

describes the movement of vehicles from one TAZ to another

and is used by the routing algorithm (A*[18]) to provide a

list of links the agents will traverse. The majority of the

traffic will travel from TAZ A to TAZ B.

An initial simulation of the network was performed with

the full bus lane in operation during the time periods of

interest, which are 07:00 to 10:30 for the AM-Peak and

15:00 to 18:30 for the PM-Peak. These times were based on

previous literature, however there is no consensus on exact

peak times as these are individual to different cities and roads

[21][3].

B. The Genetic Algorithm

In order to investigate the bus lane timing and position

optimisation, a genetic algorithm was used. The GA’s candi-

date solutions are in a binary representation of bus lanes to

be used and times these will be active. The space consists of

the combination of bus lane timing and position parameters.

The chromosome consists of 38 bits, as shown here:

Link 1 Link 2 ... Link n Time 1 Time 2 ... Time m

The phenotype of an individual’s genotype is the com-

bination of bus lanes used on link 1 to n (10 links in this

study) and time slots these are active (7 to 10.30 AM and

3 to 6.30 PM in 15 minute intervals; thus m = 28) in the

simulated network. The total size of the search space of
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possible parameter combinations for the presented problem

is 274,877,906,944.

NSGA-II has been chosen due to the multi-objective

nature of the underlying problem, and due to it being a

mature methodology that has been widely used in other

works including Bus Network Optimization[6] and Traffic

Signal Optimization[25][7].The GA has been implemented

using the Python DEAP library. The VarAnd combination

of crossover followed by mutation has been selected, with a

50% crossover rate and a 10% probability for mutation. Any

other parameters were default DEAP settings. The fitness

of each candidate solution has been evaluated by means of

simulating the bus lanes and their timings in the SUMO

simulator. The fitness of each objective has been calculated

as follows:

Ov =

∑
(vk)

max(k)
− itt

Ob =

∑
(bl)

max(l)
− itt

where vk is the travel time of vehicle k, bl is the travel

time of bus l, with a total of max(k) other vehicles on the

network and a total of max(l) buses simulated in one full

simulation run. itt is the rounded average ideal travel time

for the network in seconds (75 seconds here).

In other words, the fitness for each objective is the change

in mean travel time for the specific vehicle type over a

simulation run towards the ideal free flow scenario. In this

work, a population size of 50 and a termination after 51

generations has been selected due to the high computational

strain in terms of processing time. The following section

provides detailed results from multiple runs.

V. EXPERIMENTAL RESULTS

A pair of control simulations were performed to establish

two extreme baselines for the arterial link. In one case the

bus lane operates continuously and is present along the entire

length of the link, in the other there is no bus lane present.

These controls were then evaluated on fitness in the same

manners as the solutions presented by the GA, meaning an

average travel time in seconds was measured for normal

traffic and for bus traffic, which then had the rounded average

ideal travel time for this arterial (75 seconds) subtracted

to produce a difference from the free-flow condition speed

(Table I). Whilst it is possible for vehicles to traverse the

artery in a time close to free-flow (only a few seconds off),

this will happen infrequently as they will need to arrive at a

specific time in the signal phasing so as to catch the entirety

of the Green-Wave.

Normal Bus

Bus lane 129.29s 20.56s
Unrestricted 27.22s 24.23s

TABLE I

FITNESS ADJUSTED TRAVEL TIMES AT 1 BUS PER 5 MINUTES

As expected the unrestricted case greatly improved the

travel time of the normal traffic, however of interest is

the fact that the bus average travel time only increased

very slightly. The same experiments were repeated with an

increased volume of buses (from one bus per five minutes

to five buses per five minutes) and the results were more

pronounced, showing an increase of over 10 seconds in travel

time for buses when no bus lane was present (Table I and

II). This shows that the bus lane has a noticeable positive

effect on bus traffic along this link, which may grow when

combined into a larger network (longer than 1km).

Normal Bus

Bus Lane 123.26s 24.70s
Unrestricted 31.10s 35.17s

TABLE II

FITNESS ADJUSTED TRAVEL TIMES AT 5 BUSES PER 5 MINUTES
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Fig. 3. Fitness for all GAs over all generations
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Fig. 5. Fitness for GA6 over all generations

As the experiments took a considerable amount of time

to process due to a large search space it was not possible

to repeat the experiments for different bus volumes. The

experiments were performed at a rate of one bus every five

minutes. The chromosomes produced from the GA often

showed a similar trend in the positioning of the bus lane,

with it starting further down the artery after the first set of

signals. The solutions favoured non-contiguous periods of

operation for the bus lane, often leaving 15-30 minute breaks.

The change of positioning is likely due to the topology of

the network, as the beginning of the artery has more vehicles

joining than further on. This was somewhat expected as the

structure of the network will have a significant impact on

suitable locations for bus lanes.

The fitness of the solutions over time shows much im-

provement for the private car travel times, with the bus

mean travel time improving slightly to a maximum in a short

number of generations as shown in Fig. 3. Whilst some GAs

evolve more quickly towards fitter solutions (Fig. 4) others

require more generations closer to the terminal generation

(see Fig. 5). This may indicate that the GAs have not yet

converged fully. However, as expected all GAs converge

towards 20-30 seconds from free-flow conditions. This is

especially evident when comparing these to the control of

129.29 seconds for a dedicated bus lane.

The bus times are not improved as they very reach a

mean traversal time that is close to optimal as shown in the

controls. This is due to the low volume of buses (one every

five minutes), however increasing the volume to five every

five minutes (as mentioned previously) increases the mean

travel time, creating more scope for optimisation.

VI. CONCLUSION

In this paper it has been shown that a genetic algorithm

is a suitable methodology for investigating the impact bus

lanes have on urban arterial links. It has been highlighted

that the bus volumes in this experiment are low, meaning

that we are not able see a significant range of improvements

for the bus travel times. At higher volumes it is certain

that the mean travel time would be more adversely affected

than it has been in this paper, however there would still

be a minimizing effect from the GA. The extremely large

search space (228) for an entire network makes CI based

methodologies the ideal candidates. The study of the GAs

phenotypes throughout each generation has yielded useful

and interesting information on the properties of priority lanes

that are beneficial in terms of mean travel time. It was

possible to reduce the mean travel time for private cars whilst

avoiding a large detriment to the mean travel time for buses.

Whilst the travel times are not too dissimilar to the no bus

control solutions have been found that are close whilst still

providing a priority lane for buses and taxis. As bus priority

lanes are also implemented based policy and not just for

the effects for the traffic condition the results show it is

possible to provide the best of both worlds. Additionally

it also means that if abnormal traffic conditions arise the

impact on public transport would be reduced as there would

be “refuges” available in the form of the intermittent bus

lanes.

VII. FUTURE RESEARCH

As an extension this work will use a variety of bus volumes

based on real bus timetables on the link for which the

artificial network was based. Additionally there are alterna-

tives to NSGA-II which should be further investigated along

with alternatives to Genetic Algorithms, including Memetic

Algorithms. An investigation using a model of the City of

Leicester, UK is planned, using detailed link descriptions

from Open Street Map combined with real demand data

provided by Leicester City Council. A near real-time system

is planned that will be investigated and tested in simulation

to operate a real link, leading to a near real-time bus lane

control system. A more detailed simulation experiment is

also planned that will consider the effects of changing bus

lane operation on the wider network, specifically focusing

on the route re-planning agents may consider when a link

is known to have improved or worsened in perceived travel

time.
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